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The depth resolution achieved by a continuous wave time-of-flight (C-ToF)
imaging system is determined by the coding (modulation and demodula-
tion) functions that it uses. Almost all current C-ToF systems use sinusoid
or square coding functions, resulting in a limited depth resolution. In this
article, we present a mathematical framework for exploring and character-
izing the space of C-ToF coding functions in a geometrically intuitive space.
Using this framework, we design families of novel coding functions that
are based on Hamiltonian cycles on hypercube graphs. Given a fixed total
source power and acquisition time, the new Hamiltonian coding scheme
can achieve up to an order of magnitude higher resolution as compared to
the current state-of-the-art methods, especially in low signal-to-noise ra-
tio (SNR) settings. We also develop a comprehensive physically-motivated
simulator for C-ToF cameras that can be used to evaluate various coding
schemes prior to a real hardware implementation. Since most off-the-shelf
C-ToF sensors use sinusoid or square functions, we develop a hardware
prototype that can implement a wide range of coding functions. Using this
prototype and our software simulator, we demonstrate the performance
advantages of the proposed Hamiltonian coding functions in a wide range
of imaging settings.
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1 INTRODUCTION

Time-of-flight (ToF) cameras have fast emerged as the preferred 3D
imaging technique in several scientific and consumer applications,
including robot navigation, motion capture, human computer
interfaces, and 3D mapping. Especially popular are continuous-
wave ToF (C-ToF) or indirect ToF imaging systems (Lange 2000;
Payne 1973), which consist of temporally modulated light sources
and sensors, as shown in Figure 2. These sensors need only low-
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cost and low-power components, do not require a large baseline
for measuring depth, and thus, can potentially measure accurate
3D shapes over a large range of standoff distances. Due to these
inherent advantages, C-ToF imaging systems are increasingly
being commercialized as low-cost commodity sensors, such as
Microsoft Kinect, PMD, and SoftKinectic.

One of the key limitations of current C-ToF cameras, however,
is the limited depth resolution, especially in low signal-to-noise
ratio (SNR) scenarios. Imagine a user wearing an augmented
reality headset equipped with a low-power ToF depth camera. For
her to achieve a realistic immersive experience, the camera must
measure the 3D structure of the surroundings with very high reso-
lution. Imagine an interplanetary rover navigating a rough terrain.
It is critical for the camera to resolve fine details such as bumps on
the terrain to navigate safely. Although the spatial resolution con-
tinues to rise with advances in sensor technology, the depth reso-
lution is fundamentally limited by noise, especially photon noise.
An example is shown in Figure 1(c) and (d). An object is imaged
using a C-ToF system with a low-power source, resulting in low
SNR and large depth errors. One way to increase the SNR is to use
more light power or to increase the capture time. Unfortunately,
this is not always possible. Most devices, especially in consumer
and outdoor settings, often operate on a tight power and time
budget.

Given a fixed energy and time budget, the depth resolution
achieved by a C-ToF imaging system is determined by the coding
(modulation and demodulation) functions that it uses. This raises
a natural question: What are the optimal coding functions for C-ToF
imaging? Despite a lot of theoretical and engineering advances in
C-ToF imaging over the past four decades, this fundamental ques-
tion has received surprisingly little attention. Almost all current C-
ToF systems use sinusoid or square codes, which are sub-optimal
in their ability to achieve high depth resolution (Figure 1(d)).

In this article, we address the above question by establishing a
theoretical foundation for analysis and design of C-ToF imaging
systems. We develop a coding space theory of C-ToF imaging and
define optimality of coding functions in terms of a mean depth
error metric. Although this optimality criteria can be defined con-
cisely, determining the optimal solution requires solving a high
dimensional and computationally intractable global optimization
problem. Our key theoretical contribution is to derive a novel
depth precision metric based on a first-order differential analysis
of the C-ToF image formation equation. This new metric allows
us to explore the space of C-ToF coding functions (including
non-analytic functions) in an intuitive, geometric space. This
serves two purposes. First, this results in conceptual unification of

!In this article, we consider optimality in the context of maximizing the depth reso-
lution and the signal-to-noise ratio. We restrict the analysis to imaging systems with
a single source and sensor, without any multi-path interference.
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Fig. 1. Hamiltonian time-of-flight (ToF) imaging. (a) We propose a novel family of Hamiltonian ToF coding functions, which achieve up to 10 times
higher depth resolution as compared to existing methods such as sinusoid coding, especially in low SNR settings. (b) We have developed a prototype ToF
system for implementing the Hamiltonian coding functions. (c) A mannequin face was imaged using a low-power light source. (d) 3D imaging results using
conventional sinusoid coding has large errors because of low-source power. (e) With the same total source power and capture time, Hamiltonian codes can

accurately recover the overall shape, including facial features such as nose, lips, and eyes.

seemingly disparate C-ToF methods. Previously, different C-ToF
coding schemes have been analyzed separately, with concrete per-
formance metrics available only for specific schemes (e.g., sinusoid
homodyne coding (Lange and Seitz 2001)). Using our framework,
we can evaluate the performance of seemingly disparate coding
techniques (e.g., sinusoid, square, triangle) on a unified platform.

Second, perhaps more importantly, our framework enables de-
signing families of novel coding functions, which are derived from
Hamiltonian cycles on hypercube graphs. These Hamiltonian cod-
ing functions, as shown in Figure 1(a), are tightly related to the
theory of Gray codes (Gray 1953), and achieve substantially higher
depth resolution as compared to existing schemes, given the same
total capture time, total power, and depth range. For instance,
while current schemes achieve a resolution of approximately 1
centimeter at a distance of 5—-10 meters with commodity hard-
ware, Hamiltonian coding scheme can achieve a resolution of ~1
millimeter. An example result is shown in Figure 1(e).

We also develop a comprehensive physically-motivated simula-
tor that can be used to evaluate the performance of C-ToF coding
schemes, prior to a hardware implementation. This simulator
can facilitate research in the fast growing field of ToF imaging
where availability of appropriate hardware is often a bottleneck.
Finally, since most commodity C-ToF sensors use sinusoid or
square coding functions, we develop a hardware prototype system
(Figure 1(b)) that can implement a wide range of C-ToF coding
functions, including the proposed Hamiltonian scheme. We
demonstrate the performance gains of the Hamiltonian scheme
using exhaustive simulations as well as real experiments in a
variety of imaging settings.

2 RELATED WORK

Impulse Time-of-Flight Imaging: Impulse (or direct) ToF sys-
tems (Goldstein and Dalrymple 1967; Koechner 1968) estimate
scene depths by emitting a short light pulse into the scene and di-
rectly measuring the travel time of the reflected pulse. Impulse ToF
method formed the basis of the first LIDAR systems nearly 50 years
ago. Several current commercial range estimation systems (e.g.,
Velodyne sensor) are based on the impulse ToF method as well.
Although conceptually simple, the main limitation of impulse ToF
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techniques is the high cost of its components (e.g., high-speed sen-
sors) and large bandwidth requirements. Consequently, impulse
ToF systems are not practical for most consumer applications.
The focus of this article is on C-ToF systems, which require only low
cost components and are fast becoming the method of choice for
3D imaging in a wide range of applications.

Code design for C-ToF imaging: Most research toward op-
timizing the accuracy of C-ToF imaging methods has been
limited to sinusoid coding, the most widely used C-ToF coding
technique (Lange 2000), especially in consumer ToF devices (e.g.,
Microsoft Kinect). Recently, (Payne et al. 2010) designed methods
for mitigating depth errors in sinusoid coding-based systems if
the modulation functions are not perfectly sinusoid (e.g., due to
the presence of higher-order harmonics).

In parallel, techniques based on a few other specific mod-
ulation functions have been proposed, for example, square
functions (Grootjans et al. 2006), triangular functions (Ferriere
et al. 2008), ramp functions (Kolb et al. 2010) (used in commer-
cial sensors from 3DV Systems), and pseudo random binary
sequences (Grootjans et al. 2006; Kadambi et al. 2013). The goal of
this article is to develop a principled framework for exploring the
complete space of ToF coding functions in order to enable design of
novel, high performance C-ToF coding schemes.

