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Abstract
Conventional vision systems are designed to perform in
clear weather. However, any outdoor vision system is in-
complete without mechanisms that guarantee satisfactory
performance under poor weather conditions. It is known
that the atmosphere can significantly alter light energy
reaching an observer. Therefore, atmospheric scattering
models must be used to make vision systems robust in bad
weather. In this paper, we develop a geometric framework
for analyzing the chromatic effects of atmospheric scatter-
ing. First, we study a simple color model for atmospheric
scattering and verify it for fog and haze. Then, based on
the physics of scattering, we derive several geometric con-
straints on scene color changes, caused by varying atmo-
spheric conditions. Finally, using these constraints we de-
velop algorithms for computing fog or haze color, depth
segmentation, extracting three dimensional structure, and
recovering “true” scene colors, from two or more images
taken under different but unknown weather conditions.

1 Vision and Bad Weather

Current vision algorithms assume that the radiance from a
scene point reaches the observer unaltered. However, it is
well known from atmospheric physics that the atmosphere
scatters light energy radiating from scene points. Ultimately,
vision systems must deal with realistic atmospheric condi-
tions to be effective outdoors. Several models describing
the visual manifestations of the atmosphere can be found in
atmospheric optics (see [Mid52], [McC75]). These models
can be exploited to not only remove bad weather effects, but
also to recover valuable scene information.

Surprisingly, little work has been done in computer vision
on weather related issues. Cozman and Krotkov[CK97]
computed depth cues from iso-intensity points. Nayar and
Narasimhan[NN99] used well established atmospheric scat-
tering models, namely, attenuation and airlight, to extract
complete scene structure from one or two images, irre-

∗This work was supported in parts by a DARPA/ONR MURI
Grant(N00014-95-1-0601), an NSF National Young Investigator Award,
and a David and Lucile Packard Fellowship.

spective of scene radiances. They also proposed a dichro-
matic atmospheric scattering model that describes the de-
pendence of atmospheric scattering on wavelength. How-
ever, the algorithm they developed to recover structure using
this model, requires a clear day image of the scene.

In this paper, we develop a general chromatic framework for
the analysis of images taken under poor weather conditions.
The wide spectrum of atmospheric particles makes a general
study of vision in bad weather hard. So, we limit ourselves
to weather conditions that result from fog and haze. We be-
gin by describing the key mechanisms of scattering. Next,
we analyze the dichromatic model proposed in [NN99], and
experimentally verify it for fog and haze. Then, we derive
several useful geometric constraints on scene color changes
due to different but unknown atmospheric conditions. Fi-
nally, we develop algorithms to compute fog or haze color,
to construct depth maps of arbitrary scenes, and to recover
scene colors as they would appear on a clear day. All of our
methods only require images of the scene taken under two
or more poor weather conditions, and not a clear day image
of the scene.

2 Mechanisms of Scattering

The interactions of light with the atmosphere can be broadly
classified into three categories, namely, scattering, absorp-
tion and emission. Of these, scattering due to suspended
atmospheric particles is most pertinent to us. For a detailed
treatment of the scattering patterns and their relationship to
particle shapes and sizes, we refer the reader to the works of
[Mid52] and [Hul57]. Here, we focus on the two fundamen-
tal scattering phenomena, namely, airlight and attenuation,
which form the basis of our framework.

2.1 Airlight

While observing an extensive landscape, we quickly notice
that the scene points appear progressively lighter as our at-
tention shifts from the foreground toward the horizon. This
phenomenon, known as airlight (see [Kos24]), results from
the scattering of environmental light toward the observer,
by the atmospheric particles within the observer’s cone of
vision.
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The radiance of airlight increases with pathlength d and is
given by (see [McC75] and [NN99]),

L(d, λ) = L∞(λ)(1 − e−β(λ)d) . (1)

β(λ) is called the total scattering coefficient and it repre-
sents the ability of a volume to scatter flux of a given wave-
length λ, in all directions. β(λ)d is called the optical thick-
ness for the pathlength d. L∞(λ) is known as the “horizon”
radiance. More precisely, it is the radiance of the airlight
for an infinite pathlength. As expected, the airlight at the
observer (d = 0) is zero.

