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What Are Optimal Coding Functions for Time-of-Flight Imaging?
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The depth resolution achieved by a continuous wave time-of-flight (C-ToF)

imaging system is determined by the coding (modulation and demodula-

tion) functions that it uses. Almost all current C-ToF systems use sinusoid

or square coding functions, resulting in a limited depth resolution. In this

article, we present a mathematical framework for exploring and character-

izing the space of C-ToF coding functions in a geometrically intuitive space.

Using this framework, we design families of novel coding functions that

are based on Hamiltonian cycles on hypercube graphs. Given a fixed total

source power and acquisition time, the new Hamiltonian coding scheme

can achieve up to an order of magnitude higher resolution as compared to

the current state-of-the-art methods, especially in low signal-to-noise ra-

tio (SNR) settings. We also develop a comprehensive physically-motivated

simulator for C-ToF cameras that can be used to evaluate various coding

schemes prior to a real hardware implementation. Since most off-the-shelf

C-ToF sensors use sinusoid or square functions, we develop a hardware

prototype that can implement a wide range of coding functions. Using this

prototype and our software simulator, we demonstrate the performance

advantages of the proposed Hamiltonian coding functions in a wide range

of imaging settings.
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1 INTRODUCTION

Time-of-flight (ToF) cameras have fast emerged as the preferred 3D

imaging technique in several scientific and consumer applications,

including robot navigation, motion capture, human computer

interfaces, and 3D mapping. Especially popular are continuous-

wave ToF (C-ToF) or indirect ToF imaging systems (Lange 2000;

Payne 1973), which consist of temporally modulated light sources

and sensors, as shown in Figure 2. These sensors need only low-
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cost and low-power components, do not require a large baseline

for measuring depth, and thus, can potentially measure accurate

3D shapes over a large range of standoff distances. Due to these

inherent advantages, C-ToF imaging systems are increasingly

being commercialized as low-cost commodity sensors, such as

Microsoft Kinect, PMD, and SoftKinectic.

One of the key limitations of current C-ToF cameras, however,

is the limited depth resolution, especially in low signal-to-noise

ratio (SNR) scenarios. Imagine a user wearing an augmented

reality headset equipped with a low-power ToF depth camera. For

her to achieve a realistic immersive experience, the camera must

measure the 3D structure of the surroundings with very high reso-

lution. Imagine an interplanetary rover navigating a rough terrain.

It is critical for the camera to resolve fine details such as bumps on

the terrain to navigate safely. Although the spatial resolution con-

tinues to rise with advances in sensor technology, the depth reso-

lution is fundamentally limited by noise, especially photon noise.

An example is shown in Figure 1(c) and (d). An object is imaged

using a C-ToF system with a low-power source, resulting in low

SNR and large depth errors. One way to increase the SNR is to use

more light power or to increase the capture time. Unfortunately,

this is not always possible. Most devices, especially in consumer

and outdoor settings, often operate on a tight power and time

budget.

Given a fixed energy and time budget, the depth resolution

achieved by a C-ToF imaging system is determined by the coding

(modulation and demodulation) functions that it uses. This raises

a natural question: What are the optimal coding functions for C-ToF

imaging?1 Despite a lot of theoretical and engineering advances in

C-ToF imaging over the past four decades, this fundamental ques-

tion has received surprisingly little attention. Almost all current C-

ToF systems use sinusoid or square codes, which are sub-optimal

in their ability to achieve high depth resolution (Figure 1(d)).

In this article, we address the above question by establishing a

theoretical foundation for analysis and design of C-ToF imaging

systems. We develop a coding space theory of C-ToF imaging and

define optimality of coding functions in terms of a mean depth

error metric. Although this optimality criteria can be defined con-

cisely, determining the optimal solution requires solving a high

dimensional and computationally intractable global optimization

problem. Our key theoretical contribution is to derive a novel

depth precision metric based on a first-order differential analysis

of the C-ToF image formation equation. This new metric allows

us to explore the space of C-ToF coding functions (including

non-analytic functions) in an intuitive, geometric space. This

serves two purposes. First, this results in conceptual unification of

1In this article, we consider optimality in the context of maximizing the depth reso-
lution and the signal-to-noise ratio. We restrict the analysis to imaging systems with
a single source and sensor, without any multi-path interference.
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Fig. 1. Hamiltonian time-of-flight (ToF) imaging. (a) We propose a novel family of Hamiltonian ToF coding functions, which achieve up to 10 times

higher depth resolution as compared to existing methods such as sinusoid coding, especially in low SNR settings. (b) We have developed a prototype ToF

system for implementing the Hamiltonian coding functions. (c) A mannequin face was imaged using a low-power light source. (d) 3D imaging results using

conventional sinusoid coding has large errors because of low-source power. (e) With the same total source power and capture time, Hamiltonian codes can

accurately recover the overall shape, including facial features such as nose, lips, and eyes.

seemingly disparate C-ToF methods. Previously, different C-ToF

coding schemes have been analyzed separately, with concrete per-

formance metrics available only for specific schemes (e.g., sinusoid

homodyne coding (Lange and Seitz 2001)). Using our framework,

we can evaluate the performance of seemingly disparate coding

techniques (e.g., sinusoid, square, triangle) on a unified platform.

Second, perhaps more importantly, our framework enables de-

signing families of novel coding functions, which are derived from

Hamiltonian cycles on hypercube graphs. These Hamiltonian cod-

ing functions, as shown in Figure 1(a), are tightly related to the

theory of Gray codes (Gray 1953), and achieve substantially higher

depth resolution as compared to existing schemes, given the same

total capture time, total power, and depth range. For instance,

while current schemes achieve a resolution of approximately 1

centimeter at a distance of 5−10 meters with commodity hard-

ware, Hamiltonian coding scheme can achieve a resolution of ∼1

millimeter. An example result is shown in Figure 1(e).

We also develop a comprehensive physically-motivated simula-

tor that can be used to evaluate the performance of C-ToF coding

schemes, prior to a hardware implementation. This simulator

can facilitate research in the fast growing field of ToF imaging

where availability of appropriate hardware is often a bottleneck.

Finally, since most commodity C-ToF sensors use sinusoid or

square coding functions, we develop a hardware prototype system

(Figure 1(b)) that can implement a wide range of C-ToF coding

functions, including the proposed Hamiltonian scheme. We

demonstrate the performance gains of the Hamiltonian scheme

using exhaustive simulations as well as real experiments in a

variety of imaging settings.

2 RELATED WORK

Impulse Time-of-Flight Imaging: Impulse (or direct) ToF sys-

tems (Goldstein and Dalrymple 1967; Koechner 1968) estimate

scene depths by emitting a short light pulse into the scene and di-

rectly measuring the travel time of the reflected pulse. Impulse ToF

method formed the basis of the first LIDAR systems nearly 50 years

ago. Several current commercial range estimation systems (e.g.,

Velodyne sensor) are based on the impulse ToF method as well.

Although conceptually simple, the main limitation of impulse ToF

techniques is the high cost of its components (e.g., high-speed sen-

sors) and large bandwidth requirements. Consequently, impulse

ToF systems are not practical for most consumer applications.

The focus of this article is on C-ToF systems, which require only low

cost components and are fast becoming the method of choice for

3D imaging in a wide range of applications.

Code design for C-ToF imaging: Most research toward op-

timizing the accuracy of C-ToF imaging methods has been

limited to sinusoid coding, the most widely used C-ToF coding

technique (Lange 2000), especially in consumer ToF devices (e.g.,

Microsoft Kinect). Recently, (Payne et al. 2010) designed methods

for mitigating depth errors in sinusoid coding-based systems if

the modulation functions are not perfectly sinusoid (e.g., due to

the presence of higher-order harmonics).

In parallel, techniques based on a few other specific mod-

ulation functions have been proposed, for example, square

functions (Grootjans et al. 2006), triangular functions (Ferriere

et al. 2008), ramp functions (Kolb et al. 2010) (used in commer-

cial sensors from 3DV Systems), and pseudo random binary

sequences (Grootjans et al. 2006; Kadambi et al. 2013). The goal of

this article is to develop a principled framework for exploring the

complete space of ToF coding functions in order to enable design of

novel, high performance C-ToF coding schemes.

Simulation of C-ToF Sensors: Simulation engines based on

physical models of C-ToF cameras are valuable tools for evaluat-

ing novel computational algorithms or hardware architectures for

C-ToF imaging. Such simulation engines could be used to charac-

terize the artifacts and predict the performance of specific sensors

(e.g., PMD (Schmidt and Jähne 2009)), or model the effect of phe-

nomena such as scene motion (Keller and Kolb 2009), and global

illumination (Gupta et al. 2015; Meister et al. 2013). We use both

simulations and real experiments to evaluate the performance of

various C-ToF coding schemes, including those proposed in this

article. In addition to a proof-of-concept hardware prototype, we

have developed a physically-motivated simulator for C-ToF imag-

ing, which can emulate different coding schemes, under a wide

range of scene and sensor configurations. Although the simula-

tor currently assumes that scene points receive light only directly
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Fig. 2. Image formation model of C-ToF imaging. A C-ToF imaging

system consists of a light source that illuminates the scene with time vary-

ing intensity M (t ). The light reflected from the scene is captured by a

sensor, whose exposure is modulated during the integration time accord-

ing to a function D (t ), called the demodulation function. The intensity

B (p) measured at a pixel p is given by the temporal correlation between

the radiance L(p, t ) incident at p, and the demodulation function D (t ).
The scene depth Γ(p) at p can be estimated from three or more intensity

measurements.

from the light source, it can be extended to incorporate global illu-

mination effects such as interreflections (Gupta et al. 2015; Meister

et al. 2013).