Simulation of C-ToF Sensors: Simulation engines based on
physical models of C-ToF cameras are valuable tools for evaluat-
ing novel computational algorithms or hardware architectures for
C-ToF imaging. Such simulation engines could be used to charac-
terize the artifacts and predict the performance of specific sensors
(e.g., PMD (Schmidt and Jahne 2009)), or model the effect of phe-
nomena such as scene motion (Keller and Kolb 2009), and global
illumination (Gupta et al. 2015; Meister et al. 2013). We use both
simulations and real experiments to evaluate the performance of
various C-ToF coding schemes, including those proposed in this
article. In addition to a proof-of-concept hardware prototype, we
have developed a physically-motivated simulator for C-ToF imag-
ing, which can emulate different coding schemes, under a wide
range of scene and sensor configurations. Although the simula-
tor currently assumes that scene points receive light only directly
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Fig. 2. Image formation model of C-ToF imaging. A C-ToF imaging
system consists of a light source that illuminates the scene with time vary-
ing intensity M(z). The light reflected from the scene is captured by a
sensor, whose exposure is modulated during the integration time accord-
ing to a function D(t), called the demodulation function. The intensity
B(p) measured at a pixel p is given by the temporal correlation between
the radiance L(p, t) incident at p, and the demodulation function D(z).
The scene depth I'(p) at p can be estimated from three or more intensity
measurements.

from the light source, it can be extended to incorporate global illu-
mination effects such as interreflections (Gupta et al. 2015; Meister
et al. 2013).

3 MATHEMATICAL PRELIMINARIES

A C-ToF or an indirect ToF imaging system consists of a tempo-
rally modulated light source, and a sensor whose exposure can
be temporally modulated during integration time, as illustrated
in Figure 2. Let the radiant intensity of the source at time t be
M(t), (0 < M(t)). The function M(t), called the source modulation
function, could be a continuous function such as a sinusoid (Lange
2000; Payne 1973), or even an impulse train function (Kolb et al.
2010).2

Consider a sensor pixel p that images a scene point S. Let I'(p)
be the scene distance at pixel p, i.e., the distance of scene point
S from the sensor and the source.> We assume that there is no
indirect or multi-bounce light component (Freedman et al. 2014;
Heide et al. 2013; Kadambi et al. 2013; O’Toole et al. 2014), i.e., light
from the source bounces only once at a scene point and returns to
the sensor. Then, the radiance L(p, t) incident at pixel p at time ¢
is given as:

2T(p)
c

L(p.1) = B(p) M (t . ) + La(p), M

where c is the speed of light. f(p) encapsulates the scene point’s
albedo and reflectance and light fall-off. L,(p) is the radiance
component due to an ambient light source (e.g., sun in outdoor

2 A C-ToF system using an impulse train source modulation function is different from
impulse or direct ToF systems. In a direct ToF system, the time delay between the
emitted and received pulse is measured directly, requiring sensors with a large band-
width. In contrast, in a C-ToF system, the sensor measures the time delay indirectly by
measuring the temporal correlation, thus requiring a small number of measurements.
3We assume that the source and the sensor are co-located.

settings). Intuitively, the light emitted from the source M(t) is

time-shifted by %(W due to propagation along the path: source

— scene — sensor; the intensity is scaled by f(p), and a constant
offset L, (p) is added due to ambient illumination.

The sensor exposure is temporally modulated according to
the demodulation function D(t), (0 < D(t) < 1). Both modulation
and demodulation functions are periodic. The demodulation func-
tion (also called the sensor exposure function) can be physically
realized either by on-chip gain modulation (Schwarte et al. 1997)
or by external optical shutters (Carnegie et al. 2011).

The brightness B(p) measured at pixel p is given by the corre-
lation between the incoming radiance and the exposure function:

T

56 = [ D)L 1), @
0
where 7 is the sensor integration time. Substituting Equation (1)
into Equation (2), we get:

B(p) = B(p) fD(t)M(t - L(p)) dt + A(p), ®)
0

4

where A(p) = Lq(p) fOT D(t)dt is the ambient component of the
measured brightness. Next, we define # (T') as the normalized
correlation function between modulation and demodulation
functions:

» M (t - %@) dt "
Miotal |
where the normalization factor M;,;,; = fOT M (t) dt is the total
flux emitted by the light source toward point S during the sen-
sor integration time 7. Note that 0 < # (T') < 1. Substituting Equa-
tion (4) into Equation (3), and slightly abusing the notation by ab-
sorbing the constant M, ,;,; within the scale factor (p), we get:

[B() = pp) 7 (1) + Alp). | %)

Image Formation Equation for C-ToF Imaging

Equation (5) is the image formation equation for C-ToF imaging.
It expresses the image intensity B measured at a sensor pixel
in terms of the three unknowns: (1) scene distance T, (2) albedo
factor f8, and (3) ambient brightness component A.

Significance of the normalized correlation functions: Equa-
tion (5) indicates that given an imaging scenario (defined in terms
of albedos f and ambient component A), a C-ToF imaging sys-
tem can be completely characterized by its normalized correlation
functions 7 (I'), which in turn depend only on the modulation and
demodulation functions. ¥ (I') is independent of the scene prop-
erties (albedos, ambient light) and device characteristics (sensor
integration time, light source power). Our goal in this article is to
(a) formalize a C-ToF system’s performance in terms of its correla-
tion functions, and (b) design families of correlation functions that
lead to novel, high performance C-ToF systems.

4 CODING SPACE THEORY OF TOF IMAGING

The space of all possible values of unknowns I, f, and A, can be
represented as a 3D unknown space, as shown in Figure 3.
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Fig. 3. Coding space theory of C-ToF imaging. The 3D space of all
possible values of unknowns T (depths), f (albedo factors), and A (ambient
illumination component) is called the unknown space. The K-dimensional
(K = 3) space of measured intensities is called the measurement space. A
C-ToF coding scheme maps every unknown point U to a measurement
point B. However, due to noise, the actual measurement point B may be
different from the true measurement point B. The decoding function maps
B to the estimated unknown point U, which results in deptherrors |I' — T.

Definition 1 (Unknown Point). A point U = [T, f, A] in the un-
known space is called an unknown point. Each unknown point
represents a three-element unknown vector.

Since there are three unknowns, K > 3 intensity measurements
[B1, B, ..., Bk] need to be captured using K different correlation
functions [F1, %2, . . ., Fx ], corresponding to K different pairs of
modulation and demodulation functions M; and D;:*

Bi(p) = B(p) Fi(T) + A(p)

The K-dimensional space of measured intensities [Bj, . .
called the measurement space, as shown in Figure 3.

.,BK] is

Definition 2 (Measurement Point). A point B = [By,...,Bk]
in the measurement space is a valid measurement point if
[Bi,...,Bk] are the intensity measurements corresponding to an
unknown point U = [T, §, A].

Definition 3 (Coding Scheme). A C-ToF coding scheme is defined
as a function C : U — B from the set of unknown points U to mea-
surement points B. A coding scheme C is completely characterized
by a set of correlation functions [#7, ..., Fx], or equivalently, by
sets of modulation and demodulation functions [My, ..., Mg] and
[D1,...,Dk], respectively.

The process of recovering depths can be modeled as a decod-
ing function D : B — U from the measurement space to the un-
known space, as shown in Figure 3. The decoding function could
be an analytic expression, a table look-up, or a statistical proce-
dure (e.g., maximum likelihood estimation). If there were no im-
age noise, then given a measurement B, the decoding algorithm

4For example, in conventional sinusoid coding (Lange 2000), both modulation and
demodulation functions are sinusoids of the same frequency. We consider a gen-
eral formulation where the modulation and demodulation functions could have ar-
bitrary functional forms, as long as they adhere to the physical (e.g., non-negativity)
constraints.
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could accurately recover the true unknown, and hence, the correct
depth.

Effect of Image Noise on Depth Recovery

Consider a coding scheme C that maps an unknown point U to

the true (noise-free) measurement point B = [By, ..., Bk]. Let the
actual measurement B; be given as:
B; = B; +ni, (6)

where n; = AB; = E, — B; is the noise in the intensity measure-
ment B;. We assume the affine noise model including both read
noise and photon noise (Hasinoff et al. 2010). n; is modeled as
a Gaussian random variable with standard deviation o, i.e., 5; ~
N (0, 0;). Due to noise, the decoding function 9 estimates an in-
correct unknown point U=[T, B, A], which results in depth errors
AT = [T = T)|. This is illustrated in Figure 3. The expected depth
error AL (U) for an unknown U and a coding scheme C, is given
as:

aTc() = [ 1T 11 p (B1B) dB. o)
B
where p (ﬁlB) ~ N (B,X) is the probability distribution function
of the actual measured intensity B= [EI, cey B}] The covariance
matrix ¥ is given by the amount of image noise. The integral is
taken over the K-dimensional measurement space.
Equation (7) gives the expected depth error AT (U) for a single
unknown point U. The mean expected depth error AT is given by
averaging AT'c(U) over the space of all unknowns:

aTc = o [ 3T() av, ®)
Uy

where Vy = (Tmax = Imin) (Bmax — Bmin) (Amax — Amin) is the
volume of the space of unknowns (Inin < T < Tmax, fmin < f <
Bmax> Amin < A < Amax)- Substituting Equation (7) into Equa-
tion (8), we get:

E:%{Qf—ﬂp(ﬁm)dﬁcm

Mean Expected Depth Error of a C-ToF Coding Scheme
©)
The mean expected error is a global performance metric of a C-ToF
coding scheme. It is an intrinsic property of a C-ToF coding scheme
and is independent of choice of reconstruction method. We define
the optimal coding scheme as the one that minimizes the mean
expected depth error over a given unknown space:

Copt = arg mén Ale. (10)

Although the optimality criteria can be expressed concisely,
finding the optimal codes is a formidable constrained global op-
timization problem, with no known analytical or closed-form so-
lutions. It is computationally intensive to even evaluate this met-
ric numerically as it involves computing a double integral over
high-dimensional unknown and measurement spaces. This pre-
cludes the development of an efficient numerical or an exhaustive
search-based optimization procedure as well due to prohibitively
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high computational costs (Adam et al. 2016). We take a different
approach. We derive a novel depth-precision metric based on first-
order differential analysis of the image formation equation. This
metric has an intuitive geometric interpretation, and can be com-
puted extremely fast, leading to design of novel high performance
coding schemes.

