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ABSTRACT
Automatic generation of 3D dance motion, in response to live music,
is a challenging task. Prior research has assumed that either the
entire music track, or a significant chunk of music track, is avail-
able prior to dance generation. In this paper, we present a novel
production-ready system that can generate highly realistic dances
in reaction to live music. Since predicting future music, or dance
choreographed to future music, is a hard problem, we trade-off
perfect choreography for spontaneous dance-motion improvisa-
tion. Given a small slice of the most recently received audio, we
first determine where the audio include music, and if so extract
high-level descriptors of the music such as tempo and energy. Based
on these descriptors, we generate the dance motion. The generated
dance is a combination of previously captured dance sequences as
well as randomly triggered generative transitions between different
dance sequences. Due to these randomized transitions, two gener-
ated dances, even for the same music, tend to appear very different.
Furthermore, our system offers a high level of interactivity and
personalization, allowing users to import their personal 3D avatars
and have them dance to any music played in the environment. User
studies show that our system provides an engaging and immersive
experience that is appreciated by users.
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1 INTRODUCTION
Virtual Reality (VR) and Augmented Reality (AR) technologies are
rapidly gaining prominence in transforming real world entertain-
ment into immersive digital experiences. This is particularly evident
in the realm of virtual concerts and dance performances. Platforms
such as Fortnite, Snapchat, and TikTok are leading this digital revo-
lution. Users, using their virtual avatars as proxies, can interact with
live music. Animating their avatars with realistic dance movements
in response to music enhances the engagement.

Traditionally, dance animation production has been a manual
and labor-intensive process. Choreographers and dancers work in
tandem to create dance routines that resonate with various mu-
sic genres, tempos, and styles. These performances are then cap-
tured and digitized by specialized teams. Although this method can
yield high-quality results, it is both resource-intensive and time-
consuming, highlighting the need for more efficient solutions in
the fast-paced digital entertainment landscape.

Recent advancements in deep learning have enabled the syn-
thesis of music-conditioned dances, as demonstrated in [8, 31, 47,
53, 82, 84]. These methods replicate the traditional choreography
process, aiming to align dance movements with musical rhythms
and styles [19, 31, 35, 91]. However, these approaches often lack
realism and tend to overlook crucial human elements of dance, such
as variety, expressiveness, spontaneity, and personal style, thus di-
minishing user engagement. We aim to address these shortcomings,
provide an immersive and realistic dance experience and foster
an intimate connection between users and their dancing avatars.
This leads us to a pivotal question: What forms of dance, beyond
strictly choreographed routines, can enhance the personalization and
interactivity of user experiences?

Improvisational dance, known for its spontaneous and unstruc-
tured nature, offers a wide range of unique interpretations to the
same piece of music, thereby enriching the digital user experience
[58, 67, 75]. This form of dance, deeply embedded in everyday prac-
tices, not only promotes artistic expression but also strengthens
the connection between performer and audience [63]. In contrast,
choreographed dance involves a precise and methodical process,
where dancers strictly adhere to predefined movements, limiting
spontaneous expression [14].

This paper introduces a novel system designed for synthesizing
improvisational dance in real-time to live music, with the following
key contributions and advantages:
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(1) Hybrid Modeling Approach:We introduce a hybrid model
that merges data-driven graph-based methods with deep learn-
ing techniques for creating music-conditioned 3D improvisational
dance. This process begins with the extraction of various music
descriptors in response to a music signal. These descriptors guide
the selection of dance segments from a database, from which we
randomly choose one to match the music’s characteristics.

The selected dance segment is then fused into the ongoing ani-
mation using a lightweight state-of-the-art motion in-betweening
network. This approach ensures fluid transitions between dance
routines, allowing for a seamless and dynamic flow of movements
that adapt in real-time to the music.

The resulting dances are not only spontaneous and engaging but
also maintain a strong coherence with the music’s genre, tempo,
and energy. This balance of unpredictability and musical alignment
reflects the essence of improvisational dance.

(2) Comprehensive 3D Dance Dataset: To tackle the scarcity of
diverse dance data, we’ve compiled an extensive dataset of high-
quality dance animations. This collection spans over 8 hours and
encompasses a broad spectrum of musical tempos, energies, and
genres. Furthermore, our dataset is enriched with natural idle ani-
mations and a variety of facial expressions, significantly boosting
the avatars’ expressiveness and emotional connection during their
dance performances.

(3) Interactivity and Customization: The music that animates
the dances can be sourced from various inputs, such as the end
user or a DJ. When users select their own music, they transform
from passive viewers into active participants, having direct control
over the music and, consequently, the dance animations. For DJs
or artists, our system offers the ability to associate popular and
recognizable choreographed dance routines with specific music
segments, thereby heightening the user’s personal engagement and
experience.

(4) Personal Avatar Integration:Our system stands out by allow-
ing users to import their personal 3D avatars from popular AR/VR
platforms, instead of limiting them to a few predefined options. We
currently support Bitmojis [1], a 3D avatar used by over 250 million
Snapchat users [2]. We believe this fosters a deeper connection
between users and their dancing avatars.

(5) Integrated Production-Ready System:We detail both the
hardware setup and software implementation of our improvisa-
tional dance system. We personalize the user experience by allow-
ing users to cast their Bitmoji 3D avatars by scanning a QR code.
Our system is versatile – designed as a web service, it is suitable
for deployment on individual kiosks or for large online virtual
gatherings. We will release the code and datasets in the future.

