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Nonmetric Calibration of Wide-Angle
Lenses and Polycameras
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Abstract—Images taken with wide-angle cameras tend to have severe distortions
which pull points towards the optical center. This paper proposes a simple method
for recovering the distortion parameters without the use of any calibration objects.
Since distortions cause straight lines in the scene to appear as curves in the
image, our algorithm seeks to find the distortion parameters that map the image
curves to straight lines. The user selects a small set of points along the image
curves. Recovery of the distortion parameters is formulated as the minimization of
an objective function which is designed to explicitly account for noise in the
selected image points. Experimental results are presented for synthetic data as
well as real images. We also present the idea of a polycamera which is defined as
a tightly packed camera cluster. Possible configurations are proposed to capture
very large fields of view. Such camera clusters tend to have a nonsingle viewpoint.
We therefore provide analysis of what we call the minimum working distance for
such clusters. Finally, we present results for a polycamera consisting of four wide-
angle sensors having a minimum working distance of about 4m. On undistorting
the acquired images using our proposed technique, we create real-time high
resolution panoramas.

Index Terms—Camera calibration, wide-angle lens, radial distortion, decentering
distortion, camera clusters, polycamera, nonsingle viewpoint, minimum working
distance, real-time panoramic sensor.
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1 INTRODUCTION

IN many vision applications, such as surveillance, it is desirable to
capture the entire region of interest with as few cameras as
possible. Wide-angle cameras help in this regard, but at the cost of
severe image distortions. Fig. 1 clearly illustrates the effects of such
image distortions. Wide-angle lenses that adhere to perspective
projection would necessitate the use of prohibitively large image
detectors. To work around this problem, the lenses are designed to
severely bend rays of light around the periphery of the field of
view, thus permitting the use of a small image detector. Severe
bending of light rays typically leads to a nonsingular entrance
pupil. The resulting locus of pupils in three dimensions is called a
diacaustic [2]. Hence, for a wide-angle lens, complete removal of
distortions cannot in general be achieved. For our purposes, we
will assume a small pupil locus that can be approximated by a
single point.

If the optics of a wide-angle camera system are known a priori
(i.e., the distortion parameters), then distortion correction can be
easily applied. Unfortunately, such information is seldom avail-
able. Therefore, a simple calibration method to estimate the
distortion parameters is desirable.

Several calibration techniques have been suggested for recover-
ing lens distortion parameters. Tsai [17] used known points in 3D
space to recover some of the distortion parameters. Goshtasby [6]
utilized Bezier patches to model the distortions and used a uniform
grid placed in front of the camera as a calibration object. Weng et al.
[19] also used calibration objects to extract the distortion parameters.
All these methods fall in the category of “stellar” calibration, where
calibration objects of known dimensions need to be used.
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In contrast, Brown [4] proposed a “nonmetric” approach that
does not rely on known scene points. Instead, it relies on the fact
that straight scene lines must perspectively project to straight lines
in the image. Brown'’s algorithm uses essentially noiseless image
data, obtained by imaging plumb-lines suspended against a black
background onto a photographic plate. More recently, Kang [7]
suggested using radial distortion snakes to estimate the radial
distortion parameters. Becker and Bove [1] used three mutually
orthogonal sets of parallel lines and a vanishing point constraint to
recover distortion parameters. Stein in [15], [13], and [14] uses
point correspondences from multiple views to estimate radial
distortions as well as the extrinsic parameters. This additional
parameter search space makes the problem unstable in the
presence of noise. Sawhney and Kumar [11], [12] suggested a
novel approach of image-based distortion parameter estimation.
This is a direct method and relies solely on multiimage alignment.

Previous work suffers from one or more of the following
restrictions: Calibration objects need to be used, not all the
distortion parameters are recovered, or the algorithm is highly
sensitive to noise. One exception is the work of Becker and Bove
[1]. However, Becker and Bove’s constraint (triplets of orthogonal
lines) is less abundant in urban settings than the randomly
oriented straight lines we use. We formulate the estimation of
distortion parameters as the minimization of a noise insensitive
objective function via efficient search. Experimental results with
simulated as well as real data are presented.