5 A NOVEL DEPTH PRECISION METRIC

The analysis in the previous section is based on the relationship
between depth error AI' and intensity noise AB = B-B= n. In
this section, we analyze the relationship between the correspond-
ing differential quantities OI' and dB. Based on this analysis, we
derive a novel depth precision metric. We start by taking the par-
tial derivative of the intensity B; (in Equation (5)) with respect to
I:

0B; ,

ar =~ PH D,
where 7,/(T) is the derivative of correlation function #;(T'). For
ease of exposition, we assume that the albedo factor f is indepen-
dent of the scene depths. In practice, f depends on scene depths
due to distance fall-off. Such depth dependence can be absorbed
into the correlation function #;(T'). The partial derivative of the
measurement vector B = [By, By, ..., Bx] is given as:

B & (0B \? s
-\ (5] -y
i=1 i

i=1

By rearranging terms, we get:

|0B|

BYSK, 7

This equation expresses the differential depth error |dT'| = |f -T|
due to small measurement noise |0B| = ‘/Z{(z 1 (9B? , where dB; =

Ei — Bj. Since noise is random, both |0B| and |0I'| are random vari-
ables, with standard deviations Q and or, respectively. Then, from
Equation (11), it follows that Q and or are related as:

Q

K, 707

See Appendix for a derivation. Next, we introduce y = O'Lr as a
depth precision measure:

|oT] = (11)

(12)

or =

1 BZE @
YU) = — = ——"F5—i, (13)

or Q
where y(U) denotes the dependence of y on the unknown point
U. Since y is the inverse of depth standard deviation or, intuitively,
larger the value of y, lower is the overall depth error. ¥ (U), as defined
above, is the depth precision corresponding to a single unknown
point U. The mean depth precision y¢ of a coding scheme C is
given by averaging y(U) over the space of all unknowns Iipip <
I' < Tmaxs Pmin < B < Pmax and Apmin < A < Apmax:

%=%£x(U) U = %!{{X(U) dAdBdT,  (14)

where Vu = (rmax - I-‘min) (ﬁmax - ﬁmin) (Amax - Amin) is the
volume of the unknown space. Substituting Equation (13) into
Equation (14), and simplifying with the assumption that the noise

standard deviation Q = /Zfi i zrl.z is constant,” we get:

ﬁmeanf
T

Q 1—‘range ’

Xc = (15)
where Iy ange = Imax — Imin is the unambiguous depth range, and

Bmean = m is defined as the mean albedo factor. In order

to understand the term inside the integral in the above equation,
we define a new geometric construct called the coding curve.

Definition 4 (Coding Curve). Consider a coding scheme C de-
fined by the correlation functions [7, . . ., Fx]. The coding curve
is achieved by plotting the values of the correlation functions
[F1(D),...,Fx ()] in the K-dimensional space, as the depth T is
varied. Formally, the coding curve ¥¢ is defined as the following
set of points residing in K-dimensional space:

Yo = {[ﬁ(r)’ﬁ(r), . ~-’7:K(r)] | Tmin <T < Tmax}.

The coding curve is a geometric representation of a coding
scheme; given a scheme’s correlation functions, we can determine
its coding curve, and vice versa. For example, the coding curve of
sinusoid coding is a circle in K-dim space, as shown in Figure 4(a),
for K = 3. A proof is given in the supplementary technical report.

Length of the coding curve: The length L¢y,»e of the coding
curve is given in terms of partial derivatives ;":

Tnax

Leurve =

K
Z F/(I)? dT. (16)
Tmin i=1
Substituting Equation (16) in Equation (15), we get the main the-
oretical result of the article:

PR ,Bmean -Ecurve
= Dmean —curve (17)
A T Trange

Depth Precision of a C-ToF Coding Scheme

Interpreting the Depth Precision Equation

Equation (17) states that the depth precision y¢ of a coding scheme
is directly proportional to its coding curve length. Intuitively, given
a set of unknown points, a longer coding curve spreads the mea-
surement points further apart in the measurement space, result-
ing in lower depth errors due to noise during decoding. Thus, in
general, the coding curve length (and hence, the depth precision y¢)
is inversely proportional to the mean depth error AL;. The longer
the coding curve of a coding scheme, the larger is the value of y¢
and the lower the mean depth error AT;.° The coding curve and

SStrictly speaking, Q is a function of image intensity, and varies for different unknown
points. However, for simplicity, we assume Q to be a constant, the upper bound of
noise standard deviation over all possible measurement points.

There are exceptions to this. If a coding curve is self-intersecting or has sharp turns,

the differential analysis, which assumes that the derivatives % are continuous,
does not hold. Such a curve, despite being long, may result in large depth errors. See
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Fig. 4. Coding curve representations of different C-ToF coding schemes for K = 3. (a) Conventional homodyne sinusoid coding, (b) square coding,
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(c) ramp or “light wall” coding, (d) double ramp coding, (e) delta sinusoid coding, and (f) the proposed Hamiltonian coding.
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its length are simple and fast to compute geometric properties of
coding schemes (even non-analytic schemes), thus making them a
compact representation that can be used as a powerful design tool
for developing novel, high performance C-ToF coding schemes.

The depth precision y¢ is directly proportional to the mean
albedo factor fmeqn and inversely proportional to measurement
noise Q.7 This is not surprising, as the higher the signal (propor-
tional to fmean) received by the sensor and the lower the noise,
the higher is the achieved precision. Perhaps more interesting is
the inverse relationship between the depth precision and the depth
range Tygnge. A small unambiguous depth range I gnge results in
higher depth precision (lower depth errors), and vice versa. Similar
tradeoff between the depth range and depth error has been derived
previously for sinusoid coding (Lange 2000; Lange and Seitz 2001;
Lange et al. 2000). The depth precision equation derived above gen-
eralizes the range vs. precision relationship for any valid C-ToF
coding scheme, and thus, allows comparing the performance of a
general class of coding schemes on a common ground by fixing the
depth range I“mnge,8 scene albedo fmean and sensor noise Q.

6 CODING CURVES OF C-TOF CODING SCHEMES

In this section, we derive the coding curve lengths of several C-
ToF coding schemes, starting from their mathematical definitions
in terms of their correlation functions. Figure 4 and Table 1 sum-
marizes the results derived in this section. For fair comparisons, we
assume that the total source power M;,;,; (area under the curve
of the modulation functions), exposure time, and the unambiguous
depth range is the same for all coding schemes.

6.1 K-tap Conventional Sinusoid Coding

This is one of the most widely used coding schemes in commercial
C-ToF-based depth cameras. Both the modulation and demodula-
tion functions are sinusoids of the same frequency (Figure 4(a)):

M;(t) = 0.5+ 0.5 cos (wt)

2imr .
D;(t) = 0.5+ 0.5cos (wt— 7), 1<i<K
K-tap denotes that K measurements are captured, with the de-
modulation function phase-shifted (typically by an equal amount
2?”) between successive measurements, while the modulation
function remains the same. Note that the modulation function is
normalized so that the area under the curve (for every period) is
equal to . After substituting these in Equation (4), and simplify-
ing, we get the expression for the normalized correlation functions:

20T 2irr) ' (18)

Fi(T) = 0.5+ 0.25cos (— - —
c K

Algebraic derivation of the coding curve length: Recall from
Equation (16) that the coding curve length is given in terms of the
derivatives of the correlation functions. Taking the derivative of

Section 10 for an example and discussion. We will design coding curves that, in addi-
tion to being long, are non self-intersecting and have continuous derivatives.
7Since noise Q is approximately proportional to y/Bmean in a photon-noise limited

regime, the depth precision (¢ is effectively proportional to \/fmean-
CT, ]
8The depth range of a C-ToF system is given as Iy ange = P%md

is the period of the modulation and demodulation functions.

