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Abstract

A critical step in designing any catadioptric system is determining the shape of
its component mirrors. Many mirror shapes have been designed in the past for
numerous applications. Invariably these mirrors were designed using case specific
tools and required considerable effort on the part of the designer. Recently,
some new general methods have been developed to automate the design process.
However, all previous approaches determined the mirror by minimizing errors in
the mirror shape rather than the image formed. A more principled formulation
is to instead determine a mirror that reduces geometric errors in the images
that the system produces. In general, such a formulation makes the problem
non-linear and computationally prohibitive.

In this paper we present a linear method to determine the mirror shape that
meets a designer’s requirements. The requirements are specified as a map from
pixels to scene points which we call the image-to-scene map. For the case when
an exact solution for the mirror shape does exist, our method finds it. A more
interesting and common case is when no mirror shape exists that implements the
required map. In this case, our method finds the mirror shape that minimizes
geometric errors in image formation. The method achieves this by relating the
errors in the mirror normals to a first-order approximation of image errors. We
show how the constraints of a previous shape based methods can be modified
S0 as to minimize image errors. Our proposed method is also directly applicable
to the design of projection systems. We demonstrate the effectiveness of our
approach on various catadioptric imaging and projection systems showing up to
an 80 percent reduction in errors with respect to previous shape based methods.

* This research was conducted at the Columbia Vision and Graphics Center in the
Computer Science Department at Columbia University. It was supported in parts by
an NSF ITR Grant (IIS-00-85864) and a DARPA HID Contract (No. N00014-00-1-
0929).
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1 Design of Catadioptric Systems

Recent years have seen a growing interest in the design and use of many non-
conventional imaging systems. These imaging systems are better suited than con-
ventional perspective imaging systems for many applications including surveil-
lance and navigation. For instance, acquiring a 360 degree panoramic video with
a single perspective camera is impossible. However, with specially designed op-
tics, this can be easily achieved. Recognizing this fact, many non-conventional
imaging systems which use both lenses and mirrors (catadioptric systems) have
been proposed.

The most common use of catadioptric imaging is to enhance the field of view.
Systems that achieve this goal have been developed using both planar as well
as curved mirrors. Some of these systems have been designed to have a single
effective viewpoint [1-6]. Other systems have been designed to achieve specific
resolution characteristics, such as the equi-angular mapping[7], the constant-
resolution mapping[8] and the equi-areal mapping[9]. Systems have also been
designed to acquire images of a known scene in special ways[10-17].

A critical aspect of designing a catadioptric imaging system is determining
the appropriate shapes of the one or more mirrors that the system uses.? Let
us consider a system that has a single mirror. To determine the shape of this
mirror, we assume that the primary optics (perspective lens, telecentric lens or
otherwise) is known. We also assume that the system requirements are specified
by the designers as a map from pixels in the image to scene points or viewing
directions, which we refer to as the image-to-scene map. Halstead et al were the
first to use this formulation for the related problem of recovering the shape of
specular surfaces using perspective imaging systems [20]. Hicks and Perline later
reposed the problem for mirror design in terms of the image-to-scene map. They
also proposed the use of “geometric distributions” to test for the existence of a
mirror shape that implements the given image-to-scene map.

The mirror for each of the systems designed previously was found using con-
straints imposed by the image-to-scene map to derive partial differential equa-
tions (PDEs) that the mirror must satisfy. The mirror shape was then determined
by finding solutions to the resulting PDEs. This approach requires considerable
skill and effort on the part of the designer. In contrast, the spline based tech-
nique in [20] is better suited for automatic mirror design without human effort. In
[21] we extended their method using a splines based formulation to also include
non-perspective cameras[21].