Assuming a camera with a linear radiometric response, the
image irradiance due to airlight can be written as E(d, λ) =
gL∞(λ)(1− e−β(λ)d), where g accounts for the camera pa-
rameters. Substituting

E∞(λ) = gL∞(λ) , (2)

we obtain

E(d, λ) = E∞(λ)(1 − e−β(λ)d) . (3)

2.2 Attenuation

As a light beam travels from a scene point through the atmo-
sphere, it gets attenuated due to scattering by atmospheric
particles. The attenuated flux that reaches an observer from
a scene point, is termed as direct transmission [McC75].
The direct transmission for collimated light beams is given
by Bouguer’s exponential law[Bou30]:

E(d, λ) = g L0(λ)e−β(λ)d , (4)

where E(d, λ) is the attenuated irradiance at the observer,
and L0(λ) is the radiance of the scene point prior to atten-
uation. Again, g accounts for the camera parameters. Al-
lard’s law[All76] modifies the above model for divergent
light beams from point sources as

E(d, λ) = g
I0(λ)e−β(λ)d

d2
, (5)

where I0(λ) is the radiant intensity of the point source.
In the subsequent sections, we use the terms “attenuation
model” and “direct transmission model”, interchangeably.

2.3 Overcast Sky Illumination

Allard’s attenuation model is in terms of the radiant intensity
of a point source. This formulation does not take into ac-
count the sky illumination and its reflection by scene points.
We make two simplifying assumptions regarding the illu-
mination received by a scene point. Then, we reformulate
the attenuation model in terms of sky illumination and the
BRDF of scene points.

Usually, the sky is overcast under foggy conditions.
So we use the overcast sky model for environmental
illumination[GC66][MS42]. We also assume that the irra-
diance at each scene point is dominated by the radiance of
the sky, and that the irradiance due to other scene points is
not significant. In Appendix A, we have shown that the at-
tenuated irradiance at the observer is given by,

E(d, λ) = g
L∞(λ) r e−β(λ)d

d2
. (6)

where L∞(λ) is the horizon radiance. r represents the sky
aperture (the cone of sky visible from a scene point), and the
reflectance of the scene point in the direction of the viewer.
From (2), we have

E(d, λ) =
E∞(λ) r e−β(λ)d

d2
. (7)

The above expression for the direct transmission of a scene
point includes the effects of sky illumination and the re-
flectance of the scene point. In the remainder of the paper,
we refer to (7) as the direct transmission model.

3 Dichromatic Model

Hitherto, we have described attenuation and airlight sepa-
rately. At night, there can be no airlight (since there is no
environmental illumination) and hence, attenuation domi-
nates. In contrast, under dense fog or haze during daylight,
the radiance from a scene point is severely attenuated and
hence airlight dominates. However, in most situations the
effects of both attenuation and airlight coexist. Here, we
discuss the chromatic effects of atmospheric scattering that
include both attenuation and airlight.

Nayar and Narasimhan[NN99] derived a color model for
atmospheric scattering called the dichromatic atmospheric
scattering model. It states that the color of a scene point un-
der bad weather is a linear combination of the direct trans-
mission color (as seen on a clear day, when there is mini-
mal atmospheric scattering), and airlight color (fog or haze
color).

Figure 1 illustrates the dichromatic model in R-G-B color
space. Let E be the observed color vector for a scene point
P , on a foggy or hazy day. Let the unit vector D̂ represent
the direction of direct transmission color of P . Let the unit
vector Â represent the direction of airlight color. Then, we
can write

E = p D̂ + q Â , (8)

where p is the magnitude of direct transmission, and q is the
magnitude of airlight of P .

For the visible light spectrum, the relationship between the
scattering coefficient β, and the wavelength λ, is given by
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Figure 1: Dichromatic atmospheric scattering model. The color
E of a scene point on a foggy or hazy day, is a linear combination
of the direction D̂ of direct transmission color, and the direction Â

of airlight color.