,where Tperiod

Equation (18) with respect to depths I', we get:

K

1

F./(T) = —0.25 (276‘)) sin (2wr zm)

After substituting the above into Equation (16), and simplifying,
we get the coding curve length of sinusoid coding:

; T [K
gzlzr;ve = E E (19)

Geometric derivation of the coding curve length: The coding
curve for sinusoid coding, i.e., the locus of points [F1(T), ..., Fx(T)],
as T is varied, is a circle in K-dimensional space. Please see the
supplementary technical report for a proof. The center of the cir-
cle is the point C = (0.5,0.5,...,0.5). The radius of the circle is
rad(K) = YK The coding curve length is L&, = 27 rad(K) =
T

> % This is consistent with the algebraic derivation.

6.2 K-tap Square Coding

This coding scheme uses square waves instead of sinusoids, both
for modulation and demodulation functions:

M;(t) = 0.5+ 0.5sqr (wt)

2im X
D;(t) = 0.5+ 0.5sqr (a)t— ?), 1<i<K

where sqr(t) function is the binary version of the sin(t) function:

1 ifsin(t) > 0
sqr(t) = {—1 if sin(t) < 0

The correlation of two square functions is a triangle function.
Thus, the normalized correlation function for square coding is
given as:

20T 2i7r)

i(T) =0.5+0.5¢ '(———
Fi(T) i\~ %

where the tri(t) function is shown in Figure 4(b).

Geometric derivation of the coding curve length: Due to the
piecewise linear nature of the correlation functions, the coding
curve for square coding is a non-planar polygon in K-dimensional
space, as shown in Figure 4(b). The centroid of the polygon is the
point (0.5, ...,0.5). The polygon has 2K sides, each with length
sideLength(K) = \/LI? (see technical report for a proof). The total

length of the coding curve is:
Liz:ve =2VK (20)

Observation: The coding curve length of square coding is

%ﬁ ~ 1.8 times that of conventional sinusoid coding, for any K.
This suggests that given the same scene and imaging system
characteristics, square coding should achieve approximately 1.8
times high precision (lower error) as compared to sinusoid coding.
We validate this result using simulations and experiments later in
the article.
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Table 1. Coding Curve Lengths of Various C-ToF Coding Schemes
Coding Scheme Coding Curve Curve Length Curve Length  Curve Length ~ Curve Length
(K =3) (K=4) (K=5)
Single ramp Edge of 3D unit cube 1 1.00 - -
Double ramp Face diagonal of 3D unit cube V2 1.41 - -
Sinusoid Circle of radius YK ZA % 1.92 2.22 2.48
42

Square Regular non-planar (2K)-gon 2VK 3.46 4.00 4.47
Impulse sinusoid ~ Circle of radius % ﬂ,/% 3.84 4.44 4.96
Hamiltonian Hamiltonian cycle 2K — 2 (K is odd) 6.00 12.00 30.00

on unit hypercube

2K — 4 (K is even)

Coding Curve Lengths of Existing Schemes Such as Sinusoid and Square are Proportional to VK, Where K is the Number of Measurements. In Contrast, Coding
Curve Length of the Proposed Hamiltonian Scheme Increases Exponentially as a Function of K. As a Result, Hamiltonian Coding Achieves Significantly Higher
Depth Precision as Compared to Existing Schemes, Especially as K Increases. Please Refer to Sections 6 and 7 for Detailed Derivations of Coding Curve Lengths.

6.3 Other Coding Schemes

The coding curve representation can be used to analyze the en-
tire space of valid C-ToF coding schemes, such as ramp coding
(also known as the “light wall” scheme (Kolb et al. 2010)) where
one of the correlation functions is a ramp and the other two are
constant (Figure 4(c)), double-ramp coding where two correlation
functions are opposing ramps (Figure 4(d)), and impulse sinusoid
coding where the demodulation functions are sinusoids (same as
conventional sinusoid coding), but the modulation function is an
impulse train function (Figure 4(e)). The coding curve lengths for
these schemes are given in Table 1. For detailed derivations, refer
to the supplementary technical report.

7 HAMILTONIAN TOF CODING

In this section, we use the coding curve representation to design
a family of novel high-performance C-ToF coding schemes. There
are three important desirable properties of a coding curve. First,
since the mean depth precision is inversely proportional to the
coding curve length, the curve should be long. Second, in order to
ensure a unique mapping between the unknown points U and mea-
surement points B, the coding curve should not be self-intersecting.
Third, the coding curve should preserve locality, i.e., the distance
of points measured along the curve should be proportional to the
Euclidean distance between two points. This property ensures that
the intensity partial derivatives % are continuous, and thus, small
image noise does not result in large depth errors during decoding.

A family of curves that has all these desirable properties is
Hamiltonian cycles on hypercube graphs. The hypercube graph
Qg is the graph formed from the vertices and edges of the K-
dimensional hypercube. For example, the graph Q3 is formed on
a 3-D cube, and has 8 vertices (one for every cube corner) and 12
edges. A Hamiltonian cycle is a cycle (i.e., a closed loop) through
a graph that visits every vertex exactly once while traversing
the edges of the graph. Hamiltonian cycles are long, non-self in-
tersecting and have provably good locality preserving properties
(Gotsman and Lindenbaum 1996). This makes them an ideal can-
didate as coding curves for C-ToF coding schemes.

Design of Hamiltonian C-ToF coding scheme: We propose a
family of C-ToF coding schemes called Hamiltonian coding which
have Hamiltonian cycles on hypercube graphs as coding curves.
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Intuitively, in the context of C-ToF imaging, these curves can be
thought of as maximal in a sense (although not provably optimal)
because they follow the edges of the coding cube, and cannot be
expanded further. The correlation functions are Hamiltonian func-
tions, where the i" Hamiltonian function hamiltg ;(t) is defined
as the value of the i*" coordinate of points on a Hamiltonian cycle
of the K-dimensional unit hypercube. Figure 4 (f) shows the plots
of Hamiltonian functions hamiltg_;(t) for K = 3.

While constructing the Hamiltonian cycle-based coding curve,
we exclude the origin Og = [0,...,0] and the diagonally oppo-
site vertex 1g = [1,..., 1] so that the coding curve does not pass
through these two vertices. This ensures that for every depth value
T, at least two of the correlation function values are different,
ie., 7i(I') # F;(I) for some index pair i, j. It has been shown that
a Hamiltonian cycle on this reduced set of vertices can be con-
structed.” In general, there are several possible Hamiltonian cy-
cles on a hypercube graph, each inducing a different coding curve
and coding scheme. One example of a Hamiltonian cycle on the
reduced set of vertices for K = 3 is shown in Figure 4(f).

Geometric derivation of the coding curve length: The coding
curve of a Hamiltonian scheme is a Hamiltonian cycle on the re-
duced hypercube graph Qg — [0k, 1x], whose length is equal to
the number of cube vertices that the cycle traverses (2K — 2 if K is
odd, and 2K — 4 if K is even). Thus, the coding curve length is:

if Kis odd
if Kis even

Lhamilt _ {ZK -2 (21)

curve 2K_4

The coding curve length for the Hamiltonian scheme increases ex-
ponentially as a function of K, whereas for existing schemes such
as sinusoid and square coding, the curve length is proportional
to VK. As a result, even for relatively small K, such as K =5,
the curve length for Hamiltonian coding is an order of magnitude
more than conventional sinusoid coding (see Table 1 for a compar-
ison of coding curve lengths of various schemes).

Relationship to Gray codes and robustness to noise: Gray
codes (Gray 1953) are a sequence of binary codes so that two

This problem is NP-complete with no polynomial time algorithms. For graphs of
small sizes, we can find solutions using depth-first search.
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successive codes differ only in a single bit location, ie., the
Hamming distance between two adjacent codes is 1. This prop-
erty makes Gray codes highly robust to noise: if a sequence of
Gray codes is used to transmit information and a small number
of bits gets corrupted (e.g., due to noise in a communication
channel), the information can still be recovered with minimal
errors. Consequently, Gray codes find applications in a diverse
set of domains, including digital communication (Gray 1953),
circuit design (Wakerly 2005), and robust structured light 3D
scanning (Inokuchi et al. 1984).

Hamiltonian cycles on hypercube graphs are tightly related to
the theory of Gray codes. There is a one-to-one correspondence be-
tween the set of K-bit Gray codes and the set of Hamiltonian cycles
on the hypercube graphs Qg (Mills 1963). The Hamiltonian coding
curves that we use to design our Hamiltonian coding scheme can
be considered a continuous version of discrete Gray codes, and thus,
inherit the strong robustness-to-noise properties of Gray codes.

7.1 Modulation and Demodulation Functions

In order to physically implement the Hamiltonian coding scheme,
we need to determine the source modulation functions M;(t), (0 <
M;(t)) and demodulation functions D;(t), (0 < D;(t) < 1) such
that their normalized correlation (Equation (4)) is equal to the
Hamiltonian functions hamiltg ;(T'):

Iy Die)M; (t - L) ar

c

= hamiltg ;(T), 1<i<K, (22)

Myotal '
where M;ysq1 = fOT M; (t) dt is the total energy emitted by the
source during integration time 7.