An important case to consider when designing mirrors is when there may
not exist a single mirror that exactly implements the required image-to-scene
map. In such cases, all the methods described above determine a mirror surface
that minimizes errors in its three-dimensional shape (errors in the orientations

% In general, the performance of an imaging system has two components. One is its
ability to adhere to the prescribed image-to-scene map and the second is its optical
image quality (determined by depth of field, coma, astigmatism, etc. [18,19]). This
paper focuses on the first of these components.
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Figure 1. The normal at two points on the mirror is perturbed by equally. Assuming
parallel incident rays, the reflected rays will be perturbed equally by 6 as shown. As
can be seen, this causes unequal scene errors and therefore unequal image errors. A
mirror designed to minimize errors in the orientation of the normal, therefore does not
necessarily minimize image errors.

of surface normals). However, as shown in Fig.1, a mirror that minimizes errors
in its normals need not minimize image errors. That is, the resulting mirror
may have normals that are close to the desired set of normals but produces very
large distortions in the captured image. Since we are interested in the geometric
quality of the image captured by the imaging system, the correct approach is to
find a mirror that minimizes image errors.

Note that a method for designing mirrors for imaging can also be used to
design projection systems. In this case, the mirror must minimize scene projec-
tion errors. In general, minimizing either the image error or scene error requires
a non-linear optimization, which can be highly unstable. In [21], we recognized
this problem and addressed it by using a heuristic weighting approach. However,
this technique does not accurately model either image or scene errors and hence
does not guarantee good solutions.

In this work, we derive first-order approximations to image and scene errors.
We incorporate these approximations into the algorithm in [21] to determine
the mirror shape that minimizes image or scene errors, without the need for a
costly non-linear optimization. We present experimental results to demonstrate
the effectiveness of such an approach.

2 Spline-Based Mirror Design

We assume that the catadioptric system being designed consists of some known
primary optics and an unknown mirror. The imaging specifications are assumed
to be provided by the designer in terms of a map from pixels in the image
to points in the scene. We call this the image-to-scene map which we denote
M(u,v). Our goal is to find the mirror which in combination with the known
primary optics implements the desired image-to-scene map M.

A general approach to finding mirror shapes was provided by Halstead et al
using tensor splines in the context of specular surface recovery [20]. In our previ-
ous work, we applied an equivalent formulation of this shape based technique to
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Figure 2. Models of the primary optics for which our method can compute a mir-
ror shape. (a) Perspective projection, using conventional imaging systems. (b) Or-
thographic projection, typically obtained with telecentric lenses. (c) The generalized
imaging model, wherein each pixel can have its own associated viewpoint and viewing
direction providing greater flexibility to the designer.

the problem of mirror design. Our emphasis in this work however, is to modify
the equations used in [21] so that the mirror we compute minimizes image or
scene errors. We begin by briefly describing the previous shape based method in
order to define the notation we use. Throughout this paper we will address the
problem of catadioptric imaging system design. However, the same analysis can
be directly applied to projector design as well.

2.1 Modeling the Primary Optics

The primary optics of the catadioptric system could either use a conventional lens
(perspective projection) as in Fig. 2(a), or a telecentric lens (orthographic pro-
jection) as shown in Fig. 2(b), or any general imaging system [22] (see Fig. 2(c)),
where any pixel (u,v) in the image possesses a viewpoint Sj(u,v) and a viewing
direction Vj(u,v). This general model provides greater flexibility to the designer
of the imaging system. This is critical because for certain image-to-scene maps,
a mirror may exist only with one type of primary optics and not with another.
Furthermore, the generality also allows for the design of compound catadioptric
systems that employ multiple mirrors [23].

2.2 Modeling the Mirror Shape

As in [21], we express the mirror shape S,, using the primary optics model, as:
S,.(’U,,U) = S](U,U) - D(’U,,’U)VI(U,’U), (1)

where D(u,v) is the distance of the mirror from the viewpoint surface. We model
D(u,v) using the tensor product spline as:

Ky

Kg
D(u,v) =YY cijfi(w)gi(v), (2)

i=1 j=1
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where f;(u) and g;(v) are 1-D spline basis functions, ¢; ; are the coefficients of
the spline model, and K - K, are the number of spline coefficients.