Rayleigh’s law:

β =
constant

λγ
, (9)

where γ ∈ [0, 4]. Fortunately, for fog and haze, γ ≈ 0 (see
[Mid52], [McC75]). In these cases, β does not depend on
wavelength. So, we drop the parameter λ from the airlight
model in (3) and the direct transmission model in (7). Then,
we can write the coefficients p and q of the dichromatic
model as,

p =
E∞ r e−β d

d2
, q = E∞(1 − e−β d) . (10)

This implies that the dichromatic model is linear in color
space. In other words, D̂, Â and E lie on the same dichro-
matic plane in color space. Furthermore, the unit vectors D̂
and Â, do not change due to different atmospheric condi-
tions. Therefore, the colors of a scene point P , observed un-
der different atmospheric conditions, lie on a single dichro-
matic plane, as shown in figure 2.

D
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E 2

O

Dichromatic Plane

Figure 2: The observed color vectors Ei of a scene point under
different (two in this case) foggy or hazy conditions lie on a plane
called the dichromatic plane.

Nayar and Narasimhan[NN99] did not extensively verify
their model for real images. Since our framework is based
on this model, we experimentally verified the model in R-
G-B color space. Experiments were performed using two

Scene Error (degrees)
Foggy 0.25
Hazy 0.31

Table 1: Experimental verification of the dichromatic model with
two scenes imaged under three different foggy and hazy condi-
tions, respectively. The error was computed as the mean angular
deviation (in degrees) of the observed scene color vectors from the
estimated dichromatic planes, over all 800 × 600 pixels in the im-
ages.

scenes (see figures 6(a) and (c)) under three different fog
and haze conditions. The images used were of size 800×600
pixels. The dichromatic plane for each pixel was computed
by fitting a plane to the colors of that pixel, observed under
the three atmospheric conditions. The error of the plane-fit
was computed in terms of the angle between the observed
color vectors and the estimated plane. The average error (in
degrees) for all the pixels in each of the two scenes is shown
in table 1. The small error values indicate that the dichro-
matic model indeed works well for fog and haze.

4 Computing the Direction of Airlight Color

The direction of airlight (fog or haze) color can be simply
computed by averaging a patch of the sky on a foggy or hazy
day, or from scene points whose direct transmission color is
black1. These methods necessitate either (a) the inclusion
of a part of the sky (which is more prone to color saturation
or clipping) in the image or (b) a clear day image of the
scene with sufficient black points to yield a robust estimate
of the direction of airlight color. Here, we present a method
that does not require either the sky or a clear day image, to
compute the direction of airlight color.

Figure 3 illustrates the dichromatic planes for two scene
points Pi and Pj , with different direct transmission colors
D̂(i) and D̂(j). The dichromatic planes Qi and Qj are given
by their normals,

Ni = E(i)
1 ×E(i)

2 ,

Nj = E(j)
1 ×E(j)

2 . (11)

Since the direction Â of the airlight color is the same for
the entire scene, it must lie on the dichromatic planes of all
scene points. Hence, Â is given by the intersection of the
two planes Qi and Qj ,

Â =
Ni ×Nj

‖Ni ×Nj‖
. (12)

1Sky and black points take on the color of airlight on a bad weather day.
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Figure 3: Intersection of two different dichromatic planes yields
the direction Â of airlight color.

In practice, scenes have several points with different colors.
Therefore, we can compute a robust intersection of several
dichromatic planes by minimizing the objective function

ε =
∑

i

(Ni.Â)2 . (13)

Thus, we are able to compute the color of fog or haze using
only the observed colors of the scene points under two at-
mospheric conditions, and not relying on a patch of the sky
being visible in the image.

We verified the above method for the two scenes shown in
figures 6(a) and (c). First, the direction of airlight color was
computed using (13). Then, we compared it with the direc-
tion of the airlight color obtained by averaging an unsatu-
rated patch of the sky. For the two scenes, the angular de-
viations were found to be 1.2◦ and 1.6◦ respectively. These
small errors in the computed directions of airlight color in-
dicate the robustness of the method.