Let hg ;[j],1 <j < N be a vector representing the discrete
sampled version (with N equi-spaced samples) of the function
hamiltk ;(T'). Similarly, let m;[j] and d;[j] be discrete represen-
tations of the functions M;(t) and D;(t). Then, the above system
of equations and inequations can be written in matrix form as:

find (mj, dj)

1
such that

N
Cmidi = hK,i, Z m;[j] < Myorar
total j=1

0 < mj[k], <dj[k] €1, 1<k<N,

where Cp, is the N X N circulant matrix constructed from the
vector m. Since the equation contains product of the unknowns
mj, dj, this is a non-linear problem and, in general, may not have
a feasible solution. However, in the special case of light sources
with large peak instantaneous power mj[k] > M;,;4;, the above
problem has a simple solution: mj = [M;;47,0,0,...,0] (so that
Cmy; = M;o1q1], where 1is an identity matrix), and d; = hg ;. This
solution corresponds to using a normalized impulse train function
A (wt) (as shown in Figure 4(e) and (f)) as the modulation function,
and the correlation function itself as the demodulation function:

Mi(t) = A(wt)
Di(t) = hamiltg ; (ot), 1<i<K
Incorporating peak power constraints: The above solution as-

sumes that the light source has an infinite peak power and can
emit an ideal impulse (delta) train function. For such ideal sources,

the correlation function is simply factorized into a delta modula-
tion function, and a demodulation function equal to the correlation
function. However, this factorization is an idealized theoretical de-
scription, meant only for exposition.

In practice, sources have a finite peak power, and we ap-
proximate the impulse modulation function by a short (height
equal to the peak power) but wider pulse (e.g., a Gaussian or a
square) so that the area under the modulation functions (total
emitted energy) is the same as that of modulation functions for
other schemes (e.g., sine and square). The resulting correlation
function (using a shorter and wider pulse) approximates the
theoretical correlation function. This is shown in Figure 15, which
compares the theoretical vs. measured correlation functions in our
experiments. This approximation results in lower performance
than theoretically predicted.

Ultimately, the performance will depend on the peak power
of the light source. Lasers and didoes such as those increasingly
being used in ToF systems can emit short pulses with high peak
power (Adam et al. 2016; Kolb et al. 2010; Tadmor et al. 2014), but
low average power due to energy consumption constraints and
eye safety. Such sources can closely approximate an impulse mod-
ulation function, and thus, achieve high performance. For sources
with low peak power (e.g., low-cost LEDs), the performance gains
will be accordingly lower. For such sources, the performance could
be improved by solving the factorization as a constrained optimiza-
tion problem, where the goal will be to find (mj, d;) that satisfy
all the physical constraints imposed by the hardware (including
system bandwidth constraints), while minimizing the error
||mCmi dj — hg i||. Such device-aware factorization is an inter-
esting future research direction, but different from the correlation
function theory and design, which is the main focus of this article.

7.2 Depth Recovery Algorithm for Hamiltonian Coding

So far, we have discussed the coding function design aspect
of the Hamiltonian coding scheme. In this section, we pro-
vide an overview of the depth recovery (decoding) algorithm.
For any coding scheme, points on the coding curve F(T') =
[FA@), F2(T),...,Fx(T)] are parameterized by the depth value
I', meaning there is a one-to-one mapping between I' and points
F(T'). Thus, given the measurement point B = [By, ..., Bk ], we can
estimate depth T by determining the corresponding coding curve
point F(T'). From the image formation equation (Equation (5)):

B=pFI)+A —-FTI)= B%A, (23)
where f and A are also unknown. In order to determine F(I') from
measurements B, we first estimate § and A.

Estimating unknowns f and A: The Hamiltonian coding curve
follows the edges of a unit cube. Suppose the coding curve point
F(T) lies on an edge between cube vertices Vi = [V 1,..., V] k]
and Vy = [V, 1,...,V; k]. The coordinates of Vj and V, are bi-
nary (0 or 1), and differ along only one index y, ie, Vi , # Vy .
Then, the coding curve point is given as F(T') = aV| + (1 — a)Vy,
where 0 < @ < 1 encodes the location of F(I') along the edge be-
tween Vj and V. Note that for every I, Fin and Fax, the min-
imum and maximum coordinates of the coding point F(T'), are 0
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and 1, respectively. Let Byyin = f Fmin + Aand Bpax = f Fmax +
A be the minimum and maximum measured intensities, respec-
tively. Since Frnin = 0 and Fnax = 1, it follows that By, = Aand
Bmax = f + A. Thus, we can estimate  and A as A = Bjin and
B = Bmax — Bmin, where By,ip = min ([By,. .., Bg]) and Bpgx =
max ([Bi, . ..,Bk]) are computed from the measurements B.!°
Once f and A are estimated, we determine the coding point F(I')
using Equation (23), from which, as discussed above, depth can be
estimated. We will release our MATLAB code of the depth recovery
algorithms for Hamiltonian and other coding schemes (sinusoid,
square, ramp, and double ramp), once the article is accepted.

8 VALIDATION AND SIMULATIONS

In this section, we use numerical methods and simulations to com-
pare the relative performance of various C-ToF coding schemes,
with the same total capture time and emitted power.

8.1 Comparisons of Mean Expected Depth Error

The mean expected depth error AT (Equation (9)) is a global
measure of the performance of a C-ToF coding scheme C. In order
to compare various coding schemes, we numerically computed
their mean expected depth errors by discretizing the unknown
and measurement spaces. We implemented an adaptive grid
method to ensure that this otherwise prohibitively expensive
computation remains tractable. We used the following parameters
for our computations. Scene depth range: I}y, = 0, Ijjgx = 10
meters. Image noise: Gaussian noise, with affine noise model
including photon noise and sensor read noise of 20 electrons.
Sensor integration time: 10 milliseconds. Scene reflectivity:
Lambertian BRDF, albedo of 0 — 1. All the coding schemes used
the same fundamental frequency of 15MHz, and ideal waveforms
were used for all coding functions.

Figure 5 shows the mean depth error for various coding schemes
for K = 3,4,5, as a function of the light source and ambient illu-
mination strengths. We considered a point light source with aver-
age strengths in the range of ~ 10 — 1,000 lumens. Ambient light
was assumed to be uniform over the scene, with strengths in the
range of 10 — 10,000 lux. As expected, for every coding scheme,
the depth error decreases rapidly as the source strength increases,
and increases as ambient illumination increases. Hamiltonian cod-
ing scheme significantly outperforms existing methods across all
settings, especially as K increases.

Correlation between coding curve lengths and mean ex-
pected depth errors: Figure 6 compares the coding curve lengths
(Lcurve) and the inverse mean expected depth errors (ﬁ) for var-
ious coding schemes. The inverse mean expected depth errors are
plotted for all the source strength and ambient illumination values
as used in Figure 5 (one solid colored plot for every source strength
and ambient illumination combination). Each plot is normalized
by dividing by the minimum value along the plot. For example,
for K = 3, each plot is divided by its values at the single ramp

19This simple approach for estimating f and A may not be optimal. It may be possible
to design a decoding algorithm with better performance, perhaps by jointly estimating
p. A, and I'. We leave the design of a better decoding algorithm as a topic of future
study.
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coding scheme, and for K = 5, each plot is divided by its values
at the sinusoid coding scheme.

There are two main observations. First, the ratio of the mean ex-
pected depth errors between two schemes is approximately con-
sistent over a wide range of source and ambient illumination
strengths. Second, perhaps more importantly, the normalized cod-
ing curve lengths of different schemes are highly correlated with
the corresponding inverse mean expected depth errors. This shows
that, for these coding schemes, the coding curve length (and hence,
the depth precision y¢ ) is inversely proportional to the mean expected
depth error AT. As a result, the coding curve length can be used as
an intuitive and fast-to-compute surrogate metric for optimization
and design of novel, high performance C-ToF coding schemes.