3 MATHEMATICAL PRELIMINARIES

A C-ToF or an indirect ToF imaging system consists of a tempo-

rally modulated light source, and a sensor whose exposure can

be temporally modulated during integration time, as illustrated

in Figure 2. Let the radiant intensity of the source at time t be

M (t ), (0 ≤ M (t )). The function M (t ), called the source modulation

function, could be a continuous function such as a sinusoid (Lange

2000; Payne 1973), or even an impulse train function (Kolb et al.

2010).2

Consider a sensor pixel p that images a scene point S. Let Γ(p)
be the scene distance at pixel p, i.e., the distance of scene point

S from the sensor and the source.3 We assume that there is no

indirect or multi-bounce light component (Freedman et al. 2014;

Heide et al. 2013; Kadambi et al. 2013; O’Toole et al. 2014), i.e., light

from the source bounces only once at a scene point and returns to

the sensor. Then, the radiance L(p, t ) incident at pixel p at time t
is given as:

L(p, t ) = β (p) M

(
t − 2 Γ(p)

c

)
+ La (p), (1)

where c is the speed of light. β (p) encapsulates the scene point’s

albedo and reflectance and light fall-off. La (p) is the radiance

component due to an ambient light source (e.g., sun in outdoor

2A C-ToF system using an impulse train source modulation function is different from
impulse or direct ToF systems. In a direct ToF system, the time delay between the
emitted and received pulse is measured directly, requiring sensors with a large band-
width. In contrast, in a C-ToF system, the sensor measures the time delay indirectly by
measuring the temporal correlation, thus requiring a small number of measurements.
3We assume that the source and the sensor are co-located.

settings). Intuitively, the light emitted from the source M (t ) is

time-shifted by
2 Γ(p)

c due to propagation along the path: source

→ scene→ sensor; the intensity is scaled by β (p), and a constant

offset La (p) is added due to ambient illumination.

The sensor exposure is temporally modulated according to

the demodulation functionD (t ), (0 ≤ D (t ) ≤ 1). Both modulation

and demodulation functions are periodic. The demodulation func-

tion (also called the sensor exposure function) can be physically

realized either by on-chip gain modulation (Schwarte et al. 1997)

or by external optical shutters (Carnegie et al. 2011).

The brightness B (p) measured at pixel p is given by the corre-

lation between the incoming radiance and the exposure function:

B (p) =

τ∫
0

D (t ) L(p, t )dt , (2)

where τ is the sensor integration time. Substituting Equation (1)

into Equation (2), we get:

B (p) = β (p)

τ∫
0

D (t ) M

(
t − 2 Γ(p)

c

)
dt +A(p), (3)

where A(p) = La (p)
∫ τ

0
D (t )dt is the ambient component of the

measured brightness. Next, we define F (Γ) as the normalized

correlation function between modulation and demodulation

functions:

F (Γ) =

∫ τ

0
D (t ) M

(
t − 2 Γ(p)

c

)
dt

Mtotal
, (4)

where the normalization factor Mtotal =
∫ τ

0
M (t ) dt is the total

flux emitted by the light source toward point S during the sen-

sor integration time τ . Note that 0 ≤ F (Γ) ≤ 1. Substituting Equa-

tion (4) into Equation (3), and slightly abusing the notation by ab-

sorbing the constant Mtotal within the scale factor β (p), we get:

B (p) = β (p) F (Γ) +A(p).︸�������������������������������︷︷�������������������������������︸
Image Formation Equation for C-ToF Imaging

(5)

Equation (5) is the image formation equation for C-ToF imaging.

It expresses the image intensity B measured at a sensor pixel

in terms of the three unknowns: (1) scene distance Γ, (2) albedo

factor β , and (3) ambient brightness component A.

Significance of the normalized correlation functions: Equa-

tion (5) indicates that given an imaging scenario (defined in terms

of albedos β and ambient component A), a C-ToF imaging sys-

tem can be completely characterized by its normalized correlation

functions F (Γ), which in turn depend only on the modulation and

demodulation functions. F (Γ) is independent of the scene prop-

erties (albedos, ambient light) and device characteristics (sensor

integration time, light source power). Our goal in this article is to

(a) formalize a C-ToF system’s performance in terms of its correla-

tion functions, and (b) design families of correlation functions that

lead to novel, high performance C-ToF systems.

4 CODING SPACE THEORY OF TOF IMAGING

The space of all possible values of unknowns Γ, β , and A, can be

represented as a 3D unknown space, as shown in Figure 3.
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Fig. 3. Coding space theory of C-ToF imaging. The 3D space of all

possible values of unknowns Γ (depths), β (albedo factors), and A (ambient

illumination component) is called the unknown space. The K -dimensional

(K ≥ 3) space of measured intensities is called the measurement space. A

C-ToF coding scheme maps every unknown point U to a measurement

point B. However, due to noise, the actual measurement point B̂ may be

different from the true measurement point B. The decoding function maps

B̂ to the estimated unknown point Û, which results in depth errors |Γ − Γ̂ |.

Definition 1 (Unknown Point). A point U = [Γ, β,A] in the un-

known space is called an unknown point. Each unknown point

represents a three-element unknown vector.

Since there are three unknowns, K ≥ 3 intensity measurements

[B1,B2, . . . ,BK ] need to be captured using K different correlation

functions [F1,F2, . . . ,FK ], corresponding to K different pairs of

modulation and demodulation functions Mi and Di :4

Bi (p) = β (p) Fi (Γ) +A(p)

The K-dimensional space of measured intensities [B1, . . . ,BK ] is

called the measurement space, as shown in Figure 3.

Definition 2 (Measurement Point). A point B = [B1, . . . ,BK ]

in the measurement space is a valid measurement point if

[B1, . . . ,BK ] are the intensity measurements corresponding to an

unknown point U = [Γ, β,A].

Definition 3 (Coding Scheme). A C-ToF coding scheme is defined

as a function C : U→ B from the set of unknown points U to mea-

surement points B. A coding scheme C is completely characterized

by a set of correlation functions [F1, . . . ,FK ], or equivalently, by

sets of modulation and demodulation functions [M1, . . . ,MK ] and

[D1, . . . ,DK ], respectively.

The process of recovering depths can be modeled as a decod-

ing function D : B→ U from the measurement space to the un-

known space, as shown in Figure 3. The decoding function could

be an analytic expression, a table look-up, or a statistical proce-

dure (e.g., maximum likelihood estimation). If there were no im-

age noise, then given a measurement B, the decoding algorithm

4For example, in conventional sinusoid coding (Lange 2000), both modulation and
demodulation functions are sinusoids of the same frequency. We consider a gen-
eral formulation where the modulation and demodulation functions could have ar-
bitrary functional forms, as long as they adhere to the physical (e.g., non-negativity)
constraints.

could accurately recover the true unknown, and hence, the correct

depth.

Effect of Image Noise on Depth Recovery

Consider a coding scheme C that maps an unknown point U to

the true (noise-free) measurement point B = [B1, . . . ,BK ]. Let the

actual measurement B̂i be given as:

B̂i = Bi + ηi , (6)

where ηi = �Bi = B̂i − Bi is the noise in the intensity measure-

ment Bi . We assume the affine noise model including both read

noise and photon noise (Hasinoff et al. 2010). ηi is modeled as

a Gaussian random variable with standard deviation σi , i.e., ηi ∼
N (0,σi ). Due to noise, the decoding function D estimates an in-

correct unknown point Û = [Γ̂, β̂, Â], which results in depth errors

�Γ = |Γ̂ − Γ |. This is illustrated in Figure 3. The expected depth

error �ΓC (U) for an unknown U and a coding scheme C, is given

as:

�ΓC (U) =

∫
B̂

|Γ̂ − Γ | p
(
B̂|B

)
dB̂, (7)

where p
(
B̂|B

)
∼ N (B, Σ) is the probability distribution function

of the actual measured intensity B̂ = [B̂1, . . . , B̂K ]. The covariance

matrix Σ is given by the amount of image noise. The integral is

taken over the K-dimensional measurement space.