In addition, we present the notion of a polycamera (tight cluster
of cameras) to capture very large fully connected fields of view.
Wide-angle cameras are useful in this context as they minimize the
number of cameras needed to cover the desired field of view.
Fewer cameras also facilitate tightly packed clusters, which aid in
reducing the effects of a nonsingular viewpoint such as parallax. In
general, it is not possible to maintain a single viewpoint when
using camera clusters, one exception being the system developed
by Nalwa (see [9]), which uses mirrors along with image sensors to
obtain a single viewpoint. Nonsingular viewpoints lead to parallax
between views which, although useful in stereo applications,
creates unwanted visual artifacts when merging multiple views
together. We propose the idea of a minimum working distance
beyond which the parallax effects are negligible. Analysis of the
minimum working distance for the generic case is provided.
Finally, we present a polycamera system we developed based on
our designs. For this system, we present its minimum working
distance map as well as the high resolution panoramic video
computed in real-time.

2 DISTORTION MODEL

Distortions in lenses can be decomposed into three components:
1) shift of the optical center, 2) radial distortion, and 3) decentering
distortion. In the discussion to follow, we assume the perspective
projection of a scene point in the image plane is point q'. Due to
distortions in the lens, g’ gets mapped to q (see Fig. 2). Let (z,y) be
the Cartesian and (r, ¢) be the polar coordinates of g. Similarly, let
(@',y') be the Cartesian and (r', ¢') be the polar coordinates of q'.
Also, let the optical center C be located at (z,,y,).

2.1 Shift of Optical Center

A shift of the optical center corresponds to a shift of the image
detector in the imaging plane. Estimating this distortion compo-
nent amounts to estimating C' = (z,,y,), the optical center. The
coordinates of an image point upon correction is given by:

=T =2, Y=Y~ Yp
2.2 Radial Distortions
Radial distortions distort image points only along the radial

direction. Most wide-angle cameras tend to pull points radially
toward the optical center. This is referred to as barrel distortion [2].
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Fig. 1. Images captured with wide-angle cameras have severe distortions that alter
the appearances of objects in the scene.

Another type of radial distortion tends to push points away from
the optical center along the radial direction and is called pin-
cushion distortion. The radial distortion at the point q is modeled as:

8l

o0
Ar(q) = ZCZleQi“ where 7 = \/Z% + 32, tan(¢) = (1)
i=1
Cyi41 are the distortion parameters. We ignore terms higher than
the fifth-order as their contribution to the distortion is generally
negligible [3]. Hence, we have:

Ar(q) =~ Cyr® +Cyr. (2)

2.3 Decentering Distortions

Decentering distortions are caused by nonorthogonality of the lens
components and the image detector with respect to the optical axis.
All imaging systems have some degree of decentering distortions.
Unlike radial distortions, this component acts tangential to the radial
direction. We use Conrady’s model [5] for decentering distortion:

AT, (q) =

[Pir? (1 +2cos?(¢)) + 2Par? sin(¢) cos(¢)] - [1 + zx: Pyor?]

ATy(q) =

[P27“2 (1 + 2sin2(¢)) + 2P % sin(¢) cos(qb)] 1+ i Pyor?, (3)
i=1

C X

Fig. 2. ¢’ is the perspective projection of a scene point onto the image plane = — y.
Due to radial and decentering distortions q' gets mapped to the point g.
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Fig. 3. q is a point selected by the user and ¢’ is its undistorted location on
applying the (hypothesized) distortion parameters S. [ is the “best-fit” line
estimated for all @' which lie on the same scene line. g is a point close to q
such that its undistorted location ' (obtained by applying S to §) lies on I. We wish
to minimize the distance between q and §q.

where, P, P, P,;, are the distortion parameters and AT, AT, are
the distortions along the z and y directions, respectively. The
higher-order terms are again relatively insignificant [3] and, in
practice, the model may approximated as:

AT, (q) = [P, 7 (1+ 2cos2(¢)) + 2Pyr? sin(¢) cos(¢)]

. ] 4
ATy(q) ~ [Par®(1 + 2sin®(¢)) + 2P sin(4) cos(¢)]. )