5 Iso-depth Scene Points
In this section, we derive a simple constraint for scene points
that are at the same depth from the observer. This constraint
can then be used to segment the scene based on depth, with-
out knowing the actual reflectances of the scene points and
their sky apertures. For this, we first prove the following
lemma.

Lemma 1 Ratios of the direct transmission magnitudes for
points under two different weather conditions are equal, if
and only if the scene points are at equal depths from the
observer.

Proof: Let β1 and β2 be two unknown weather conditions
with horizon brightness values E∞1 and E∞2 . Let Pi and
Pj be two scene points at depths di and dj , from the ob-
server. Also, let r(i) and r(j) represent sky apertures and
reflectances of these points.
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Figure 4: The ratio p2 / p1 of the direct transmissions for a scene
point under two different atmospheric conditions is equal to the ra-
tio |E2At|/|E1O| of the parallel sides. Shaded triangles are simi-
lar.

From (10), the direct transmission magnitudes of Pi under
β1 and β2, can be written as

p
(i)
1 =

E∞1r
(i)e−β1di

d2
i

,

p
(i)
2 =

E∞2r
(i)e−β2di

d2
i

. (14)

Similarly, the direct transmission magnitudes of Pj under
β1 and β2, are

p
(j)
1 =

E∞1r
(j)e−β1dj

d2
j

,

p
(j)
2 =

E∞2r
(j)e−β2dj

d2
j

. (15)

Then, we immediately see that the relation:

p
(i)
2

p
(i)
1

=
p
(j)
2

p
(j)
1

=
(
E∞2

E∞1

)
e−(β2−β1)d , (16)

holds if and only if di = dj = d. So, if we have the ratio
of direct transmissions for each pixel in the image, we can
group the scene points according to their depths from the ob-
server. But how do we compute this ratio for any scene point
without knowing the actual direct transmission magnitudes?

Consider the dichromatic plane geometry for a scene point
P , as shown in figure (4). Here, we denote a vector by the
line segment between its end points. Let p1 and p2 be the
unknown direct transmission magnitudes of P under β1 and
β2, respectively. Similarly, let q1 and q2 be the unknown
airlight magnitudes for P under β1 and β2.

We define an airlight magnitude |OAt| such that

E2At ‖ E1O . (17)
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Also, since the direction of direct transmission color for a
scene point does not vary due to different atmospheric con-
ditions, E1A1 ‖ E2A2 . Here A1 and A2 correspond to the
end points of the airlight magnitudes of P under β1 and β2,
as shown in figure (4). Thus, 
E1OA1 ∼ 
E2AtA2 . This
implies,

p2

p1
=

q2 − |OAt|
q1

=
|E2At|
|E1O| . (18)

Since the right hand side of (18) can be computed using the
observed color vectors of the scene point P , we can compute
the ratio (p2 / p1) of direct transmission magnitudes for P
under two atmospheric conditions. Therefore, from (16), we
have a simple method to find points at the same depth, with-
out having to know their reflectances and sky apertures. A
sequential labeling like algorithm can then be used to effi-
ciently segment scenes into regions of equal depth.

6 Scene structure

We extend the direct transmission ratio constraint given in
(16) one step further and present a method to construct the
complete structure of an arbitrary scene, from two images
taken under poor weather conditions.

From (16), the ratio of direct transmissions of a scene point
P under two atmospheric conditions, is given by

p2

p1
=

E∞2

E∞1

e−(β2−β1)d . (19)

Note that we have already computed the left hand side of
the above equation using (18). Taking natural logarithms on
both sides, we get

(β2 − β1)d = ln
(
E∞2

E∞1

)
− ln

(
p2

p1

)
. (20)

So, if we know the horizon brightness values, E∞1 and
E∞2 , then we can compute the scaled depth (β2−β1)d at P .
In fact, (β2 − β1)d is the Difference in Optical Thicknesses
(DOT) for the pathlength d, under the two weather condi-
tions. In the atmospheric optics literature, the term DOT is
used as a quantitative measure of the “change” in weather
conditions.