Equation (7) gives the expected depth error �ΓC (U) for a single

unknown point U. The mean expected depth error �ΓC is given by

averaging �ΓC (U) over the space of all unknowns:

�ΓC =
1

VU

∫
U

�ΓC (U) dU, (8)

where VU = (Γmax − Γmin ) (βmax − βmin ) (Amax −Amin ) is the

volume of the space of unknowns (Γmin ≤ Γ ≤ Γmax , βmin ≤ β ≤
βmax , Amin ≤ A ≤ Amax ). Substituting Equation (7) into Equa-

tion (8), we get:

�ΓC =
1

VU

∫
U

∫
B̂

���̂Γ − Γ��� p
(
B̂|B

)
dB̂dU

︸������������������������������������������������︷︷������������������������������������������������︸
Mean Expected Depth Error of a C-ToF Coding Scheme

(9)

The mean expected error is a global performance metric of a C-ToF

coding scheme. It is an intrinsic property of a C-ToF coding scheme

and is independent of choice of reconstruction method. We define

the optimal coding scheme as the one that minimizes the mean

expected depth error over a given unknown space:

Copt = arg min
C
�ΓC . (10)

Although the optimality criteria can be expressed concisely,

finding the optimal codes is a formidable constrained global op-

timization problem, with no known analytical or closed-form so-

lutions. It is computationally intensive to even evaluate this met-

ric numerically as it involves computing a double integral over

high-dimensional unknown and measurement spaces. This pre-

cludes the development of an efficient numerical or an exhaustive

search-based optimization procedure as well due to prohibitively
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high computational costs (Adam et al. 2016). We take a different

approach. We derive a novel depth-precision metric based on first-

order differential analysis of the image formation equation. This

metric has an intuitive geometric interpretation, and can be com-

puted extremely fast, leading to design of novel high performance

coding schemes.

5 A NOVEL DEPTH PRECISION METRIC

The analysis in the previous section is based on the relationship

between depth error �Γ and intensity noise �B = B̂ − B = η. In

this section, we analyze the relationship between the correspond-

ing differential quantities ∂Γ and ∂B. Based on this analysis, we

derive a novel depth precision metric. We start by taking the par-

tial derivative of the intensity Bi (in Equation (5)) with respect to

Γ:
∂Bi

∂Γ
= β F ′i (Γ),

where F ′i (Γ) is the derivative of correlation function Fi (Γ). For

ease of exposition, we assume that the albedo factor β is indepen-

dent of the scene depths. In practice, β depends on scene depths

due to distance fall-off. Such depth dependence can be absorbed

into the correlation function Fi (Γ). The partial derivative of the

measurement vector B = [B1,B2, . . . ,BK ] is given as:

�����
∂B

∂Γ

����� =
√√√

K∑
i=1

(
∂Bi

∂Γ

)2

= β

√√√
K∑

i=1

F ′i (Γ)2.

By rearranging terms, we get:

|∂Γ | = |∂B|

β
√∑K

i=1 F
′

i (Γ)2
. (11)

This equation expresses the differential depth error |∂Γ | = |Γ̂ − Γ |
due to small measurement noise |∂B| =

√∑K
i=1 ∂B

2
i , where ∂Bi =

B̂i − Bi . Since noise is random, both |∂B| and |∂Γ | are random vari-

ables, with standard deviations Ω and σΓ , respectively. Then, from

Equation (11), it follows that Ω and σΓ are related as:

σΓ =
Ω

β
√∑K

i=1 F
′

i (Γ)2
. (12)

See Appendix for a derivation. Next, we introduce χ = 1
σΓ

as a

depth precision measure:

χ (U) =
1

σΓ
=

β
√∑K

i=1 F
′

i (Γ)2

Ω
, (13)

where χ (U) denotes the dependence of χ on the unknown point

U. Since χ is the inverse of depth standard deviation σΓ , intuitively,

larger the value of χ , lower is the overall depth error. χ (U), as defined

above, is the depth precision corresponding to a single unknown

point U. The mean depth precision χC of a coding scheme C is

given by averaging χ (U) over the space of all unknowns Γmin ≤
Γ ≤ Γmax , βmin ≤ β ≤ βmax and Amin ≤ A ≤ Amax :

χC =
1

VU

∫
U

χ (U) dU =
1

VU

∫
Γ

∫
β

∫
A

χ (U) dAdβ dΓ, (14)

where VU = (Γmax − Γmin ) (βmax − βmin ) (Amax −Amin ) is the

volume of the unknown space. Substituting Equation (13) into

Equation (14), and simplifying with the assumption that the noise

standard deviation Ω =
√∑K

i=1 σ
2
i is constant,5 we get:

χC =

βmean

∫
Γ

√√√
K∑

i=1

F ′i (Γ)2 dΓ

Ω Γr anдe
, (15)

where Γr anдe = Γmax − Γmin is the unambiguous depth range, and

βmean =
βmin+βmax

2 is defined as the mean albedo factor. In order

to understand the term inside the integral in the above equation,

we define a new geometric construct called the coding curve.

Definition 4 (Coding Curve). Consider a coding scheme C de-

fined by the correlation functions [F1, . . . ,FK ]. The coding curve

is achieved by plotting the values of the correlation functions

[F1 (Γ), . . . ,FK (Γ)] in the K-dimensional space, as the depth Γ is

varied. Formally, the coding curve ΨC is defined as the following

set of points residing in K-dimensional space:

ΨC = {[F1 (Γ),F2 (Γ), . . . ,FK (Γ)] | Γmin ≤ Γ ≤ Γmax }.

The coding curve is a geometric representation of a coding

scheme; given a scheme’s correlation functions, we can determine

its coding curve, and vice versa. For example, the coding curve of

sinusoid coding is a circle in K-dim space, as shown in Figure 4(a),

for K = 3. A proof is given in the supplementary technical report.

Length of the coding curve: The length Lcurve of the coding

curve is given in terms of partial derivatives F ′i :

Lcurve =

Γmax∫
Γmin

√√√
K∑

i=1

F ′i (Γ)2 dΓ. (16)

Substituting Equation (16) in Equation (15), we get the main the-

oretical result of the article:

χC =
βmean Lcurve

Ω Γr anдe
.

︸��������������������������︷︷��������������������������︸
Depth Precision of a C-ToF Coding Scheme

(17)

Interpreting the Depth Precision Equation

Equation (17) states that the depth precision χC of a coding scheme

is directly proportional to its coding curve length. Intuitively, given

a set of unknown points, a longer coding curve spreads the mea-

surement points further apart in the measurement space, result-

ing in lower depth errors due to noise during decoding. Thus, in

general, the coding curve length (and hence, the depth precision χC)

is inversely proportional to the mean depth error �ΓC . The longer

the coding curve of a coding scheme, the larger is the value of χC
and the lower the mean depth error �ΓC .6 The coding curve and

5Strictly speaking, Ω is a function of image intensity, and varies for different unknown
points. However, for simplicity, we assume Ω to be a constant, the upper bound of
noise standard deviation over all possible measurement points.
6There are exceptions to this. If a coding curve is self-intersecting or has sharp turns,

the differential analysis, which assumes that the derivatives
∂Bi
∂Γ are continuous,

does not hold. Such a curve, despite being long, may result in large depth errors. See
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Fig. 4. Coding curve representations of different C-ToF coding schemes for K = 3. (a) Conventional homodyne sinusoid coding, (b) square coding,

(c) ramp or “light wall” coding, (d) double ramp coding, (e) delta sinusoid coding, and (f) the proposed Hamiltonian coding.
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its length are simple and fast to compute geometric properties of

coding schemes (even non-analytic schemes), thus making them a

compact representation that can be used as a powerful design tool

for developing novel, high performance C-ToF coding schemes.

The depth precision χC is directly proportional to the mean

albedo factor βmean and inversely proportional to measurement

noise Ω.7 This is not surprising, as the higher the signal (propor-

tional to βmean ) received by the sensor and the lower the noise,

the higher is the achieved precision. Perhaps more interesting is

the inverse relationship between the depth precision and the depth

range Γr anдe . A small unambiguous depth range Γr anдe results in

higher depth precision (lower depth errors), and vice versa. Similar

tradeoff between the depth range and depth error has been derived

previously for sinusoid coding (Lange 2000; Lange and Seitz 2001;

Lange et al. 2000). The depth precision equation derived above gen-

eralizes the range vs. precision relationship for any valid C-ToF

coding scheme, and thus, allows comparing the performance of a

general class of coding schemes on a common ground by fixing the

depth range Γr anдe ,
8 scene albedo βmean and sensor noise Ω.

6 CODING CURVES OF C-TOF CODING SCHEMES

In this section, we derive the coding curve lengths of several C-

ToF coding schemes, starting from their mathematical definitions

in terms of their correlation functions. Figure 4 and Table 1 sum-

marizes the results derived in this section. For fair comparisons, we

assume that the total source power Mtotal (area under the curve

of the modulation functions), exposure time, and the unambiguous

depth range is the same for all coding schemes.

6.1 K-tap Conventional Sinusoid Coding

This is one of the most widely used coding schemes in commercial

C-ToF–based depth cameras. Both the modulation and demodula-

tion functions are sinusoids of the same frequency (Figure 4(a)):

Mi (t ) = 0.5 + 0.5 cos (ωt )

Di (t ) = 0.5 + 0.5 cos
(
ωt − 2iπ

K

)
, 1 ≤ i ≤ K

K-tap denotes that K measurements are captured, with the de-

modulation function phase-shifted (typically by an equal amount
2π
K ) between successive measurements, while the modulation

function remains the same. Note that the modulation function is

normalized so that the area under the curve (for every period) is

equal to π . After substituting these in Equation (4), and simplify-

ing, we get the expression for the normalized correlation functions:

Fi (Γ) = 0.5 + 0.25 cos
(

2ωΓ

c
− 2iπ

K

)
. (18)

Algebraic derivation of the coding curve length: Recall from

Equation (16) that the coding curve length is given in terms of the

derivatives of the correlation functions. Taking the derivative of

Section 10 for an example and discussion. We will design coding curves that, in addi-
tion to being long, are non self-intersecting and have continuous derivatives.
7Since noise Ω is approximately proportional to

√
βmean in a photon-noise limited

regime, the depth precision χC is effectively proportional to
√

βmean .
8The depth range of a C-ToF system is given as Γr anдe =

cτper iod
2 , where τper iod

is the period of the modulation and demodulation functions.