2.3 Mirror Normal Equations

Fig. 3 shows a catadioptric system used to image some known scene. The mirror
surface S, (u,v) must implement the user provided image-to-scene mapping M
by reflecting each scene point M(u,v) along the scene ray V,(u,v) into the
primary optics, where:

_ Se(u,v) — M(u,v)
Vr(uvv) - |Sr(u”u) — M(U,'U)| -

(3)

This constrains the surface normal of the mirror N, as:

V[( ,’U)

_ u V. (u,v)
[Vi(u, v)

NI‘(U)U) Vr(’U,,U)|' (4)

The tangent vectors T, (u,v) = W and T, (u,v) = w on the mirror
surface must be orthogonal to the normal in Eq.(4). This provides two constraints
on the mirror shape:
Ty (u,v) - Ne(u,v) =0,
(5)
T,(u,v) - Ny(u,v) = 0.

In [20,21], the above constraints are used to present an iterative algorithm,
that determines the mirror shape. This shape however minimizes the errors in
orientation of normal vectors. However, minimizing the error in the shape of

(uy)
I:?:

Primary Optics|w_ VI (u V)
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M (u,v)

Figure 3. A catadioptric imaging system consisting of some known primary optics
and a mirror. In general, a pixel (u,v) in the image maps to the scene point M (u, v)
after reflecting at Sr(u,v) on the mirror. This forces linear constraints on the surface
normals Ny (u,v) of the mirror.
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the mirror does not, in general, result in creating an image with the smallest
geometric error. In terms of imaging system design, it is imperative to compute
the mirror shape that minimizes errors in the image, while preserving linearity
of the constraints from Eq.(5).

3 Reducing Scene and Image Error

We now present a simple method to estimate the mirror shape that approxi-
mately minimizes image or scene projection errors. Before doing so however, we
need to define scene error and image errors.

Consider a catadioptric system that must implement some image-to-scene
map M (u,v). When no mirror shape exists that can exactly implement M (u, v),
the mirror shape is approximate. Therefore a light ray corresponding to pixel
(u,v) gets reflected towards a scene point other than the required point M (u, v).
Let n(u,v) be the effective (possibly erroneous) image-to-scene map that the
catadioptric system with a given mirror implements. The scene error §, at a
point (u,v) is then given by:

& = In(u,v) = M(u,v)]. (6)

For an imaging system, the image error can be computed by simply inverse
mapping the effective scene point 7(u,v) onto the image using the ideal image-
to-scene map M (u,v). The image error & at pixel (u,v) is:

& = M7 (n(u,v)) = (u,v)]. (7)

When an exact mirror shape exists, the errors &z, £, and Eqgs.(5) all vanish.
When no mirror shape exists that implements the desired image-to-scene map,
the Egs. (5) are not satisfied and can be rewritten as:

£O,u _ Tu . Nr
50_ (60,1}) N (Ter> (8)
where &0, and £o,, denote the residues corresponding to the two constraint
equations respectively.

The least squares solution of Egs. (5) minimizes the mean square of the resid-
ual £o. Our goal is to formulate linear equations whose least square solutions
better approximate the image or scene errors. To do so, we first derive a rela-
tionship between the residual and angular perturbations of the tangent vectors.

Next we relate the angular tangent perturbations to errors in the reflected rays
and thus scene errors. The last step is to relate the scene errors to image errors.