6.1 Estimation of E∞1 and E∞2

The expression for scaled depth given in (20), includes the
horizon brightness values, E∞1 and E∞2 . These two terms
are observables only if some part of the sky is visible in the
image. However, the brightness values within the region
of the image corresponding to the sky, cannot be trusted
since they are prone to intensity saturation and color clip-
ping. Here, we estimate E∞1 and E∞2 using only points in
the “non-sky” region of the scene.

Let q1 and q2 denote the magnitudes of airlight for a scene
point P under atmospheric conditions β1 and β2. Using
(10), we have

q1 = E∞1(1 − e−β1d) ,
q2 = E∞2(1 − e−β2d) . (21)

Therefore,

E∞2 − q2
E∞1 − q1

=
E∞2

E∞1

e−(β2−β1)d. (22)

Substituting (19), we can rewrite the above equation as(
p2

p1

)
=

q2 − c

q1
, (23)

where,

c = E∞2 −
(
p2

p1

)
E∞1 . (24)

Comparing (23) and (18), we get c = |OAt| (see
figure (4)). Hence, (24) represents a straight line equation
in the unknown parameters, E∞1 and E∞2 .

Now consider several pairs of {c(i), (p(i)
2 / p

(i)
1 )} corre-

sponding to scene points Pi, at different depths. Then, the
estimation of E∞1 and E∞2 is reduced to a line fitting prob-
lem. Quite simply, we have shown that the horizon bright-
nesses under different weather conditions can be computed
using only non-sky scene points.

Since both the terms on the right hand side of (20) can be
computed for every scene point, we have a simple algorithm
for computing the scaled depth at each scene point, and
hence the complete scene structure, from two bad weather
images.

6.2 Experimental Results

We now present results showing scene structure recovered
from both synthetic and real images. The synthetic scene we
used is shown on the left side of figure 5(a) as a 200× 200
pixel image with 16 color patches. The colors in this im-
age represent the direct transmission or “true” colors of the
scene. We assigned a random depth value to each color
patch. The rotated 3D structure of the scene is shown on
the right side of figure 5(a). Then, two different levels of
fog (β1 = 1.0, β2 = 1.5) were added to the synthetic scene
according to the dichromatic model. To test robustness, we
added noise to the foggy images. The noise was randomly
selected from a uniformly distributed color cube of dimen-
sion 10. The resulting two foggy (and noisy) images are
shown in figure 5(b). The structure shown in 5(c) is recov-
ered from the two foggy images using the technique we de-
scribed above.

Simulations were repeated for the scene in figure 5(a) for
two relative scattering coefficient values (β1/β2), and four

1063-6919/00 $10.00 � 2000 IEEE 



(a)

(b)

(c)

Figure 5: (a) On the left, a 200 × 200 pixel image representing a
synthetic scene with 16 color patches, and on the right, its rotated
3D structure. (b) Two levels of fog (β1 = 1.0, β2 = 1.5) are added
to the synthetic image according to the dichromatic model. To test
robustness, noise is added by random selection from a uniformly
distributed color cube of dimension 10. (c) The recovered structure
(3 × 3 median filtered). Refer to [Web00] for version with color
images.

Noise (η) 0 5 10 15
Estimated E∞1 100 108.7 109.2 119.0
Estimated E∞2 255 262.7 263.6 274.0
Depth Error (%) 0.0 7.14 11.7 15.3

Actual Values {β1/β2, E∞1 , E∞2} = {0.5, 100, 255}
(a)

Noise (η) 0 5 10 15
Estimated E∞1 200 204.3 223.7 249.5
Estimated E∞2 400 403.8 417.5 444.2
Depth Error (%) 0.0 12.3 15.3 17.8

Actual Values {β1/β2, E∞1 , E∞2} = {0.67, 200, 400}
(b)

Table 2: Simulations were repeated for the scene in figure 5(a), for
two sets of parameter values (shown in (a) and (b)), and four dif-
ferent noise levels. Noise was randomly selected from a uniformly
distributed color cube of dimension η.