2.4 Complete Distortion Model

In order to correct for distortions, we need to recover the
parameters: S = {C3,C5, P, P5,xp,y,}. The total distortion is
modeled as:

Q

Az(q)
Ay(q)

cos(¢)(Ar(q)) + AT.(q)

sin(¢)(Ar(q)) + AT, (q). ®)

Q

3 OBUJECTIVE FUNCTION FORMULATION

Under perspective projection, straight lines in the scene must map to
straight lines in the image. Lens distortions cause points along
straight scene lines to be mapped to curves in the image. However,
only nonradial lines get distorted if decentering distortions are not
considered. In this setting, an objective function can be defined
which, when minimized, yields the parameters that undistort the
curve points to lie on straight lines. The user selects points in the
image along the distorted curves which correspond to straight scene
lines. These points are used to estimate the distortion parameters.
We present three objective functions, namely, sum of squared
distances (from straight lines), normalized sum of squared
distances, and one that explicitly estimates noise in the chosen
image points. The first two are presented mainly to demonstrate
that simple objective functions (similar to ones proposed
previously) are highly noise sensitive. In contrast, the third
function is designed to explicitly account for noise in the selected
points. All our objective functions are minimized using efficient
search algorithms. In what follows, our goal will be to recover only
the radial and decentering distortion parameters. The shift of the
optical center is recovered separately in an iterative fashion.

3.1 Sum of Squared Distances (¢;)

Let {q = (z,y)} denote the set of points selected by the user.
During search, a set of (hypothesized) distortion parameters S =
{Cs,C5, P, P,} are applied to these selected image points. This
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(d)

Fig. 4. (a) Points randomly sampled from synthetically generated lines. (b) Known distortions are applied to the points in (a). (c) Uniformly distributed random noise in the
interval (-5 pixels, 5 pixels) is added to the distorted points in (b). (d) The distortion parameters are recovered from these noisy image points using the algorithm based on
objective function &;. These parameters are used to undo the distortions present in (b). Despite the large amount of noise, the recovery of undistorted image points is

found to be accurate and robust.

maps them to supposed undistorted points which we hope will be
collinear. Lines are fit to these resulting sets of points {q’' = (z/,v/)}
using a least-squares approach. The objective function is then
defined as the sum of the squared distances of the points from their
corresponding “best-fit” lines. Let the best-fit line for a set of points
{d'} be parameterized by (0, p), where 6 is the angle the line makes
with the horizontal axis and p is the distance of the line from the
optical center. The error due to a single point q is then defined as:

e = (2'sin(8) — y cos(d) + p)z,where :

/ , ©)
¥ =z+ Az(q),y =y+ Ay(q).

Let the number of curves selected by the user be L and the number of
points on each line ! be P,. Then, the objective function is given by:

L P ,
= ZZ(ILI sin(6;) — ¥, cos(6;) + pl> , (7)
=1 p=1

where 6; and p; are the best-fit line parameters corresponding to
image curve ! and (z,,yp;) is the pth point on line 1.

3.2 Normalized Sum of Squares (&)

Although simple, the above function is very sensitive to noise. This
is because noise is magnified by the higher order terms in the
model. Thus, points closer to the optical center contribute less to

the error metric than points farther away. This effect is partially
remedied by normalizing the error e; in (6) by the square of the
distance p; of the corresponding line I from the optical center. The
modified objective function then is:

B L& s, sin(6h) — o, cos(6r) + pi
N g g( Pl ) ' ®

3.3 Explicit Noise Estimation (&;3)

The objective functions & and & are defined in the space of the
undistorted points (ie., after applying S). In this space, the
distortion model nonlinearly magnifies noise. It is therefore more
appropriate to formulate an objective function in the space of
distorted image points. As shown in Fig. 3, let ¢ be the distorted
point under consideration and q' be the “undistorted” point
obtained by applying the set of distortion parameters S. Again, as
before, [ is the best-fit line for the points {q'} which are believed to
lie on the same scene line. We now determine (via search) the point
q close to ¢ which, when undistorted using S, would lieon [ at §'.
The new error function then is:

es = |la— &l 9)
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Since &'(#',9') must lie on [, it must satisfy the constraint:

% sin(0) — ¢ cos(0) + p = 0, where : &' = & + Ax(q),§ = §+ Ay(q).