3.1 Relating Angular Perturbations of Tangents to Residuals

Referring to Eq. (1) for the mirror shape, the surface tangents are given by

T, = %SJ and T, = % respectively. Taking tangent T, into consideration, we

first note that it can be rewritten as:

r, =y, (p20 25 0
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For a given pixel (u,v), the quantities % and % depend on the primary optics
and are independent of the mirror shape (tensor-spline coefficients). In analyzing
the perturbations of the tangents we consider the location of a point on the
mirror S, (u, v) to be essentially fixed. Thus, D(u,v) changes slowly with respect
to changes in the spline coefficients. The variation in tangents with respect to the

coefficients is thus almost entirely due to changes in %. This restricts T,
to a plane P, spanned by the vectors Vy and D24 — 251 Thus, perturbations
ou ou

to T, can be expressed simply as a rotation in this plane.

Let 7, (Ny) be the projection of N, onto the plane P,. We note that the
component of N, which is orthogonal to plane P, is automatically orthogonal
to T,. Therefore this component of N, is irrelevant. We can then express the
angle 6, between m,(N,) and T, in terms of the residual as:

cos By = §o,u/(|Tul|mu(Nr)). (10)
Similarly, £o,, can be related to 6, as
costly = £o,0/(|To|ms(Ny)). (11)

The angles (6, 8,,) specify the directions of the tangents for a given iteration.
We write the first order approximation for a perturbation of these angles by

(AB,,, AB,) as:
(30 = (o) -2 (&) w

where L is a diagonal matrix with diagonal elements

Ly = —1/5in(8,)| Tyl Ta, (Ny))|
Ly = —1/sin(8,)| T |7, (Ne)]

(13)

The quantity , (IN,) can be computed at every iteration of our method and
does not depend on the unknown tangents. The length |T,| does depend on the
unknown tangents. However, in our iterative method to determine the mirror
shape, we find that |T,| remains relative constant across iterations. The reasons
for this can be seen in Eq. (9). As already noted, T, is a sum of three terms
with % constant for each iteration and with Daa‘zl changing slowly because it
depends only on the mirror position.

So far we derived a first order relationship between the residuals of the con-
strains of Eqgs. (5) and perturbations of the tangent vectors. We shall use this

relationship next to determine the scene errors.

3.2 Relating Scene Error to Residuals

We now present our method of relating tangent perturbations to scene errors.
This will be used to modify Egs. (5) in order to approximate the scene errors.
The three dimensional vector which represents the scene error is:

fp = (gp,zagp,yafp,z) = ﬂ(uav) - M(Uav)- (14)



8 Swaminathan et al.

For a given pixel we consider the vector scene error £, as a function of the angles
#,, and 6,. The first order approximation of the vector scene error due to angular
perturbations A, and A6, is then given by:

gp,:t(euyev) Af
aOut) | +76) (25" (15)
& (0.6,) :

where J(¢,) is the Jacobian, given by:

ng,m ng,m

9E,, 0Ery
Ie) = | g e |, (10
08p,z 98p,=
ou ov

When the angles of the tangent vectors of the mirror T, and T, are perturbed
by a small amount Af, and A8, about 7/2, the cotangent term in Eq. (12)
vanishes and sin(7/2) = 1 in Eq. (13). Combining these equations with Eq. (15)
we have the first order approximation for scene error as

&~ J(p) Léo. (17)

Observe from Eq. (5) that the residuals {o are given by a pair of linear equa-
tions in the spline coefficients for each pixel. We multiply each pair of equations
from the left by the 3 x 2 matrix J(£,)L to obtain three linear equations in
the spline coefficients. A least squares solution of these modified linear equa-
tions approximates the minimization of the scene error to first order. These are
the equations we use to compute the mirror shape for catadioptric projection
systems.