(a)

(b)

(c)

(d)

Figure 6: (a) A scene imaged under two different foggy condi-
tions. (b) Computed depth map of the scene using the two images
in (a). (c) Another scene imaged under two different hazy condi-
tions. (d) Computed depth map of the scene using the two images
in (c). See [Web00] for version with color images.

different noise levels. Once again, the noise was ran-
domly selected from a uniformly distributed color cube of
dimension η. Table 2(a) shows results of simulations for
the parameter set {β1/β2, E∞1 , E∞2} = {0.5, 100, 255} ,
while 2(b) shows the results for the set {0.67, 200, 400} .
The computed values for E∞1 , E∞2 , and the percentage
RMS error in the recovered scaled depths, computed over
all 200 × 200 pixels are given. These results show that
our method for recovering structure is robust for reasonable
amounts of noise.

Experiments with two real scenes under foggy and hazy con-
ditions are shown in figure 6. These experiments are based
on images acquired using a Nikon N90s SLR camera and
a Nikon LS-2000 slide scanner. All images are linearized
using the radiometric response curve of the imaging system
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that is computed off-line using a color chart. The first of
the two scenes was imaged under two foggy conditions, and
is shown in 6(a). The second scene was imaged under two
hazy conditions as shown in 6(c). Figures 6(b) and 6(d)
show the corresponding recovered depth maps.

7 True Scene Color
As we stated in the beginning of the paper, most outdoor
vision applications perform well only under clear weather.
Any discernible amount of scattering due to fog or haze in
the atmosphere, hinders a clear view of the scene. In this
section, we compute the direct transmission or “true” colors
of the entire scene using minimal a priori scene information.
For this, we show that, given additional scene information
(airlight or direct transmission vector) at a single point in
the scene, we can compute the true colors of the entire scene
from two bad weather images.

Consider the dichromatic model given in (8). The observed
color of a scene point Pi under weather condition β is,

E(i) = p(i) D̂(i) + q(i) Â , (25)

where p(i) is the direct transmission magnitude, and q(i) is
the airlight magnitude of Pi. Suppose that the direction D̂(i)

of direct transmission color for a single point Pi is given.
Besides, the direction Â of airlight color for the entire scene
can be estimated using (13). Therefore, the coefficients p(i)

and q(i) can be computed using (25). Furthermore, the opti-
cal thickness βdi of Pi can be computed from (10).

Since we have already shown how to compute the scaled
depth of every scene point (see (20)), the relative depth
dj / di of any other scene point Pj with respect to Pi can
be computed using the ratio of scaled depths. Hence, the
optical thickness and airlight for the scene point Pj , under
the same atmospheric condition are given by

βdj = βdi (dj / di) ,

q(j) = E∞(1 − e−βdj) . (26)

Finally, the direct transmission color vector of Pj can be
computed as p(j) D̂(j) = E(j) − q(j) Â . Thus, given a sin-
gle measurement (in this case, the direction of direct trans-
mission color of a single scene point), we have shown that
the direct transmission and airlight color vectors of any other
point, and hence the entire scene can be computed. But how
do we specify the true color of any scene point without ac-
tually capturing the clear day image?

For this, we assume that there exists atleast one scene point
whose true color D lies on the surface of the color cube and
we wish to identify such point(s) in the scene. Consider
the R-G-B color cube in figure (7). If the true color of a
scene point lies on the surface of the color cube, then the
computed q̃ is equal to the airlight magnitude q of that point.

R

G
B q

D
∧

~q

O

E∧
-A

Figure 7: The observed color E of a scene point, its airlight di-
rection Â and true color direction D̂ are shown in the R-G-B color
cube. q̃ is the distance from E to a surface of the cube along neg-
ative Â. For scene points whose true colors do not lie on the cube
surface, q̃ is greater than the true airlight magnitude q.

Figure 8: True color images recovered using the two foggy and
hazy images shown in figure 6(a) and (c) respectively. The colors
in the dark window interiors are dominated by airlight and thus
their true colors are black. The images are brightened for display
purposes. See [Web00] for the version with color images.