8.2 Simulator for C-ToF Imaging

We have developed a physically motivated simulator for C-ToF
imaging, which can emulate any valid coding scheme, under a
wide range of scene configurations (different geometries and re-
flectance properties) and sensor-source parameters (quantization,
pixel size, focal length, zoom, source brightness, and modulation
frequencies). The simulator models different steps of the image for-
mation process, including light emission and propagation, reflec-
tion, sensor demodulation and radiometric transformations (gain,
saturation, quantization), and noise (photon and read noise).
These steps are illustrated in Figure 7. This simulator can help
further research in the growing field of ToF imaging by facili-
tating rapid evaluation of different coding schemes. We will re-
lease the code of our simulator upon acceptance of the article.
Figure 8 shows depth recovery results for three imaging geome-
tries, and various coding schemes in a low noise setting (K = 5,
source strength = 250 lumens, ambient strength = 250 lux), and a
high noise setting due to strong ambient illumination (K = 5, source
strength = 80 lumens, ambient strength = 2,500 lux). The remain-
ing imaging parameters are the same as described in the previous
section. Square coding achieves an error ~1.6 times lower than
conventional sinusoid (the ratio of coding curve lengths is 1.8).
The proposed Hamiltonian coding achieves a mean depth error
of about an order of magnitude lower than conventional sinusoid
coding in both noise settings, consistent with the ratio of coding
curve lengths. Figure 9 shows similar comparisons between vari-
ous coding schemes for K = 3. The relative performance of differ-
ent schemes is consistent with the respective coding curve lengths.
Figure 10 shows the 3D imaging simulations for a face 3D model
in an outdoor setting with strong ambient light, resulting in large
photon noise. The following parameters were used for these sim-
ulations: K = 5, source strength = 250 lumens, ambient strength
= 2,500 lux. Although the large noise in sinusoid and square re-
constructions can be reduced by smoothing, the 3D details cannot
be recovered. In contrast, Hamiltonian coding recovers sufficient
details to potentially allow recognizing the identity of the face.

Comparisons with bandlimited Hamiltonian coding func-
tions: In practice, the Hamiltonian coding functions may be low-
pass filtered due to bandwidth limitations of the hardware devices.
For instance, Figure 15 shows the Hamiltonian coding functions
as implemented on our hardware prototype. Due to bandwidth
constraints, the higher-order Hamiltonian coding functions are
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Fig. 5. Mean expected depth errors of various C-ToF coding schemes. The mean expected depth error (Equation (9)) of various C-ToF coding schemes
was numerically computed using finite element methods over a depth range of [0—10] meters. The same fundamental frequency of 15MHz was used for all
coding schemes. For every coding scheme, the depth error decreases rapidly as the source strength increases, and also increases as ambient illumination
increases. The proposed Hamiltonian scheme significantly outperforms existing coding methods across a wide range of imaging settings.
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Fig. 6. Coding curve length vs. mean expected depth error. Com-
parison of the coding curve lengths and the inverse mean expected depth
errors (%) for various coding schemes, for K = 3 and K = 5. The inverse
mean expected depth errors are plotted for several source strength and
ambient illumination values (one solid, colored line plot for every source
strength and ambient illumination combination). Each individual line plot
is normalized by dividing by the minimum value along the plot. This is for
better visualization, since different line plots have different minimum val-
ues. The normalized coding curve lengths of different schemes are highly
correlated with the corresponding inverse mean expected depth errors: the
longer the coding curve of a scheme, the lower the mean depth error.

low-pass filtered, which may result in loss of performance. We
have incorporated bandwidth constraints in our simulator in
order to evaluate the performance of various ToF coding schemes
on real-world practical devices. Figure 11 shows depth recovery
comparisons between ideal Hamiltonian coding functions, and
bandlimited Hamiltonian functions (as output by our hardware
prototype). The performance degrades by a factor of approxi-
mately 1.5 — 3, depending on the SNR level. This performance drop
is consistent with our experimental results, which are achieved
on an un-optimized, proof-of-concept hardware prototype.

8.3 Frequency Bandwidth Considerations

In the comparisons shown so far in Figures 8, 9, and 10, we
used the same fundamental frequency for all coding schemes
(10MHz, corresponding to an unambiguous depth range of 15 me-
ters). Although the fundamental frequency is 10MHz, coding func-
tions for non-sinusoid schemes such as square and Hamiltonian

ACM
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Fig. 7. Chain of steps for simulation of C-ToF imaging. We have de-
veloped a detailed simulator that simulates various steps of the C-ToF
imaging process, including light transport (light emission, propagation, re-
flection and shading) and sensor physics (demodulation, gain, saturation,
ADC noise, quantization). It uses a physically accurate affine noise model,
including both photon noise and sensor read noise. This simulator can be
used to emulate C-ToF imaging under a wide range of scene and sensor
parameters.

contain higher frequency components. It is well known that the
depth precision achieved by sinusoid coding schemes is directly
proportional to the modulation frequency (Lange 2000). However,
high-frequency sinusoids also limit the unambiguous depth range
due to phase wrapping (Lange 2000). For example, a 120MHz sinu-
soid can measure depths only in a small (~1 meter) range. Due to
this fundamental tradeoff between depth precision and range, sev-
eral commercial TOF systems (e.g., Microsoft Kinect v2 (Microsoft-
Kinect 2014)) use multiple (at least two) frequency sinusoid cod-
ing (Droeschel et al. 2010), where a combination of low and high
frequencies are used to simultaneously achieve high depth pre-
cision, and large unambiguous depth range. Specifically, phases
from the high-frequency sinusoids provide high-precision, albeit
wrapped (ambiguous), depth estimates. The phases correspond-
ing to the low-frequency sinusoids are used to unwrap the high-
frequency phases, thus providing unambiguous depth estimates
over a large depth range. We call this the multi-frequency sinusoid
coding scheme.

A related approach is to use multiple high-frequency sinusoids,
wherein each high-frequency sinusoid’s phase individually
provides precise but ambiguous depth information, but the
phases are combined to provide unambiguous depth information
(Jongenelen et al. 2011). This method is used commercially in
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Fig. 8. Comparisons between various schemes using simulations.
(Top row) We used our simulator to evaluate the performance of various
schemes on different scene configurations (fronto-parallel plane with an
intensity staircase, a textured hemisphere, and a depth staircase). Mid-
dle and bottom rows show depth recovery comparisons in low-noise and
high-noise settings, respectively. Depths recovered by conventional sinu-
soid and square coding have large root mean square errors (RMSE), with
respect to the ground truth. In contrast, the proposed Hamiltonian coding
can recover accurate shape despite high noise levels, using the same total
light source power and capture time as conventional schemes.

Texas Instrument’s TI OPT8241 ToF sensor (Texas-Instruments
2017). We call this the high-frequency sinusoid coding scheme
(also called Micro ToF coding in Gupta et al. (2015)).

Comparisons with multi-frequency sinusoid coding: Since
the proposed Hamiltonian coding functions have high-frequency
components, we perform comparisons with the above-mentioned
multi-frequency and high-frequency sinusoid coding schemes.
Most of the energy (>99%) of the Hamiltonian coding functions is
contained within the first 12 harmonics (e.g., within the frequency
range 10—120MHz, for a fundamental frequency of 10MHz). So,
we compare with multiple frequency sinusoid schemes with fre-
quencies in the same range, i.e., 10—120Mhz. Specifically, we
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Fig. 9. Comparisons between various schemes using simulations
for K = 3. The same noise and imaging parameters are used as in Fig-
ure 8. The relative performance of different schemes in terms of the root
mean square depth error is consistent with the respective coding curve
lengths (Table 1).

compare with a multi-frequency sinusoid scheme that uses two
frequencies (10MHz and 120MHz), and a high-frequency sinusoid
scheme that uses both high frequencies (110MHz and 120MHz).
For both schemes, we consider K = 5 measurements, with three
measurements for the lower frequency (phase-shifted by 2?”) and
two measurements for the higher frequency (phase-shifted by
% ). The precise but ambiguous depths estimated from higher fre-
quency sinusoids was unwrapped using standard phase unwrap-
ping techniques. In order to ensure fair comparisons, the total
source energy is also kept the same for all coding schemes.

Figure 12 shows depth recovery results for the two multiple
frequency sinusoid coding schemes. As before, we consider a
low noise setting (K =5, source strength = 250 lumens, ambi-
ent strength = 250 lux), and a high noise setting (K = 5, source
strength = 80 lumens, ambient strength = 2,500 lux). At low-noise
settings, both multiple frequency sinusoid schemes have similar
performance as that of the Hamiltonian coding. However, at high
noise (low SNR), multiple frequency sinusoid schemes suffer from
large depth errors due to inaccurate unwrapping. While it may be
possible to reduce the unwrapping errors by using sophisticated
algorithms based on spatial smoothness priors (Droeschel et al.
2010), this usually comes at the cost of reduced spatial resolution
and high computational costs.

Figure 13 shows the root mean square (RMS) depth error of var-
ious schemes (for the plane-with-intensity-staircase scene) as a
function of noise. At low noise, the performance of both the mul-
tiple frequency sinusoid schemes (multi-frequency sinusoid and
high-frequency sinusoid) is comparable to that of the Hamiltonian
coding. However, as noise increases, their performance degrades
rapidly due to large phase unwrapping errors. On the other hand,
the performance of Hamiltonian coding degrades gracefully.