Equation (18) with respect to depths Γ, we get:

F ′i (Γ) = −0.25
(

2ω

c

)
sin

(
2ωΓ

c
− 2iπ

K

)
After substituting the above into Equation (16), and simplifying,

we get the coding curve length of sinusoid coding:

Lsin
curve =

π

2

√
K

2
(19)

Geometric derivation of the coding curve length: The coding

curve for sinusoid coding, i.e., the locus of points [F1 (Γ), . . . ,FK (Γ)],
as Γ is varied, is a circle in K-dimensional space. Please see the

supplementary technical report for a proof. The center of the cir-

cle is the point C = (0.5, 0.5, . . . , 0.5). The radius of the circle is

rad (K ) =
√

K

4
√

2
. The coding curve length is Lsin

curve = 2π rad (K ) =

π
2

√
K
2 . This is consistent with the algebraic derivation.

6.2 K-tap Square Coding

This coding scheme uses square waves instead of sinusoids, both

for modulation and demodulation functions:

Mi (t ) = 0.5 + 0.5 sqr (ωt )

Di (t ) = 0.5 + 0.5 sqr
(
ωt − 2iπ

K

)
, 1 ≤ i ≤ K

where sqr (t ) function is the binary version of the sin(t ) function:

sqr (t ) =

{
1 if sin(t ) > 0

−1 if sin(t ) < 0

The correlation of two square functions is a triangle function.

Thus, the normalized correlation function for square coding is

given as:

Fi (Γ) = 0.5 + 0.5 tri
(

2ωΓ

c
− 2iπ

K

)
,

where the tri (t ) function is shown in Figure 4(b).

Geometric derivation of the coding curve length: Due to the

piecewise linear nature of the correlation functions, the coding

curve for square coding is a non-planar polygon in K-dimensional

space, as shown in Figure 4(b). The centroid of the polygon is the

point (0.5, . . . , 0.5). The polygon has 2K sides, each with length

sideLenдth(K ) = 1√
K

(see technical report for a proof). The total

length of the coding curve is:

Lsqr
curve = 2

√
K (20)

Observation: The coding curve length of square coding is
4
√

2
π ≈ 1.8 times that of conventional sinusoid coding, for any K .

This suggests that given the same scene and imaging system

characteristics, square coding should achieve approximately 1.8

times high precision (lower error) as compared to sinusoid coding.

We validate this result using simulations and experiments later in

the article.
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Table 1. Coding Curve Lengths of Various C-ToF Coding Schemes

Coding Scheme Coding Curve Curve Length Curve Length Curve Length Curve Length

(K = 3) (K = 4) (K = 5)
Single ramp Edge of 3D unit cube 1 1.00 − −
Double ramp Face diagonal of 3D unit cube

√
2 1.41 − −

Sinusoid Circle of radius
√

K

4
√

2
π
2

√
K
2 1.92 2.22 2.48

Square Regular non-planar (2K )-gon 2
√
K 3.46 4.00 4.47

Impulse sinusoid Circle of radius
√

K

2
√

2
π
√

K
2 3.84 4.44 4.96

Hamiltonian Hamiltonian cycle 2K − 2 (K is odd) 6.00 12.00 30.00

on unit hypercube 2K − 4 (K is even)

Coding Curve Lengths of Existing Schemes Such as Sinusoid and Square are Proportional to
√

K , Where K is the Number of Measurements. In Contrast, Coding
Curve Length of the Proposed Hamiltonian Scheme Increases Exponentially as a Function of K . As a Result, Hamiltonian Coding Achieves Significantly Higher
Depth Precision as Compared to Existing Schemes, Especially as K Increases. Please Refer to Sections 6 and 7 for Detailed Derivations of Coding Curve Lengths.

6.3 Other Coding Schemes

The coding curve representation can be used to analyze the en-

tire space of valid C-ToF coding schemes, such as ramp coding

(also known as the “light wall” scheme (Kolb et al. 2010)) where

one of the correlation functions is a ramp and the other two are

constant (Figure 4(c)), double-ramp coding where two correlation

functions are opposing ramps (Figure 4(d)), and impulse sinusoid

coding where the demodulation functions are sinusoids (same as

conventional sinusoid coding), but the modulation function is an

impulse train function (Figure 4(e)). The coding curve lengths for

these schemes are given in Table 1. For detailed derivations, refer

to the supplementary technical report.

7 HAMILTONIAN TOF CODING

In this section, we use the coding curve representation to design

a family of novel high-performance C-ToF coding schemes. There

are three important desirable properties of a coding curve. First,

since the mean depth precision is inversely proportional to the

coding curve length, the curve should be long. Second, in order to

ensure a unique mapping between the unknown points U and mea-

surement points B, the coding curve should not be self-intersecting.

Third, the coding curve should preserve locality, i.e., the distance

of points measured along the curve should be proportional to the

Euclidean distance between two points. This property ensures that

the intensity partial derivatives ∂B
∂Γ are continuous, and thus, small

image noise does not result in large depth errors during decoding.

A family of curves that has all these desirable properties is

Hamiltonian cycles on hypercube graphs. The hypercube graph

QK is the graph formed from the vertices and edges of the K-

dimensional hypercube. For example, the graph Q3 is formed on

a 3-D cube, and has 8 vertices (one for every cube corner) and 12

edges. A Hamiltonian cycle is a cycle (i.e., a closed loop) through

a graph that visits every vertex exactly once while traversing

the edges of the graph. Hamiltonian cycles are long, non-self in-

tersecting and have provably good locality preserving properties

(Gotsman and Lindenbaum 1996). This makes them an ideal can-

didate as coding curves for C-ToF coding schemes.

Design of Hamiltonian C-ToF coding scheme: We propose a

family of C-ToF coding schemes called Hamiltonian coding which

have Hamiltonian cycles on hypercube graphs as coding curves.

Intuitively, in the context of C-ToF imaging, these curves can be

thought of as maximal in a sense (although not provably optimal)

because they follow the edges of the coding cube, and cannot be

expanded further. The correlation functions are Hamiltonian func-

tions, where the ith Hamiltonian function hamiltK,i (t ) is defined

as the value of the ith coordinate of points on a Hamiltonian cycle

of the K-dimensional unit hypercube. Figure 4 (f) shows the plots

of Hamiltonian functions hamiltK,i (t ) for K = 3.

While constructing the Hamiltonian cycle–based coding curve,

we exclude the origin 0K = [0, . . . , 0] and the diagonally oppo-

site vertex 1K = [1, . . . , 1] so that the coding curve does not pass

through these two vertices. This ensures that for every depth value

Γ, at least two of the correlation function values are different,

i.e., Fi (Γ) � Fj (Γ) for some index pair i, j. It has been shown that

a Hamiltonian cycle on this reduced set of vertices can be con-

structed.9 In general, there are several possible Hamiltonian cy-

cles on a hypercube graph, each inducing a different coding curve

and coding scheme. One example of a Hamiltonian cycle on the

reduced set of vertices for K = 3 is shown in Figure 4(f).

Geometric derivation of the coding curve length: The coding

curve of a Hamiltonian scheme is a Hamiltonian cycle on the re-

duced hypercube graph QK − [0K, 1K], whose length is equal to

the number of cube vertices that the cycle traverses (2K − 2 if K is

odd, and 2K − 4 if K is even). Thus, the coding curve length is:

Lhamilt
curve =

{
2K − 2 if K is odd

2K − 4 if K is even
(21)

The coding curve length for the Hamiltonian scheme increases ex-

ponentially as a function of K , whereas for existing schemes such

as sinusoid and square coding, the curve length is proportional

to
√
K . As a result, even for relatively small K , such as K = 5,

the curve length for Hamiltonian coding is an order of magnitude

more than conventional sinusoid coding (see Table 1 for a compar-

ison of coding curve lengths of various schemes).

Relationship to Gray codes and robustness to noise: Gray

codes (Gray 1953) are a sequence of binary codes so that two

9This problem is NP-complete with no polynomial time algorithms. For graphs of
small sizes, we can find solutions using depth-first search.
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successive codes differ only in a single bit location, i.e., the

Hamming distance between two adjacent codes is 1. This prop-

erty makes Gray codes highly robust to noise: if a sequence of

Gray codes is used to transmit information and a small number

of bits gets corrupted (e.g., due to noise in a communication

channel), the information can still be recovered with minimal

errors. Consequently, Gray codes find applications in a diverse

set of domains, including digital communication (Gray 1953),

circuit design (Wakerly 2005), and robust structured light 3D

scanning (Inokuchi et al. 1984).

Hamiltonian cycles on hypercube graphs are tightly related to

the theory of Gray codes. There is a one-to-one correspondence be-

tween the set of K-bit Gray codes and the set of Hamiltonian cycles

on the hypercube graphs QK (Mills 1963). The Hamiltonian coding

curves that we use to design our Hamiltonian coding scheme can

be considered a continuous version of discrete Gray codes, and thus,

inherit the strong robustness-to-noise properties of Gray codes.