(10)
Considering all data points, the objective function is given by:
L P ,
63 = Z qu,l - élpJH . (11)
1=1 p=1

This objective function is much more resilient to noise. Experi-
mental results included in the following sections illustrate this fact.

4  MINIMIZATION OF &, &, AND &3

We use a constrained minimization algorithm (modified simplex)
outlined in [10], implemented in the IMSL [18] library to minimize
the three objective functions. In general, any search algorithm can
be used in its place. The following bounds were used for
the search parameters: Cj; € (—107°,107%), C5 € (-1079,1079),
P € (—=1075,107%), P, € (—107°,1075). These bounds are highly
conservative as they include distortions far stronger that those found
in wide-angle imaging sensors. The search also requires an initial
starting point. We assumed the system to be distortion-free at the
start of the search,i.e.,, C3 =C5 = P, = P, = 0.

During the search iterations, computation of & and & is
straightforward, however, {3 requires computing g (see 10), for
which there is no closed-form solution. Hence, q needs to be
estimated via a 2D search in the image space. For every incorrectly
selected (noisy) image point, there exists a distorted image point
along the radial direction. We can thus reduce the 2D search to a
1D search problem. Our calibration implementation takes under
30 seconds on a 300 MHz Pentium to estimate the radial and
tangential distortion parameters.

Experimental results show that including the optical center
parameters in the nonlinear search make the system unstable in the
presence of noise. This was also observed in [4], even though the
severity of distortions, as well as the noise levels, was much lower.
Hence, we recommend nesting the estimation of {C3,Cs, P, P,}
within a coarse-to-fine search for the optical center (z,,y,).

5 EXPERIMENTS WITH SYNTHETIC AND REAL IMAGES

To evaluate the robustness of our calibration technique, it is
imperative to test it in the presence of noise. Noise enters the
system from three main sources: human error in selecting points in
the image, finite image resolution, and the fact that lines in the
scene may not be perfectly straight. It is difficult to quantify the
robustness of any nonmetric calibration method using only real
images due to lack of ground truth. Hence, our experiments
included simulated synthetic images as well as real images.

5.1 Simulation Results

Points were randomly sampled from synthetically generated lines
with random orientations and positions (Fig. 4a). These points
were then distorted with known distortion parameters (Fig. 4b). To
simulate erroneous point selection, uniform noise in the interval
(—w, +w) was added to the points (Fig. 4c). These points were used
to estimate the distortion parameters. The estimated parameters
were used to undistort the noiseless, distorted image points
(Fig. 4b) to recover the undistorted image points (Fig. 4d).
Measuring the deviation of the estimated parameters from the
known (simulated) parameters does not give an intuitive feel of what
distortions remain in the image. A good measure of accuracy is
distance between the true perspective image points (Fig. 4a) and the
undistorted image points (Fig. 4d). Our measure of error is the
average distance, over all points used in the simulation. We tested
each objective function (£, &2, &3) using various random line sets £,
distortion parameters S, and several levels of noise (w € [0, 5] pixels).
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TABLE 1
Errors Measured on Running Simulations Using &; (a), & (b), and & (c)

Distortion Coefficients | Average Error (pixels)

L C'y Cy Py P, w=0| w=1[w=2] w=>5
#1 | 107 107 10° 10° 0.000 | 3360 | 13.973 | 42521
10° 10° | 0.000 | 0.000 | 0.000 | 3264 | 13917 | 42.574
# | 10° 10° 10° 10° 0.000 | 12.095 | 39.567 | 66.817
10° 10° | 0.000 | 0.000 | 0.000 | 12.184 | 39.616 | 66.849
()
Distortion Coefficients | Average Error (pixels)
L C3 Cs Py Py w=0|w=1|w=2|w=5
#1 | 10° 10° 10° 10° 0.000 | 0356 | 2473 | 12.383
105 | 10° | 0.000 | 0.000 | 0.000 | 0396 | 2272 | 12.373
# | 10° 10° 10° 10° 0000 | 1618 | 5448 [ 28.639
10° 10° | 0.000 | 0.000 | 0.000 | 1.592 | 5.550 | 28.711