3.3 Relating Image Error to Residuals

For imaging systems we wish to minimize the image error defined in Eq. (7).
This can be achieved by mapping the scene errors back to the image using the
inverse M~! of the image-to-scene map. However, since the Jacobian of the
image-to-scene map J(M) is a 3 X 2 matrix, we employ a left pseudo-inverse to
transform the scene error to the image error as

&~ (JIM)TT(M)THTM)TT(E)Ep. (18)

Combining this with Eq. (17), a first order approximation for image error is
then:
&~ (JM)TT(M) T (M)TI(E,) Léo. (19)

Hence, we now have a simple method to transform the residuals in Egs. (5)
into the image or scene error. To do so, we simply multiply the constraint equa-
tions by an appropriate transformation matrix as in Egs. (17,19). This results in
a new set of linear equations that approximate, to first order, the minimization
of the scene or image error respectively.
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Figure 4. Results of applying our general mirror design method to a para-catadioptric
imaging system. (a, b) The mirror shape computed is identical to the ground truth
shape demonstrating that our method produces (c) error free solutions for cases when
a mirror exists for the prescribed image-to-scene map.

4 Experimental Verification

We now present resulting mirror shapes for various systems computed using
our image or scene error minimizing approach. We begin with the example of a
single viewpoint para-catadioptric camera [5]. Next we present two new designs
for different imaging scenarios. One is a conference table as described in [21] and
the other a projection system for immersive viewing within a spherical screen.

4.1 Single Viewpoint Sensors

We computed the mirror for a para-catadioptric [5] imaging system using a
telecentric lens for the primary optics (orthographic projection). The mirror was
designed by specifying an image-to-scene map such that all the imaged rays pass
through a virtual viewpoint located 1lem below the apex of the reflector. As
seen in Fig. 4(a), the profile of the computed mirror using our method matches
precisely with the analytically derived parabolic profile. The resulting 3D mirror
shape and the zero image errors are also shown in Fig. 4(b,c). This example
is important because it demonstrates that our method produces an error free
solution for mirrors for which a solution exists.

4.2 Conference Table Rectification

We now consider a video conferencing scenario where people seated at a confer-
ence table are imaged. We would like to display the acquired image directly, such
that the curved edge of the table appears straight and all the people appear to
be the same size as if seated along a desk. Fig. 5(a) shows the setup of such an
imaging system (similar to [21]). The computed mirror shape and corresponding
errors are illustrated in Figs. 5(b,c). We also compare our method against an
hypothetical ideal sensor and previous shape based methods. While the previous
method produces large image errors (Max. = 10.14, RMS = 3.0) (see Fig. 5(e)),
our approach drastically reduces errors by about 80% (Max. = 1.92, RMS = 0.6)
as seen in Figs. 5(c,f).



People at a
conference table

(a) Conference table rectifying system
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Figure 6. (a) A spherical immersive screen with the observer seated in the center.
The projector is located on the roof and is expected to project a section of a spherical
panorama on the screen as shown. (b) The mirror computed using our scene projection
error minimizing approach. (c) Errors in projection onto the sphere are very small in
comparison with the mirror shape error minimizing technique. (d) Ideal checkerboard
pattern projected on the sphere. (e) Equivalent checkerboard pattern using the mirror
shape error minimizing method showing stronger distortions. (f) Checkerboard pattern
projected using our proposed method is visibly much lesser distorted.

known primary optics, we presented a method to compute the mirror shape by
solving a linear set of equations.

Our method improves upon a previous linear method [21,20] for mirror de-
sign. By modifying the linear constraints, we claim that the mirror solution thus
obtained approximately minimizes image errors rather than errors in mirror
shape. We first derived a first order approximation of the image and scene error.
This approximation is used to compute an appropriate transformation that must
be applied to the previous linear constraints. The mirror solution to this new
set of transformed equations now minimizes image errors or scene projection
errors as required. The advantage of our technique is that we still can solve for
the mirror shape linearly (in under 15 minutes of runtime) without the need for
costly and potentially unstable non-linear optimizations.

We have demonstrated the ability of our system to consistently outperform
the prior general mirror design method. We have shown in some cases the de-
creases in distortion and increase in performance can be as much as 80%. Due
to the often dramatic increased performance of a system using our method we
believe our technique gives designers a new level of control and flexibility in
creating catadioptric systems.
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