7.1 Modulation and Demodulation Functions

In order to physically implement the Hamiltonian coding scheme,

we need to determine the source modulation functionsMi (t ), (0 ≤
Mi (t )) and demodulation functions Di (t ), (0 ≤ Di (t ) ≤ 1) such

that their normalized correlation (Equation (4)) is equal to the

Hamiltonian functions hamiltK,i (Γ):∫ τ

0
Di (t )Mi

(
t − 2 Γ

c

)
dt

Mtotal
= hamiltK,i (Γ), 1 ≤ i ≤ K , (22)

where Mtotal =
∫ τ

0
Mi (t ) dt is the total energy emitted by the

source during integration time τ .

Let hK,i [j], 1 ≤ j ≤ N be a vector representing the discrete

sampled version (with N equi-spaced samples) of the function

hamiltK,i (Γ). Similarly, let mi [j] and di [j] be discrete represen-

tations of the functions Mi (t ) and Di (t ). Then, the above system

of equations and inequations can be written in matrix form as:

find (mi, di)

such that
1

Mtotal
Cmi di = hK, i,

N∑
j=1

mi[j] ≤ Mtotal

0 ≤ mi[k], ≤ di[k] ≤ 1, 1 ≤ k ≤ N ,

where Cm is the N × N circulant matrix constructed from the

vector m. Since the equation contains product of the unknowns

mi, di, this is a non-linear problem and, in general, may not have

a feasible solution. However, in the special case of light sources

with large peak instantaneous power mi[k] ≥ Mtotal , the above

problem has a simple solution: mi = [Mtotal , 0, 0, . . . , 0] (so that

Cmi = Mtotal I, where I is an identity matrix), and di = hK, i. This

solution corresponds to using a normalized impulse train function

Λ (ωt ) (as shown in Figure 4(e) and (f)) as the modulation function,

and the correlation function itself as the demodulation function:

Mi (t ) = Λ (ωt )

Di (t ) = hamiltK,i (ωt ), 1 ≤ i ≤ K

Incorporating peak power constraints: The above solution as-

sumes that the light source has an infinite peak power and can

emit an ideal impulse (delta) train function. For such ideal sources,

the correlation function is simply factorized into a delta modula-

tion function, and a demodulation function equal to the correlation

function. However, this factorization is an idealized theoretical de-

scription, meant only for exposition.

In practice, sources have a finite peak power, and we ap-

proximate the impulse modulation function by a short (height

equal to the peak power) but wider pulse (e.g., a Gaussian or a

square) so that the area under the modulation functions (total

emitted energy) is the same as that of modulation functions for

other schemes (e.g., sine and square). The resulting correlation

function (using a shorter and wider pulse) approximates the

theoretical correlation function. This is shown in Figure 15, which

compares the theoretical vs. measured correlation functions in our

experiments. This approximation results in lower performance

than theoretically predicted.

Ultimately, the performance will depend on the peak power

of the light source. Lasers and didoes such as those increasingly

being used in ToF systems can emit short pulses with high peak

power (Adam et al. 2016; Kolb et al. 2010; Tadmor et al. 2014), but

low average power due to energy consumption constraints and

eye safety. Such sources can closely approximate an impulse mod-

ulation function, and thus, achieve high performance. For sources

with low peak power (e.g., low-cost LEDs), the performance gains

will be accordingly lower. For such sources, the performance could

be improved by solving the factorization as a constrained optimiza-

tion problem, where the goal will be to find (mi, di) that satisfy

all the physical constraints imposed by the hardware (including

system bandwidth constraints), while minimizing the error

| | 1
Mtot al

Cmi di − hK, i | |. Such device-aware factorization is an inter-

esting future research direction, but different from the correlation

function theory and design, which is the main focus of this article.

7.2 Depth Recovery Algorithm for Hamiltonian Coding

So far, we have discussed the coding function design aspect

of the Hamiltonian coding scheme. In this section, we pro-

vide an overview of the depth recovery (decoding) algorithm.

For any coding scheme, points on the coding curve F(Γ) =
[F1 (Γ),F2 (Γ), . . . ,FK (Γ)] are parameterized by the depth value

Γ, meaning there is a one-to-one mapping between Γ and points

F(Γ). Thus, given the measurement point B = [B1, . . . ,BK ], we can

estimate depth Γ by determining the corresponding coding curve

point F(Γ). From the image formation equation (Equation (5)):

B = β F(Γ) +A → F(Γ) =
B −A
β
, (23)

where β and A are also unknown. In order to determine F(Γ) from

measurements B, we first estimate β and A.

Estimating unknowns β and A: The Hamiltonian coding curve

follows the edges of a unit cube. Suppose the coding curve point

F(Γ) lies on an edge between cube vertices Vl = [Vl,1, . . . ,Vl,K ]

and Vr = [Vr,1, . . . ,Vr,K ]. The coordinates of Vl and Vr are bi-

nary (0 or 1), and differ along only one index μ, i.e., Vl,μ � Vr,μ .

Then, the coding curve point is given as F(Γ) = αVl + (1 − α )Vr,

where 0 ≤ α ≤ 1 encodes the location of F(Γ) along the edge be-

tween Vl and Vr. Note that for every Γ, Fmin and Fmax , the min-

imum and maximum coordinates of the coding point F(Γ), are 0
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and 1, respectively. Let Bmin = β Fmin +A and Bmax = β Fmax +

A be the minimum and maximum measured intensities, respec-

tively. Since Fmin = 0 and Fmax = 1, it follows that Bmin = A and

Bmax = β +A. Thus, we can estimate β and A as A = Bmin and

β = Bmax − Bmin , where Bmin = min ([B1, . . . ,BK ]) and Bmax =

max ([B1, . . . ,BK ]) are computed from the measurements B.10

Once β and A are estimated, we determine the coding point F(Γ)
using Equation (23), from which, as discussed above, depth can be

estimated. We will release our MATLAB code of the depth recovery

algorithms for Hamiltonian and other coding schemes (sinusoid,

square, ramp, and double ramp), once the article is accepted.

8 VALIDATION AND SIMULATIONS

In this section, we use numerical methods and simulations to com-

pare the relative performance of various C-ToF coding schemes,

with the same total capture time and emitted power.

8.1 Comparisons of Mean Expected Depth Error

The mean expected depth error �ΓC (Equation (9)) is a global

measure of the performance of a C-ToF coding scheme C. In order

to compare various coding schemes, we numerically computed

their mean expected depth errors by discretizing the unknown

and measurement spaces. We implemented an adaptive grid

method to ensure that this otherwise prohibitively expensive

computation remains tractable. We used the following parameters

for our computations. Scene depth range: Γmin = 0, Γmax = 10

meters. Image noise: Gaussian noise, with affine noise model

including photon noise and sensor read noise of 20 electrons.

Sensor integration time: 10 milliseconds. Scene reflectivity:

Lambertian BRDF, albedo of 0 − 1. All the coding schemes used

the same fundamental frequency of 15MHz, and ideal waveforms

were used for all coding functions.

Figure 5 shows the mean depth error for various coding schemes

for K = 3, 4, 5, as a function of the light source and ambient illu-

mination strengths. We considered a point light source with aver-

age strengths in the range of ∼ 10 − 1, 000 lumens. Ambient light

was assumed to be uniform over the scene, with strengths in the

range of 10 − 10, 000 lux. As expected, for every coding scheme,

the depth error decreases rapidly as the source strength increases,

and increases as ambient illumination increases. Hamiltonian cod-

ing scheme significantly outperforms existing methods across all

settings, especially as K increases.

Correlation between coding curve lengths and mean ex-

pected depth errors: Figure 6 compares the coding curve lengths

(Lcurve ) and the inverse mean expected depth errors ( 1
�Γ

) for var-

ious coding schemes. The inverse mean expected depth errors are

plotted for all the source strength and ambient illumination values

as used in Figure 5 (one solid colored plot for every source strength

and ambient illumination combination). Each plot is normalized

by dividing by the minimum value along the plot. For example,

for K = 3, each plot is divided by its values at the single ramp

10This simple approach for estimating β and A may not be optimal. It may be possible
to design a decoding algorithm with better performance, perhaps by jointly estimating
β , A, and Γ. We leave the design of a better decoding algorithm as a topic of future
study.

coding scheme, and for K = 5, each plot is divided by its values

at the sinusoid coding scheme.

There are two main observations. First, the ratio of the mean ex-

pected depth errors between two schemes is approximately con-

sistent over a wide range of source and ambient illumination

strengths. Second, perhaps more importantly, the normalized cod-

ing curve lengths of different schemes are highly correlated with

the corresponding inverse mean expected depth errors. This shows

that, for these coding schemes, the coding curve length (and hence,

the depth precision χC) is inversely proportional to the mean expected

depth error �Γ. As a result, the coding curve length can be used as

an intuitive and fast-to-compute surrogate metric for optimization

and design of novel, high performance C-ToF coding schemes.