(b)

Distortion Coefficients I

Average Error (pixels)

L C3 C Py P w=0]w=1|w=2]w=5
#1 | 10° 107 10° 10° 0.002 | 0363 [ 0390 | 0.398
10° 10° | 0.000 | 0.00 | 0.003 | 0328 | 0273 | 0318
# | 10° 107 10° 10° 0.008 | 0.663 | 0773 | 0.502
107 10° | 0.000 | 0.000 | 0.006 | 0529 | 0.734 | 0330

(c)

Although &, shows improvements over &, it is still very sensitive to noise.
However, note the striking improvement over both &, and &.

Tables 1a, 1b, and 1c show the errors present in the recovered
undistorted points using the sum of squares (£;), normalized sum
of squares (§;) and the noise estimation method (£3), respectively.
Notice the sharp degradation in accuracy with increasing noise in
cases of & and & (Tables 1a and 1b). However, & does perform
better than & for certain noise levels. In contrast & is much more
robust and can yield subpixel accuracy even for high noise levels,
as can be seen from Table 1c and Table 2. Even for large levels of
noise (w =5 pixels) the error is below 5 pixels, in spite of the
nonlinear magnification of noise by the distortion model.

Recovery of the optical center is implemented as a coarse-to-
fine exhaustive search around the image center. The search was
done using a 5 x 5 grid at intervals of 10, 5, and 2 pixels. As Table 3
indicates, fine searches in the presence of noise can result in
inaccurate solutions. This was also observed by Brown in [4], in
spite of using data with much lesser noise. In contrast, coarse-to-
fine searches appear to give better results. The time taken to
recover all six distortion parameters {C3,C5, Py, P, zp,y,} is linear
in the number of grid points used. The run time for the complete
calibration algorithm for a 5 x 5 grid is about 20 minutes on a
300 MHz Pentium II machine.

5.2 Results with Real Images

We tested our algorithm based on {3 using images taken with two
different camera systems. To test robustness over a wide range of
conditions, we used a low distortion camera (1/2” CCD Sony
XC-75 camera with a Computar 3.6mm lens) as well as an
inexpensive board camera (1/3” Computar EMH200-L25
CCD board camera with a 2.5mm lens) with severe lens
distortions. The calibration of the sensors was done using a set
of about 10 lines and a total of about 250 points. For unbiased
results, the chosen scene lines should be uniformly distributed
within the image. The estimated distortion parameters were used
to undistort the acquired images. Fig. 5a illustrates an image
acquired with the Computar system. This was undistorted using
function &; (see Fig. 5b). As can be seen, straight lines in the scene
now map to straight lines in image.
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TABLE 2
Detailed Experimental Results for &3

| Distortion Coefficients | Average Error (pixels) ‘

=

L Cy C P P, w=0|lw=1]w=2|w=5H
# | 10° 10° 103 10° 0.002 | 0.428 | 0522 | 0.391
10° 10° 0.000 | 0.000 | 0.004 | 0.344 | 0382 | 0.246
10° 10 | 0.000 | 0.000 | 0.281 | 0348 | 0579 | 2.818
10° 10%° 108 108 0.007 | 0278 | 0.623 | 2782
# | 10° 10° 10° 10° 0.000 | 0151 | 0.015 | 0.068
10° 10° 0.000 | 0.000 | 0.003 | 0305 | 0339 | 0.221
10° 1011 0.000 | 0.000 | 0029 | 0.152 | 0345 | 1.591
105 100 108 106 0.068 | 0.192 | 0339 | 1.701
# | 10° 10° 10° 10° 0.000 | 0501 | 0574 | 0.590
103 10° 0.000 | 0.000 | 0.007 | 0329 | 0330 | 0.337
10° | 10'° | 0.000 | 0.000 | 0.043 | 0444 | 0488 | 2356
103 1010 108 10° 0.009 | 0415 | 0.645 | 2.368