9 HARDWARE PROTOTYPE AND RESULTS

Most commercial C-ToF systems (e.g., PMD, Microsoft Kinect) use
sinusoid or square modulation. In order to evaluate different C-
ToF coding schemes, we developed a hardware prototype that can
implement a wide range of C-ToF coding functions, including the
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Fig. 10. Shape recovery comparisons using simulations. (First row)
Comparison of raw 3D shape measurements in strong ambient light, re-
sulting in large photon noise. (Second row) Comparisons after smooth-
ing. The same total source power, capture time, and smoothing parameters
were used for all schemes. The numbers in the square parentheses are the
mean depth errors, with respect to the ground truth.

Comparisons (K=5): High Noise
(source = 80 lux, ambient = 2500 lux)

Comparisons (K=5): Low Noise
(source = 250 lux, ambient = 250 lux)
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Fig. 11. Performance of bandlimited Hamiltonian coding scheme.
Comparisons between ideal Hamiltonian coding and bandlimited Hamil-
tonian functions (as output by our hardware prototype). The performance
degrades by a factor of approximately 1.5 — 3, depending on the SNR level
(low noise on left and high noise on right). This performance drop is con-
sistent with our experimental results.

proposed Hamiltonian coding scheme. Our prototype, shown in
Figure 14, is based on a single pixel point scanning setup. Our light
source is an 830nm laser diode (Thorlabs L830P200) that can be
modulated with arbitrary waveforms by an external signal of up to
500MHz bandwidth. The modulation signal is provided by a wave-
form generator, and amplified by an RF amplifier before being ap-
plied to the diode. The diode is operated at ~15mW average power,
with approximately 40 times peak power (600mW) available.
Such high peak power allows us to implement the impulse train
modulation functions. The light emitted by the diode is collimated
by an aspheric lens, and passes through a pair of galvanometer
steered mirrors (Thorlabs GVS012), a scan lens, and an objective
lens before reaching the scene. The reflected light returns to the
objective along the same path as the illumination and is focused
onto a photodiode (Menlo Systems, APD210) with a bandwidth

Comparisons: Low Noise (K=5, source strength = 250 lux, ambient strength = 250 lux)
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high-freq sine: 476.5 mm
Hamiltonian:  24.4 mm
Fig. 12. Comparisons with multiple frequency sinusoid coding
schemes. We compare Hamiltonian coding with a multi-frequency si-
nusoid scheme that uses one low and one high frequency (10MHz and
120MHz), and a high-frequency sinusoid scheme that uses two high fre-
quencies (110MHz and 120MHz). The fundamental frequency of Hamil-
tonian coding functions is T0MHz. (Top row) At low noise settings, both
sinusoid-based schemes have similar performance as that of the Hamil-
tonian coding. (Bottom row) However, at high noise (low SNR), both mul-
tiple frequency sinusoid schemes suffer from large depth errors due to in-
accurate phase unwrapping, while Hamiltonian coding still achieves high
depth precision.

up to 1GHz.!! The electronic signal is multiplied inside an RF fre-
quency mixer with a local oscillator signal (sensor demodulation
function) generated by the second channel of the waveform gener-
ator, and then integrated using a low pass filter. Finally, the signal
is digitized by a National Instruments USB — 6000DAQ.

To scan the beam, we use a second function generator to gen-
erate driving voltages for the galvanometer actuated mirrors. The
galvanometer drivers provide feedback signals with voltages pro-
portional to the position of the x and y mirrors. These signals are
digitized by the data acquisition (DAQ) unit along with each data
sample. From this data, an image is created by binning the col-
lected data samples into a two dimensional histogram with the x
and y dimensions in the scene forming the histogram axes. In our
experiments, we use 400 bins along both axes, resulting in a spatial
resolution of 400 x 400.

11t is possible to develop a full-frame prototype system by using sensors based on
image intensifier tubes that can be gain-modulated by arbitrary functions (Kawakita
et al. 2004), or by using an array of photo-diodes (Shcherbakova et al. 2013). We de-
veloped a single photo-diode scanning setup due to its low cost and ease of imple-
mentation. Our design specifications can lead to a future integrated solid state device
(e.g., PMD, Kinect) that can achieve real-time performance.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 13. Publication date: February 2018.
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Fig. 13. Comparisons of coding schemes as a function of SNR. RMS
depth error of various schemes (for the intensity-staircase scene) as a func-
tion of noise. (Left) Errors on a linear scale. (Right) Same plots on a log-
scale. At low noise levels, the performance of multiple frequency sinusoid
schemes is comparable to that of the Hamiltonian coding. However, as
noise increases (SNR decreases), their performance degrades rapidly due
to large phase unwrapping errors. In contrast, the performance of Hamil-
tonian coding degrades gracefully.
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(b) Side view
Fig. 14. Hardware prototype. (a) Top view of the setup illustrating the op-
tical path from source to the scene (red arrows), and from the scene to the

sensor (green arrows), (b) Side view showing non-optical components such
as function generators and mixer.

Hardware limitations and future outlook: There are several
challenges associated with developing a prototype with only low-
cost off-the-shelf components. The system bandwidth is currently
limited to 120MHz by the waveform generator. We use the same
fundamental frequency for all our codes (10MHz, corresponding to
an unambiguous depth range of 15 meters). Also, we ensure that the
total source power is the same for all coding schemes by using a light
meter. Figure 15 shows the correlation functions for various coding
schemes as implemented on our prototype. Due to bandwidth con-
straints, the light source cannot emit a perfect impulse function,
and the higher-order Hamiltonian coding functions are low-pass
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filtered, resulting in loss of performance. In future implementa-
tions, we envision dedicated nonlinear circuits designed to gener-
ate specific codes at high speeds, which will potentially achieve
close to the theoretical performance.

Experimental Results

Depth recovery of a single scene point: The imaging setup
consists of a single planar diffuse patch whose depth is estimated
by the sensor, as shown in Figure 16. The patch is placed on a trans-
lation stage so that its depth can be varied between 2 meters and
3 meters. We estimated the depth of the patch at several locations
along the stage; at every location, the depth was estimated 10*
times, and the RMS error was computed. Figure 16(b) to (c) show
plots of RMS depth errors for sinusoid, square, and Hamiltonian
coding, for K = 4and K = 5, respectively, as a function of the depth
of the patch. Hamiltonian coding achieves considerably lower
depth errors as compared to existing methods. The improvements
are lower than theoretical prediction because of our un-optimized
hardware prototype. As discussed earlier, the hardware limitations
are not fundamental, and larger improvements can be achieved
with optimized hardware implementation in the future.

Comparisons with multi-frequency sinusoid coding: The
imaging setup is similar to that of Figure 16, consisting of a
single planar diffuse patch whose depth is estimated by the sen-
sor, as shown in Figure 17(a). For this experiment, the patch was
placed at a fixed distance of approximately 2 meters. We estimated
the depth of the patch at several SNR settings; the SNR was varied
by changing the effective light source strength, which was modu-
lated by a rotating neutral density filter wheel placed in front of
the light source. At every SNR setting, the depth was estimated
10* times, and the RMS error was computed. Figure 17(b) plots the
RMS depth errors as a function of source strength (SNR), for single-
frequency sinusoid (10MHz), multi-frequency sinusoid (10MHz
and 120MHz), high-frequency sinusoid (110MHz and 120Mhz), and
the Hamiltonian coding schemes. For both multiple frequency si-
nusoud schemes, we captured three measurements for the lower
frequency (phase-shifted by z?”) and two measurements for the
higher frequency (phase-shifted by 7). As expected (and shown
previously via simulations in Figures 12 and 13), as source strength
decreases (SNR decreases), the performance of multiple frequency
sinusoid schemes degrades rapidly due to large phase unwrapping
errors. On the other hand, the performance of Hamiltonian coding
degrades gracefully.