8.2 Simulator for C-ToF Imaging

We have developed a physically motivated simulator for C-ToF

imaging, which can emulate any valid coding scheme, under a

wide range of scene configurations (different geometries and re-

flectance properties) and sensor-source parameters (quantization,

pixel size, focal length, zoom, source brightness, and modulation

frequencies). The simulator models different steps of the image for-

mation process, including light emission and propagation, reflec-

tion, sensor demodulation and radiometric transformations (gain,

saturation, quantization), and noise (photon and read noise).

These steps are illustrated in Figure 7. This simulator can help

further research in the growing field of ToF imaging by facili-

tating rapid evaluation of different coding schemes. We will re-

lease the code of our simulator upon acceptance of the article.

Figure 8 shows depth recovery results for three imaging geome-

tries, and various coding schemes in a low noise setting (K = 5,

source strength = 250 lumens, ambient strength = 250 lux), and a

high noise setting due to strong ambient illumination (K = 5, source

strength = 80 lumens, ambient strength = 2,500 lux). The remain-

ing imaging parameters are the same as described in the previous

section. Square coding achieves an error ≈1.6 times lower than

conventional sinusoid (the ratio of coding curve lengths is ≈1.8).

The proposed Hamiltonian coding achieves a mean depth error

of about an order of magnitude lower than conventional sinusoid

coding in both noise settings, consistent with the ratio of coding

curve lengths. Figure 9 shows similar comparisons between vari-

ous coding schemes for K = 3. The relative performance of differ-

ent schemes is consistent with the respective coding curve lengths.

Figure 10 shows the 3D imaging simulations for a face 3D model

in an outdoor setting with strong ambient light, resulting in large

photon noise. The following parameters were used for these sim-

ulations: K = 5, source strength = 250 lumens, ambient strength

= 2,500 lux. Although the large noise in sinusoid and square re-

constructions can be reduced by smoothing, the 3D details cannot

be recovered. In contrast, Hamiltonian coding recovers sufficient

details to potentially allow recognizing the identity of the face.

Comparisons with bandlimited Hamiltonian coding func-

tions: In practice, the Hamiltonian coding functions may be low-

pass filtered due to bandwidth limitations of the hardware devices.

For instance, Figure 15 shows the Hamiltonian coding functions

as implemented on our hardware prototype. Due to bandwidth

constraints, the higher-order Hamiltonian coding functions are
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Fig. 5. Mean expected depth errors of various C-ToF coding schemes. The mean expected depth error (Equation (9)) of various C-ToF coding schemes

was numerically computed using finite element methods over a depth range of [0−10] meters. The same fundamental frequency of 15MHz was used for all

coding schemes. For every coding scheme, the depth error decreases rapidly as the source strength increases, and also increases as ambient illumination

increases. The proposed Hamiltonian scheme significantly outperforms existing coding methods across a wide range of imaging settings.

Fig. 6. Coding curve length vs. mean expected depth error. Com-

parison of the coding curve lengths and the inverse mean expected depth

errors ( 1

�Γ
) for various coding schemes, for K = 3 and K = 5. The inverse

mean expected depth errors are plotted for several source strength and

ambient illumination values (one solid, colored line plot for every source

strength and ambient illumination combination). Each individual line plot

is normalized by dividing by the minimum value along the plot. This is for

better visualization, since different line plots have different minimum val-

ues. The normalized coding curve lengths of different schemes are highly

correlated with the corresponding inverse mean expected depth errors: the

longer the coding curve of a scheme, the lower the mean depth error.

low-pass filtered, which may result in loss of performance. We

have incorporated bandwidth constraints in our simulator in

order to evaluate the performance of various ToF coding schemes

on real-world practical devices. Figure 11 shows depth recovery

comparisons between ideal Hamiltonian coding functions, and

bandlimited Hamiltonian functions (as output by our hardware

prototype). The performance degrades by a factor of approxi-

mately 1.5 − 3, depending on the SNR level. This performance drop

is consistent with our experimental results, which are achieved

on an un-optimized, proof-of-concept hardware prototype.

8.3 Frequency Bandwidth Considerations

In the comparisons shown so far in Figures 8, 9, and 10, we

used the same fundamental frequency for all coding schemes

(10MHz, corresponding to an unambiguous depth range of 15 me-

ters). Although the fundamental frequency is 10MHz, coding func-

tions for non-sinusoid schemes such as square and Hamiltonian

Fig. 7. Chain of steps for simulation of C-ToF imaging. We have de-

veloped a detailed simulator that simulates various steps of the C-ToF

imaging process, including light transport (light emission, propagation, re-

flection and shading) and sensor physics (demodulation, gain, saturation,

ADC noise, quantization). It uses a physically accurate affine noise model,

including both photon noise and sensor read noise. This simulator can be

used to emulate C-ToF imaging under a wide range of scene and sensor

parameters.

contain higher frequency components. It is well known that the

depth precision achieved by sinusoid coding schemes is directly

proportional to the modulation frequency (Lange 2000). However,

high-frequency sinusoids also limit the unambiguous depth range

due to phase wrapping (Lange 2000). For example, a 120MHz sinu-

soid can measure depths only in a small (∼1 meter) range. Due to

this fundamental tradeoff between depth precision and range, sev-

eral commercial TOF systems (e.g., Microsoft Kinect v2 (Microsoft-

Kinect 2014)) use multiple (at least two) frequency sinusoid cod-

ing (Droeschel et al. 2010), where a combination of low and high

frequencies are used to simultaneously achieve high depth pre-

cision, and large unambiguous depth range. Specifically, phases

from the high-frequency sinusoids provide high-precision, albeit

wrapped (ambiguous), depth estimates. The phases correspond-

ing to the low-frequency sinusoids are used to unwrap the high-

frequency phases, thus providing unambiguous depth estimates

over a large depth range. We call this the multi-frequency sinusoid

coding scheme.

A related approach is to use multiple high-frequency sinusoids,

wherein each high-frequency sinusoid’s phase individually

provides precise but ambiguous depth information, but the

phases are combined to provide unambiguous depth information

(Jongenelen et al. 2011). This method is used commercially in
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Fig. 8. Comparisons between various schemes using simulations.

(Top row) We used our simulator to evaluate the performance of various

schemes on different scene configurations (fronto-parallel plane with an

intensity staircase, a textured hemisphere, and a depth staircase). Mid-

dle and bottom rows show depth recovery comparisons in low-noise and

high-noise settings, respectively. Depths recovered by conventional sinu-

soid and square coding have large root mean square errors (RMSE), with

respect to the ground truth. In contrast, the proposed Hamiltonian coding

can recover accurate shape despite high noise levels, using the same total

light source power and capture time as conventional schemes.

Texas Instrument’s TI OPT8241 ToF sensor (Texas-Instruments

2017). We call this the high-frequency sinusoid coding scheme

(also called Micro ToF coding in Gupta et al. (2015)).

Comparisons with multi-frequency sinusoid coding: Since

the proposed Hamiltonian coding functions have high-frequency

components, we perform comparisons with the above-mentioned

multi-frequency and high-frequency sinusoid coding schemes.

Most of the energy (>99%) of the Hamiltonian coding functions is

contained within the first 12 harmonics (e.g., within the frequency

range 10−120MHz, for a fundamental frequency of 10MHz). So,

we compare with multiple frequency sinusoid schemes with fre-

quencies in the same range, i.e., 10−120Mhz. Specifically, we

Fig. 9. Comparisons between various schemes using simulations

for K = 3. The same noise and imaging parameters are used as in Fig-

ure 8. The relative performance of different schemes in terms of the root

mean square depth error is consistent with the respective coding curve

lengths (Table 1).

compare with a multi-frequency sinusoid scheme that uses two

frequencies (10MHz and 120MHz), and a high-frequency sinusoid

scheme that uses both high frequencies (110MHz and 120MHz).

For both schemes, we consider K = 5 measurements, with three

measurements for the lower frequency (phase-shifted by 2π
3 ) and

two measurements for the higher frequency (phase-shifted by
π
2 ). The precise but ambiguous depths estimated from higher fre-

quency sinusoids was unwrapped using standard phase unwrap-

ping techniques. In order to ensure fair comparisons, the total

source energy is also kept the same for all coding schemes.

Figure 12 shows depth recovery results for the two multiple

frequency sinusoid coding schemes. As before, we consider a

low noise setting (K = 5, source strength = 250 lumens, ambi-

ent strength = 250 lux), and a high noise setting (K = 5, source

strength = 80 lumens, ambient strength = 2,500 lux). At low-noise

settings, both multiple frequency sinusoid schemes have similar

performance as that of the Hamiltonian coding. However, at high

noise (low SNR), multiple frequency sinusoid schemes suffer from

large depth errors due to inaccurate unwrapping. While it may be

possible to reduce the unwrapping errors by using sophisticated

algorithms based on spatial smoothness priors (Droeschel et al.

2010), this usually comes at the cost of reduced spatial resolution

and high computational costs.

Figure 13 shows the root mean square (RMS) depth error of var-

ious schemes (for the plane-with-intensity-staircase scene) as a

function of noise. At low noise, the performance of both the mul-

tiple frequency sinusoid schemes (multi-frequency sinusoid and

high-frequency sinusoid) is comparable to that of the Hamiltonian

coding. However, as noise increases, their performance degrades

rapidly due to large phase unwrapping errors. On the other hand,

the performance of Hamiltonian coding degrades gracefully.