6 POLYCAMERAS

We define a polycamera as a tight cluster of cameras that together
capture a large field of view. Unlike multiple cameras used in
stereo, the cameras that comprise a polycamera are configured to
have minimally overlapping fields of view. However, the finite
size of sensors makes it difficult to maintain a single viewpoint. We
therefore relax the single viewpoint constraint, but ensure that the
individual viewpoints of the cameras are close enough to produce
a seamless mosaic for objects beyond some minimum distance
from the cluster center. We call this distance the minimum working

distance of the polycamera.
In spirit, the idea of using multiple sensors is similar to that of

Nalwa’s system [9], which requires careful arrangement of mirrors
and the cameras. In contrast, our system avoids the need for
accurate positioning of the imaging components. Another sensor
along these lines is the Dodeca by Immersive Media [8]. It uses
11 imaging sensors, arranged on a sphere tessellated as a
dodecahedron. The large number of sensors increases the cluster
size, thus causing greater parallax between views and increasing
its minimum working distance. We would like to use the least
number of cameras to capture a desired field of view. Wide-angle
systems aid us in this respect. However, these systems suffer from
radial and tangential distortions. To calibrate for these effects, one
can use the methods proposed earlier in the paper.
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TABLE 3
Results on Estimation of Optical Center (z,,y,)

| Distortion Coefficients | Average Error (pixels) ‘

L C3 Cy Py Ps Grid [w=0|w=1]w=2

#1 | 10° 107 10° 10° 2 0.002 | 4232 | 9.014
10° 10° 10° 10° 5 0.002 | 0363 | 10.220
10° 10° 10° 10° 10 | 0.002 | 0363 | 0.390

#2 | 10° 10° 10° 10° 2 0.008 | 4.271 3.792
10° 10° 10° 10° 5 0.008 | 0.663 | 12.017
10° 10° 10° 10° 10 | 0,008 | 0.663 | 0.773

6.1 Polycamera Configurations

We present configurations in which wide-angle sensors can be
arranged to provide panoramic, hemispherical and spherical fields
of view. Six sensors can be arranged on the sides of a cube so as to
capture a spherical field of view. Each sensor is rotated by 90 degrees
around its optical axis with respect to the adjacent side’s sensor. This
ensures a view overlap between adjacent sensors (Fig. 6a). The
advantage of this configuration over the Dodeca is the use of fewer
sensors while acquiring the same spherical field of view.

Another configuration includes four sensors oriented 90 degrees
apart to capture a 360 degree panoramic field of view. Sensors with
over 90 degrees horizontal field of view can be used in such
configurations (Fig. 6b). A third configuration uses three imaging
sensors arranged on the sides of a pyramid (Fig. 6¢c). Depending on
the field of view of the individual sensors, a complete hemisphere
to a partial hemisphere may be captured. The advantage of this
configuration is that, with monochrome sensors, video signals
from the three sensors can be combined into a single RGB signal to
be used with a color frame buffer. This reduces the hardware and
computational power needed for acquisition and processing.

7 NONSINGULAR VIEWPOINTS AND THE MINIMUM
WORKING DISTANCE

In general, it is difficult to maintain a single viewpoint in
polycameras. This causes parallax between overlapping views
(Fig. 7b). Fig. 7a shows the disparity of a point Q when projected
from two views, centered at C; and C5, onto a single surface.
However, depending on the resolution at which multiple views are
combined, beyond some finite distance (minimum working distance),
parallax effects become negligible. Now, we derive the constraint
to estimate the minimum working distance for a polycamera.

(@)

(b)

Fig. 5. (c) Image produced by a Computar 2.5mm lens and a Computar 1/3” CCD board camera. ( b) Distortion parameters recovered via the minimization of ¢; are used
to map (a) to perspective image. Notice that straight lines in the scene, such as door edges, map to straight lines in the undistorted images.
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Fig. 6. (a) A spherical FOV polycamera configured using six wide-angle sensors. Each sensor is located on the sides of a cube such that their axes are mutually
orthogonal. (b) A panoramic polycamera configured using four wide-angle sensors. Each camera has a horizontal field of view of over 90 degrees. (c) Three wide-angle

sensors arranged on the sides of a pyramid.