However, if the true color of the point lies within the color
cube, then clearly q̃ > q. For each point Pi, we compute q̃(i)

and optical thickness β̃1di. Note that β̃1di may or may not
be the correct optical thickness. We normalize the optical
thicknesses of the scene points by their scaled depths to get

α̃i =
β̃1di

(β2 − β1)di
. (27)

For scene points that do not lie on the color cube surface, α̃i

is greater than what it should be. Since we have assumed
that there exists atleast one scene point whose true color is
on the surface of the cube, it must be the point that has the
minimum α̃i. So, q̃(i) of that point is its true airlight. Hence,
from (26), the airlights and true colors of the entire scene can
be computed without using a clear day image.

Usually in urban scenes, window interiors have very little
color of their own. Their intensities are solely due to airlight
and not due to direct transmission. In other words, their true
color is black (the origin of the color cube). We detected
such points in the scene using the above technique and re-
covered the true colors of two foggy and hazy scenes (see
figure (8)).
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8 Conclusion
In this paper, we presented a general chromatic framework
for scene understanding under bad weather conditions. Note
that conventional image enhancement techniques are not
useful here since the effects of weather must be modeled
using atmospheric scattering principles that are closely tied
to scene depth. We based our work on the simple yet use-
ful dichromatic model. Several useful constraints on scene
color changes due to different atmospheric conditions were
derived. Using these constraints, we developed simple al-
gorithms to recover the three dimensional structure and true
colors of scenes, from images taken under poor weather con-
ditions. These algorithms were demonstrated for both syn-
thetic and real scenes.
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A Direct Transmission under Overcast Skies
We present an analysis of the effect of sky illumination and
its reflection by a scene point, on the direct transmission
from the scene point. For this, we make two simplifying
assumptions on the illumination received by scene points.
Usually, the sky is overcast under foggy conditions. So we
use the overcast sky model[GC66] for environmental illu-
mination. We also assume that the irradiance of each scene

δθ δφ

P

n̂

δω

Ω

Sky

Figure 9: The illumination geometry of a scene point P with sur-
face normal n̂. The irradiance of P is due to the airlight radiance
of its sky aperture Ω.

point is dominated by the radiance of the sky, and that the
irradiance due to other scene points is not significant.

Consider the illumination geometry shown in figure (9). Let
P be a point on a surface and n̂ be its normal. We define
the sky aperture Ω of point P , as the cone of sky visible
from P . Consider an infinitesimal patch of the sky, of size
δθ in polar angle and δφ in azimuth as shown in figure (9).
Let this patch subtend a solid angle δω at P . For overcast
skies, Moon[MS42] and Gordon[GC66] have shown that
the radiance of the infinitesimal cone δΩ, in the direction
(θ, φ) is given by L(θ, φ) = L∞(λ)(1 + 2cosθ)δω, where
δω = sinθ δθ δφ. Hence, the irradiance at P due to the en-
tire aperture Ω, is given by

E(λ) =
∫ ∫

Ω

L∞(λ) (1 + 2cosθ) cosθ sinθ dθ dφ , (28)

where cosθ accounts for foreshortening [Hor86]. If R is the
BRDF of P , then the radiance from P toward the observer
can be written as

L0(λ) =
∫ ∫

Ω

L∞(λ) f(θ)R(θ, φ) dθ dφ , (29)

where f(θ) = (1 + 2cosθ) cosθ sinθ. Let σ be the pro-
jection of a unit patch around P , on a plane perpendicu-
lar to the viewing direction. Then, the radiant intensity of
P is given by I0(λ) = σ L0(λ) . Since L∞(λ) is a con-
stant with respect to θ and φ, we can factor it out of the
integral and write concisely as I0(λ) = L∞(λ) r , where
r = σ

∫ ∫
Ω

f(θ)R(θ, φ) dθ dφ . This term r represents
the sky aperture and the reflectance in the direction of the
viewer. Substituting for I0(λ) in the direct transmission
model in (5), we obtain

E(d, λ) = g
L∞(λ) r e−β(λ)d

d2
. (30)

We have thus formulated the direct transmission model in
terms of overcast sky illumination and the reflectance of the
scene points.
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