9 HARDWARE PROTOTYPE AND RESULTS

Most commercial C-ToF systems (e.g., PMD, Microsoft Kinect) use

sinusoid or square modulation. In order to evaluate different C-

ToF coding schemes, we developed a hardware prototype that can

implement a wide range of C-ToF coding functions, including the
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Fig. 10. Shape recovery comparisons using simulations. (First row)

Comparison of raw 3D shape measurements in strong ambient light, re-

sulting in large photon noise. (Second row) Comparisons after smooth-

ing. The same total source power, capture time, and smoothing parameters

were used for all schemes. The numbers in the square parentheses are the

mean depth errors, with respect to the ground truth.

Fig. 11. Performance of bandlimited Hamiltonian coding scheme.

Comparisons between ideal Hamiltonian coding and bandlimited Hamil-

tonian functions (as output by our hardware prototype). The performance

degrades by a factor of approximately 1.5 − 3, depending on the SNR level

(low noise on left and high noise on right). This performance drop is con-

sistent with our experimental results.

proposed Hamiltonian coding scheme. Our prototype, shown in

Figure 14, is based on a single pixel point scanning setup. Our light

source is an 830nm laser diode (Thorlabs L830P200) that can be

modulated with arbitrary waveforms by an external signal of up to

500MHz bandwidth. The modulation signal is provided by a wave-

form generator, and amplified by an RF amplifier before being ap-

plied to the diode. The diode is operated at ∼15mW average power,

with approximately 40 times peak power (600mW) available.

Such high peak power allows us to implement the impulse train

modulation functions. The light emitted by the diode is collimated

by an aspheric lens, and passes through a pair of galvanometer

steered mirrors (Thorlabs GVS012), a scan lens, and an objective

lens before reaching the scene. The reflected light returns to the

objective along the same path as the illumination and is focused

onto a photodiode (Menlo Systems, APD210) with a bandwidth

Fig. 12. Comparisons with multiple frequency sinusoid coding

schemes. We compare Hamiltonian coding with a multi-frequency si-

nusoid scheme that uses one low and one high frequency (10MHz and

120MHz), and a high-frequency sinusoid scheme that uses two high fre-

quencies (110MHz and 120MHz). The fundamental frequency of Hamil-

tonian coding functions is 10MHz. (Top row) At low noise settings, both

sinusoid-based schemes have similar performance as that of the Hamil-

tonian coding. (Bottom row) However, at high noise (low SNR), both mul-

tiple frequency sinusoid schemes suffer from large depth errors due to in-

accurate phase unwrapping, while Hamiltonian coding still achieves high

depth precision.

up to 1GHz.11 The electronic signal is multiplied inside an RF fre-

quency mixer with a local oscillator signal (sensor demodulation

function) generated by the second channel of the waveform gener-

ator, and then integrated using a low pass filter. Finally, the signal

is digitized by a National Instruments USB − 6000DAQ .

To scan the beam, we use a second function generator to gen-

erate driving voltages for the galvanometer actuated mirrors. The

galvanometer drivers provide feedback signals with voltages pro-

portional to the position of the x and y mirrors. These signals are

digitized by the data acquisition (DAQ) unit along with each data

sample. From this data, an image is created by binning the col-

lected data samples into a two dimensional histogram with the x
and y dimensions in the scene forming the histogram axes. In our

experiments, we use 400 bins along both axes, resulting in a spatial

resolution of 400 × 400.

11It is possible to develop a full-frame prototype system by using sensors based on
image intensifier tubes that can be gain-modulated by arbitrary functions (Kawakita
et al. 2004), or by using an array of photo-diodes (Shcherbakova et al. 2013). We de-
veloped a single photo-diode scanning setup due to its low cost and ease of imple-
mentation. Our design specifications can lead to a future integrated solid state device
(e.g., PMD, Kinect) that can achieve real-time performance.
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Fig. 13. Comparisons of coding schemes as a function of SNR. RMS

depth error of various schemes (for the intensity-staircase scene) as a func-

tion of noise. (Left) Errors on a linear scale. (Right) Same plots on a log-

scale. At low noise levels, the performance of multiple frequency sinusoid

schemes is comparable to that of the Hamiltonian coding. However, as

noise increases (SNR decreases), their performance degrades rapidly due

to large phase unwrapping errors. In contrast, the performance of Hamil-

tonian coding degrades gracefully.

Fig. 14. Hardware prototype. (a) Top view of the setup illustrating the op-

tical path from source to the scene (red arrows), and from the scene to the

sensor (green arrows), (b) Side view showing non-optical components such

as function generators and mixer.

Hardware limitations and future outlook: There are several

challenges associated with developing a prototype with only low-

cost off-the-shelf components. The system bandwidth is currently

limited to 120MHz by the waveform generator. We use the same

fundamental frequency for all our codes (10MHz, corresponding to

an unambiguous depth range of 15 meters). Also, we ensure that the

total source power is the same for all coding schemes by using a light

meter. Figure 15 shows the correlation functions for various coding

schemes as implemented on our prototype. Due to bandwidth con-

straints, the light source cannot emit a perfect impulse function,

and the higher-order Hamiltonian coding functions are low-pass

filtered, resulting in loss of performance. In future implementa-

tions, we envision dedicated nonlinear circuits designed to gener-

ate specific codes at high speeds, which will potentially achieve

close to the theoretical performance.

Experimental Results

Depth recovery of a single scene point: The imaging setup

consists of a single planar diffuse patch whose depth is estimated

by the sensor, as shown in Figure 16. The patch is placed on a trans-

lation stage so that its depth can be varied between 2 meters and

3 meters. We estimated the depth of the patch at several locations

along the stage; at every location, the depth was estimated 104

times, and the RMS error was computed. Figure 16(b) to (c) show

plots of RMS depth errors for sinusoid, square, and Hamiltonian

coding, forK = 4 andK = 5, respectively, as a function of the depth

of the patch. Hamiltonian coding achieves considerably lower

depth errors as compared to existing methods. The improvements

are lower than theoretical prediction because of our un-optimized

hardware prototype. As discussed earlier, the hardware limitations

are not fundamental, and larger improvements can be achieved

with optimized hardware implementation in the future.

Comparisons with multi-frequency sinusoid coding: The

imaging setup is similar to that of Figure 16, consisting of a

single planar diffuse patch whose depth is estimated by the sen-

sor, as shown in Figure 17(a). For this experiment, the patch was

placed at a fixed distance of approximately 2 meters. We estimated

the depth of the patch at several SNR settings; the SNR was varied

by changing the effective light source strength, which was modu-

lated by a rotating neutral density filter wheel placed in front of

the light source. At every SNR setting, the depth was estimated

104 times, and the RMS error was computed. Figure 17(b) plots the

RMS depth errors as a function of source strength (SNR), for single-

frequency sinusoid (10MHz), multi-frequency sinusoid (10MHz

and 120MHz), high-frequency sinusoid (110MHz and 120Mhz), and

the Hamiltonian coding schemes. For both multiple frequency si-

nusoud schemes, we captured three measurements for the lower

frequency (phase-shifted by 2π
3 ) and two measurements for the

higher frequency (phase-shifted by π
2 ). As expected (and shown

previously via simulations in Figures 12 and 13), as source strength

decreases (SNR decreases), the performance of multiple frequency

sinusoid schemes degrades rapidly due to large phase unwrapping

errors. On the other hand, the performance of Hamiltonian coding

degrades gracefully.

Results for 3D scanning: In our first 3D scanning experiment,

the scene consists of three planar patches at different depths so

that they form a “depth staircase,” as shown in Figure 18. The dis-

tance between the patches is 2.5cm. Figure 18(c) shows comparison

of 3D reconstructions recovered using sinusoid and Hamiltonian

coding. The same total exposure time and light source power was

used for both schemes. The sinusoid reconstruction has a mean

depth error of 1.14cm. Consequently, the underlying geometry is

barely discernible. In contrast, the staircase structure is clearly vis-

ible in the Hamiltonian reconstruction, which achieves approxi-

mately five times lower error as compared to sinusoid coding.

Figure 19 shows 3D scanning comparisons for multiple fre-

quency sinusoid schemes. The scene consists of a single planar
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Fig. 15. Measured vs. theoretical correlation functions. Correlation functions (shown in red) for various coding schemes as implemented and measured

using our hardware prototype. The modulation functions are normalized so that the total emitted energy is the same for all schemes. Due to bandwidth

constraints of our current hardware prototype, the higher-order Hamiltonian coding functions are low-pass filtered, resulting in loss of performance. This

is not a fundamental limitation and can be mitigated with improved hardware implementation.

Fig. 16. Depth estimation of a single scene point. (a) The sensor is

used to estimate the depth of a single scene point (center of a planar

diffuse patch). The patch is placed on a translation stage so that its depth

can be varied in the range of 2–3 meters. We estimated the depth of the

patch at several locations along the stage; at every location, the depth was

estimated 104 times, and the RMS error was computed. (b-c) Plots of RMS

depth errors for sinusoid, square, and Hamiltonian coding, as a function of

the depth of the patch. Hamiltonian coding achieves considerably lower

depth errors as compared to existing methods.

diffuse wall, approximately 3 meters away from the sensor. The

3D shape of the scene was measured at three different noise levels

(by varying the source strength). At low noise levels, the multiple

frequency sinusoid schemes can estimate depths with high preci-

sion. However, as noise increases, phase unwrapping errors due to

noise result in large depth errors, as indicated in the numbers in

parentheses below each image. In comparison, Hamiltonian cod-

ing achieves precise depth estimates even at high noise levels.