Fig. 7. (a) Two cameras, C; and Cs, image the scene point ) at points ¢; and ¢», respectively. Their projections onto the surface S are p; and p,. p is the perspective
projection of @ on S. The distance d at which the disparity between p; and p, falls below the threshold ¢ is the minimum working distance. (b) Segment of panorama
clearly showing parallax effects for scene points within the minimum working distance.

Consider a projection surface S centered at O. Points p on this
surface are parameterized in terms of the viewing direction (¢, #)
from O. A point @ in the scene along this ray direction at a distance
d from O is given by:

T
Qz(dcos(@)cos((b) dsin() dcos(8)sin(¢) 1). (12)

Let the relative orientation of a camera C; with respect to O be D;
and its perspective projection matrix be P;. P is a map of points
imaged by C; onto S. The map of the scene point () imaged by C;
onto S then is:

pi =P(P;-D;-Q).

The constraint that the parallax between two views falls below the
threshold e is then given by:

(13)

€
lpi = pll <35 (14)
To estimate the minimum working distance for the entire cluster,
we need to estimate d for all ray direction which project onto S.
The maximum distance along all ray directions is the minimum
working distance.

8 A REAL-Time PANORAMIC POLYCAMERA

Fig. 8 shows the polycamera consisting of four Computar
EMH200-L25 board cameras with 2.5mm lenses placed approxi-
mately 90 degrees apart. Each camera has about 115 degree

horizontal field of view. This ensures overlap between adjacent
views as well as a complete 360 degree field of view. The complete
sensor is enclosed inacylinder thatis 7cm talland 7.5 cm in diameter.

8.1 Minimum Working Distance

Fig. 9 illustrates the minimum working distance computed for the
above polycamera. The four sensors were assumed to be coplanar
and are 0.02m apart. The minimum working distance estimated
was approximately 4.0m. Brighter points in the map correspond to

Fig. 8. A panoramic polycamera configured using four 1/3” CCD Computar
EMH200-L25 board cameras with 2.5mm lenses. Each camera has a horizontal
field of view of about 115 degrees, ensuring a 360 degree panoramic field of view.
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Fig. 9. The minimum distance map for a cylindrical polycamera for a parallax error of less than half a pixel. Brighter regions correspond to larger minimum working

distances. The upper limit on the minimum working distance was about 4.0 meters.

Ao

Fig. 10. Cylindrical panoramic video stream generated using the polycamera shown in Fig. 8. The panorama is computed using a look-up table, which is constructed
taking into account the relative orientations of the four wide-angle cameras as well as their distortion parameters.

higher minimum working distances. As expected, the distance is
minimum along the camera’s optical axis and increases as we
progress along any direction orthogonal to this axis. The sharp
edge in the distance map corresponds to the overlapped field of
view. In this region, we consider the maximum of the two
minimum working distances computed for each view.

8.2 Panorama Generation

Prior to blending adjacent views, we need to undistort the image
streams. We therefore calibrate each camera using objective function
& (11). Point correspondences in overlapping undistorted views
were then used to estimate relative orientation (assumed to be
purely rotational) between pairs of sensors. To account for the
differences in the gains of the four cameras, we used the blending
algorithm described by Szeliski [16], where each contributing pixel
value is weighted by its proximity to the view boundary. The map
between pixels in the panorama and the acquired images is stored as
a static lookup table. Four video streams captured simultaneously
using four Matrox boards and a 400 MHz Pentium-II PC were used
to create a real-time 1,000 x 480 panorama at 15Hz (see Fig. 10).

9 SUMMARY

We presented a new method to calibrate imaging systems for radial
and decentering distortions. The distortion parameters were
estimated by minimizing an objective function designed to handle
large noise levels. Also, we proposed the idea of a polycamera
(closely packed camera clusters) and presented polycamera config-
urations for various fields of view. We defined the minimum
working distance for polycameras and described ways to compute it.
Finally, results for a four sensor panoramic polycamera were
presented.
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