Results for 3D scanning: In our first 3D scanning experiment,
the scene consists of three planar patches at different depths so
that they form a “depth staircase,” as shown in Figure 18. The dis-
tance between the patches is 2.5cm. Figure 18(c) shows comparison
of 3D reconstructions recovered using sinusoid and Hamiltonian
coding. The same total exposure time and light source power was
used for both schemes. The sinusoid reconstruction has a mean
depth error of 1.14cm. Consequently, the underlying geometry is
barely discernible. In contrast, the staircase structure is clearly vis-
ible in the Hamiltonian reconstruction, which achieves approxi-
mately five times lower error as compared to sinusoid coding.
Figure 19 shows 3D scanning comparisons for multiple fre-
quency sinusoid schemes. The scene consists of a single planar
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Fig. 16. Depth estimation of a single scene point. (a) The sensor is
used to estimate the depth of a single scene point (center of a planar
diffuse patch). The patch is placed on a translation stage so that its depth
can be varied in the range of 2-3 meters. We estimated the depth of the
patch at several locations along the stage; at every location, the depth was
estimated 10? times, and the RMS error was computed. (b-c) Plots of RMS
depth errors for sinusoid, square, and Hamiltonian coding, as a function of
the depth of the patch. Hamiltonian coding achieves considerably lower
depth errors as compared to existing methods.

diffuse wall, approximately 3 meters away from the sensor. The
3D shape of the scene was measured at three different noise levels
(by varying the source strength). At low noise levels, the multiple
frequency sinusoid schemes can estimate depths with high preci-
sion. However, as noise increases, phase unwrapping errors due to
noise result in large depth errors, as indicated in the numbers in
parentheses below each image. In comparison, Hamiltonian cod-
ing achieves precise depth estimates even at high noise levels.
Figures 1 and 20 show 3D scanning comparisons in two rela-
tively low SNR scenarios: a face scanned with a low-power source,
and a low albedo dark object. Both objects were placed approx-
imately 2 meters from the sensor. In both cases, sinusoid re-
constructions have strong noise, resulting in large depth errors.
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(b) Depth errors vs. source strength

Fig.17. Single point depth recovery for multiple frequency sinusoid
schemes. (a) The sensor is used to estimate the depth of a single scene
point, at a fixed distance of approximately 2 meters, at several SNR set-
tings. The SNR was varied by changing the effective light source strength
via a rotating neutral density filter wheel placed in front of the light source.
At every SNR setting, the depth was estimated 10* times, and the RMS
error was computed. (b) RMS depth errors (linear scale on left, log-scale
on right) as a function of source strength, for single-frequency sinusoid,
multi-frequency sinusoid, high-frequency sinusoid, and the Hamiltonian
coding schemes. As source strength decreases (SNR decreases), the per-
formance of multiple frequency sinusoid schemes degrades rapidly due to
large phase unwrapping errors.

Hamiltonian coding is able to recover the overall structure as well
as fine details, such as lips and eyes on the face, and the vertical
ridge on the vase.

10 LIMITATIONS AND FUTURE WORK

Designing coding schemes with higher performance: Hamil-
tonian coding achieves substantial improvement over existing
methods, but is not provably optimal. The general framework
proposed in the article can be used for designing novel schemes
in the future that potentially achieve better performance than

ACM Transactions on Graphics, Vol. 37, No. 2, Article 13. Publication date: February 2018.
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Fig. 18. Experimental results for 3D scanning of a depth staircase.
(a) The scene consists of three planar patches at different depths so that
they form a “depth staircase.” The distance between the patches is 2.5cm.
(b) An image of the scene from the viewpoint of the ToF sensor. (c) Com-
parison of 3D reconstructions recovered using sinusoid and Hamiltonian
coding. The sinusoid reconstruction has large noise; the underlying ge-
ometry is barely discernible. In contrast, the depth staircase structure is
clearly visible in the Hamiltonian reconstruction. (d) A plot of the 3D re-
constructions along one image scan-line. Hamiltonian coding achieves ap-
proximately five times lower mean depth error as compared to sinusoid
coding, with the same total capture time and source power.

Hamiltonian coding. For example, we have explored coding
schemes based on the family of space filling Hilbert curves (Horn
and Kiryati 1997; Sagan 1994). Due to their space-filling properties,
Hilbert curves can have infinite length. However, Hilbert curves
don’t have the other desirable properties of C-ToF coding curves.
These curves have sharp turns that manifest in poor locality pre-
serving properties. Consequently, even small image noise can re-
sult in large depth errors. While a detailed study of Hilbert curves—
based coding is beyond the scope of this article, we have performed
simulations to evaluate Hilbert and Hamiltonian coding schemes.
Our preliminary results (provided in the supplementary technical
report) suggest that overall, Hamiltonian coding, given its strong
locality properties, outperforms Hilbert coding in most real-world
scenarios. In specific situations (very low noise), Hilbert coding
can theoretically achieve better performance. An interesting
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Fig. 19. Experimental results for 3D scanning of a plane. The 3D
shape of the scene (a planar surface, approximately 3 meters from the
sensor) was measured at three different noise levels by varying the source
strength. At low noise, the multiple frequency sinusoid schemes can esti-
mate depths with high precision. However, at higher noise, phase unwrap-
ping errors due to noise result in large RMS errors, as indicated in the
parentheses. In comparison, Hamiltonian coding achieves precise depth
estimates even at high noise levels.

direction of future research is to design scene-adaptive ToF
systems, which use a different family of codes depending on the
noise levels.

Hardware constraints: The coding functions designed in the
article so far do not explicitly account for hardware constraints
such as limited bandwidth. Increasingly, high-frequency compo-
nents (Buxbaum et al. 2002) and sources that can admit large peak
power (low-cost laser diodes) are being used in C-ToF imaging sys-
tems. However, for systems with limited bandwidth and low peak
power, the codes designed in this article may require low-pass fil-
tering and clamping, thereby resulting in lower performance. One
of the next steps is to incorporate bandwidth and peak power con-
straints while estimating the modulation and demodulation func-
tions (Section 7.1) so that they can maintain high performance
while respecting the practical hardware constraints.
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Fig. 20. Comparison of 3D scanning in low SNR scenarios. A dark
vase with low albedo is scanned using sinusoid and Hamiltonian schemes.
The sinusoid reconstruction has strong noise due to low SNR. Hamiltonian
coding is able to recover the overall structure as well as fine details, such
as the vertical ridge on the vase. See Figure 1 for another comparison.

Multi-path propagation: The image formation model in this ar-
ticle assumes that there is no multi-path light component (inter-
reflections). Multi-path propagation is an important problem for
almost all active imaging systems, including continuous-wave ToF.
Several methods have been proposed to mitigate the (often large)
depth errors due to multi-path propagation, including epipolar
imaging (O’Toole et al. 2015) and high-frequency coding (Gupta
et al. 2015; O’'Toole et al. 2014). Since dealing with multi-path is an
orthogonal problem to increasing depth resolution, these meth-
ods for dealing with multi-path can be used in a complemen-
tary manner to the proposed coding schemes. For example, with
the same multi-path mitigation technique applied to both Hamil-
tonian and sinusoid coding, Hamiltonian coding can potentially
achieve similar performance gains (as without multi-path) over si-
nusoidal codes. This represents an exciting research direction. An-
other potential direction is to extend the geometric code design
framework to include global illumination, and to multi-camera ar-
rays (Shrestha et al. 2016). With such a framework, it may become
possible to analyze and design C-ToF coding schemes that are ro-
bust to multi-path interference (Godbaz et al. 2013; Gupta et al.
2015; Kadambi et al. 2013), as well as coding schemes for multi-
source/multi-sensor systems.

Incorporating scene priors in code design algorithms: The
depth error measures derived in this article are scene agnostic; they
implicitly assume a uniform distribution of scene depths, albe-
dos, and ambient illumination. In general, these distributions may
not be uniform. For example, scene depths may have a bi-modal
distribution (foreground and background objects). Furthermore,
we assumed that the scene albedo factor is independent of scene
depths. Incorporating scene priors, such as statistics of natural im-
ages (Torralba and Oliva 2003), and designing scene-adaptive code
optimization algorithms that account for the intensity fall-off is an
interesting line of future research.

APPENDIX
A DERIVATION OF DEPTH STANDARD DEVIATION

Consider an unknown point U = [T, , A]. Given a coding scheme,
let the true intensity vector corresponding to U be B = [By,

By, ...,Bk]. Let the noise in intensity measurement B; be 7;, so
that the actual measurement B; is given as:

Ei = Bj + ;. (24)

Let the depth estimate corresponding to intensity vectors B
be T. Since B is a random variable, the estimated depth T is
also a random variable. In order to compute the standard de-
viation or of T, suppose we capture N intensity measurement
vectors ﬁj = [Byj,Byj, - - - ,BK]-], 1 < j < N, corresponding to the
same unknown point U = [T, f8, A]. For each intensity vector mea-
surement, we estimate the depth. Let i:] be the depth estimate cor-
responding to the intensity vector ﬁ; Then, the standard deviation
or of the depth estimates Tis given as:

- %ﬁ [f])" @)

where E[T] is the expected value or the mean of T. Since the image
noise ii assumed to be a zero mean random variable, we assume
that E[T'] =T, where I is the true depth. Then, from Equation (25)
we get:

N N

S (en)y o

j=1 j=1

where AT = fl —T is the depth error corresponding to the ji”
measurement. Next, we approximate AIj by the differential quan-
tity 0T (first-order approximation), and substituting Equation (11)
into the above equation:

1 Y 1
— 12
N 2 101 X — e - 27)
J=1 /3\¢Zi=1 7_’—1 ()
By substituting |0B;| = IZK c'iB2 in the above Equation (27), w
get:
(28)

<R

Let Q be the standard deviation of the norm of the intensity vec-
tor [0B;| = JZK BBZ Q is given as Q = J%Z ZK BBZ
Substituting in the above equation, we get Equation (12), Wthh
expresses or in terms of the noise standard deviations Q.

SR — (29)

By i, 7 (T)?
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