Figures 1 and 20 show 3D scanning comparisons in two rela-

tively low SNR scenarios: a face scanned with a low-power source,

and a low albedo dark object. Both objects were placed approx-

imately 2 meters from the sensor. In both cases, sinusoid re-

constructions have strong noise, resulting in large depth errors.

Fig. 17. Single point depth recovery for multiple frequency sinusoid

schemes. (a) The sensor is used to estimate the depth of a single scene

point, at a fixed distance of approximately 2 meters, at several SNR set-

tings. The SNR was varied by changing the effective light source strength

via a rotating neutral density filter wheel placed in front of the light source.

At every SNR setting, the depth was estimated 104 times, and the RMS

error was computed. (b) RMS depth errors (linear scale on left, log-scale

on right) as a function of source strength, for single-frequency sinusoid,

multi-frequency sinusoid, high-frequency sinusoid, and the Hamiltonian

coding schemes. As source strength decreases (SNR decreases), the per-

formance of multiple frequency sinusoid schemes degrades rapidly due to

large phase unwrapping errors.

Hamiltonian coding is able to recover the overall structure as well

as fine details, such as lips and eyes on the face, and the vertical

ridge on the vase.

10 LIMITATIONS AND FUTURE WORK

Designing coding schemes with higher performance: Hamil-

tonian coding achieves substantial improvement over existing

methods, but is not provably optimal. The general framework

proposed in the article can be used for designing novel schemes

in the future that potentially achieve better performance than
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Fig. 18. Experimental results for 3D scanning of a depth staircase.

(a) The scene consists of three planar patches at different depths so that

they form a “depth staircase.” The distance between the patches is 2.5cm.

(b) An image of the scene from the viewpoint of the ToF sensor. (c) Com-

parison of 3D reconstructions recovered using sinusoid and Hamiltonian

coding. The sinusoid reconstruction has large noise; the underlying ge-

ometry is barely discernible. In contrast, the depth staircase structure is

clearly visible in the Hamiltonian reconstruction. (d) A plot of the 3D re-

constructions along one image scan-line. Hamiltonian coding achieves ap-

proximately five times lower mean depth error as compared to sinusoid

coding, with the same total capture time and source power.

Hamiltonian coding. For example, we have explored coding

schemes based on the family of space filling Hilbert curves (Horn

and Kiryati 1997; Sagan 1994). Due to their space-filling properties,

Hilbert curves can have infinite length. However, Hilbert curves

don’t have the other desirable properties of C-ToF coding curves.

These curves have sharp turns that manifest in poor locality pre-

serving properties. Consequently, even small image noise can re-

sult in large depth errors. While a detailed study of Hilbert curves–

based coding is beyond the scope of this article, we have performed

simulations to evaluate Hilbert and Hamiltonian coding schemes.

Our preliminary results (provided in the supplementary technical

report) suggest that overall, Hamiltonian coding, given its strong

locality properties, outperforms Hilbert coding in most real-world

scenarios. In specific situations (very low noise), Hilbert coding

can theoretically achieve better performance. An interesting

Fig. 19. Experimental results for 3D scanning of a plane. The 3D

shape of the scene (a planar surface, approximately 3 meters from the

sensor) was measured at three different noise levels by varying the source

strength. At low noise, the multiple frequency sinusoid schemes can esti-

mate depths with high precision. However, at higher noise, phase unwrap-

ping errors due to noise result in large RMS errors, as indicated in the

parentheses. In comparison, Hamiltonian coding achieves precise depth

estimates even at high noise levels.

direction of future research is to design scene-adaptive ToF

systems, which use a different family of codes depending on the

noise levels.

Hardware constraints: The coding functions designed in the

article so far do not explicitly account for hardware constraints

such as limited bandwidth. Increasingly, high-frequency compo-

nents (Buxbaum et al. 2002) and sources that can admit large peak

power (low-cost laser diodes) are being used in C-ToF imaging sys-

tems. However, for systems with limited bandwidth and low peak

power, the codes designed in this article may require low-pass fil-

tering and clamping, thereby resulting in lower performance. One

of the next steps is to incorporate bandwidth and peak power con-

straints while estimating the modulation and demodulation func-

tions (Section 7.1) so that they can maintain high performance

while respecting the practical hardware constraints.
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Fig. 20. Comparison of 3D scanning in low SNR scenarios. A dark

vase with low albedo is scanned using sinusoid and Hamiltonian schemes.

The sinusoid reconstruction has strong noise due to low SNR. Hamiltonian

coding is able to recover the overall structure as well as fine details, such

as the vertical ridge on the vase. See Figure 1 for another comparison.

Multi-path propagation: The image formation model in this ar-

ticle assumes that there is no multi-path light component (inter-

reflections). Multi-path propagation is an important problem for

almost all active imaging systems, including continuous-wave ToF.

Several methods have been proposed to mitigate the (often large)

depth errors due to multi-path propagation, including epipolar

imaging (O’Toole et al. 2015) and high-frequency coding (Gupta

et al. 2015; O’Toole et al. 2014). Since dealing with multi-path is an

orthogonal problem to increasing depth resolution, these meth-

ods for dealing with multi-path can be used in a complemen-

tary manner to the proposed coding schemes. For example, with

the same multi-path mitigation technique applied to both Hamil-

tonian and sinusoid coding, Hamiltonian coding can potentially

achieve similar performance gains (as without multi-path) over si-

nusoidal codes. This represents an exciting research direction. An-

other potential direction is to extend the geometric code design

framework to include global illumination, and to multi-camera ar-

rays (Shrestha et al. 2016). With such a framework, it may become

possible to analyze and design C-ToF coding schemes that are ro-

bust to multi-path interference (Godbaz et al. 2013; Gupta et al.

2015; Kadambi et al. 2013), as well as coding schemes for multi-

source/multi-sensor systems.

Incorporating scene priors in code design algorithms: The

depth error measures derived in this article are scene agnostic; they

implicitly assume a uniform distribution of scene depths, albe-

dos, and ambient illumination. In general, these distributions may

not be uniform. For example, scene depths may have a bi-modal

distribution (foreground and background objects). Furthermore,

we assumed that the scene albedo factor is independent of scene

depths. Incorporating scene priors, such as statistics of natural im-

ages (Torralba and Oliva 2003), and designing scene-adaptive code

optimization algorithms that account for the intensity fall-off is an

interesting line of future research.

APPENDIX

A DERIVATION OF DEPTH STANDARD DEVIATION

Consider an unknown point U = [Γ, β,A]. Given a coding scheme,

let the true intensity vector corresponding to U be B = [B1,

B2, . . . ,BK ]. Let the noise in intensity measurement Bi be ηi , so

that the actual measurement B̂i is given as:

B̂i = Bi + ηi . (24)

Let the depth estimate corresponding to intensity vectors B̂

be Γ̂. Since B̂ is a random variable, the estimated depth Γ̂ is

also a random variable. In order to compute the standard de-

viation σΓ of Γ̂, suppose we capture N intensity measurement

vectors B̂j = [B1j ,B2j , . . . ,BK j ], 1 ≤ j ≤ N , corresponding to the

same unknown point U = [Γ, β,A]. For each intensity vector mea-

surement, we estimate the depth. Let Γ̂j be the depth estimate cor-

responding to the intensity vector B̂j. Then, the standard deviation

σΓ of the depth estimates Γ̂ is given as:

σΓ =

√√√√
1

N

N∑
j=1

(
Γ̂j − E

[
Γ̂

] )2
, (25)

where E[Γ̂] is the expected value or the mean of Γ̂. Since the image

noise is assumed to be a zero mean random variable, we assume

that E[Γ̂] = Γ, where Γ is the true depth. Then, from Equation (25)

we get:

σΓ =

√√√√
1

N

N∑
j=1

(
Γ̂j − Γ

)2
=

√√√√
1

N

N∑
j=1

(
�Γj

)2
, (26)

where �Γj = Γ̂j − Γ is the depth error corresponding to the jth

measurement. Next, we approximate �Γj by the differential quan-

tity ∂Γj (first-order approximation), and substituting Equation (11)

into the above equation:

σΓ =

√√√√
1

N

N∑
j=1

|∂Bj |2 ×
1

β
√∑K

i=1 F
′

i (Γ)2
. (27)

By substituting |∂Bj | =
√∑K

i=1 ∂B
2
i j in the above Equation (27), we

get:

σΓ =

√√√√
1

N

N∑
j=1

K∑
i=1

∂B2
i j ×

1

β
√∑K

i=1 F
′

i (Γ)2
. (28)

Let Ω be the standard deviation of the norm of the intensity vec-

tor |∂Bj | =
√∑K

i=1 ∂B
2
i j . Ω is given as Ω =

√
1
N

∑N
j=1

∑K
i=1 ∂B

2
i j .

Substituting in the above equation, we get Equation (12), which

expresses σΓ in terms of the noise standard deviations Ω.

σΓ =
Ω

β
√∑K

i=1 F
′

i (Γ)2
. (29)
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