Empirical evidence from extensive user studies confirm the ef-
fectiveness of our system in delivering an enjoyable, engaging, and
highly personalized virtual dance experience.

2 RELATEDWORK

Human Motion Synthesis. Human motion synthesis aims to
generate natural human movements based on existing data, ac-
counting for the non-linear and stochastic nature of human motion.

Initial approaches utilized classical techniques like hidden Markov
models [11, 12, 52, 83] and statistical models [15, 46, 66]. Recent ad-
vancements have seen the application of neural networks, training
on 3D human motion datasets to generate motion using various
architectures, including CNNs [23, 29, 30], GANs [73], RNNs [7, 8,
13, 20, 21, 34, 44, 60, 65, 89], and transformers [6, 18, 24, 26, 38, 55].

Graph-Based Motion Synthesis. Graph-based methods in hu-
man motion synthesis involve constructing motion graphs, where
nodes represent motion segments, and edges indicate transition
probabilities. Pioneered by Lamouret et al. [45], this approach has
evolved with contributions from [9, 42, 43, 48, 50, 61, 74]. Recent
extensions [40, 41, 77] integrate rhythmic constraints, while oth-
ers [10, 35, 56] incorporate complex choreographic rules.

Motion In-betweening. Initially, motion in-betweening meth-
ods employed linear or spline interpolation techniques to gener-
ate intermediate frames between keyframes [62, 72]. Advanced
deep learning methods, especially RNNs, now dominate this space.
Harvey et al. [25] introduced the Recurrent Transition Network
(RTN) with subsequent enhancements [26]. Other approaches in-
volve RNN and CVAE combinations [85], convolutional autoen-
coders [37, 73, 95], transformers [18, 26, 38, 64, 69], and diffusion
models [28, 39, 70, 80, 86, 87, 94].

Dance Motion Synthesis with Music. Dance motion synthesis,
a subset of human motion synthesis, initially focused on similarity-
based matching [51, 77]. Crnkovic-Friis et al.[17] introduced LSTM-
based deep learning methods, followed by various other LSTM
applications [8, 36, 84, 90]. GANs [47, 54, 82] and transformers [31,
53, 55, 78, 79] represent other explored architectures. GrooveNet [8]
is noteworthy for real-time music-driven dance synthesis, although
its scope and user engagement are limited.

3D Dance Dataset. Existing 3D motion datasets focus mainly on
daily human motions [16, 32, 33, 59, 76]. Dance-specific datasets,
often created from 2D-to-3D conversions, lack accuracy and often
result in unnatural or even physically implausible motions [47, 49,
53, 55, 55, 82, 88]. Direct motion capture has been used to over-
come these limitations [8, 84, 96], yet these efforts are limited in
scope and diversity. Our research necessitates a comprehensive
3D dance dataset aligned with music tracks across various genres,
necessitating the collection of our dataset.

3 EXPERIENCE DESIGN
In this section, we detail the foundational principles of our proposed
dance experience. In envisioning a generative dance system, our
goals are aligned with the principles of improvisational dance, while
striving to create a highly engaging and interactive user experience.
These goals include:
• Enhanced User Interactivity: The system should allow users
to influence the dance animations by controlling the music, en-
couraging active engagement.

• Real-Time Spontaneity: The ideal system must react instanta-
neously to user interactions, requiring real-time music analysis
and dynamic dance synthesis.

• Element of Surprise: Incorporating unpredictability and unique-
ness in each dance sequence to reflect the essence of improvisa-
tion.
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• Physical Realism: Generated dance motions should be realis-
tic and fluid, free from artifacts typical to deep learning based
systems.

• Natural Avatar Behavior: In the absence of music, avatars
should exhibit natural, idle behaviors to enhance realism.

• Ease of Extensibility: The system should be easily updated
with new dance routines without retraining.

• Dance Authoring: The system should allow artists to inject spe-
cific dance routines to particular musical segments. Ex: Macarena
dance, Gangnam Style dance.

• Avatar Personalization: The system should support a user’s
personal 3D avatar from various platforms, deepening user con-
nection and immersion in the virtual dance environment.

• Animation Personalization: Avatars come in various sizes
and shapes. The synthesized dance should preserve the motion
semantics between various avatars while minimizing artifacts.

4 METHOD
In this section, we present Dance Synthesizer, our proposed ap-
proach that takes user’s music of selection as input and generates
music-conditioned 3D improvisational dance.

4.1 Overview
Currently, a prevalent class of methods is to generate dance frames
by sampling from a learned dance motion manifold conditioned on
the entirety of the input music [8, 19, 31, 47, 82]. However, these
methods heavily depend on the quality of learned manifold which
requires a substantial amount of data. Even then, generated dances
often lack of realism and tend to be repetitive. In addition, none of
thesemethods can perform in real-time, reactive to user interactions.
To overcome these limitations, our Dance Synthesizer is divided
into two distinct components: music analysis and dance synthesis.
Each of these components is discussed in details below.

4.2 Music Analysis
Upon user selection, the chosen music track is fed into the Music
Analysis component for real-time analysis. We employ a moving
window approach with a 3-second window size and 0.3-second
increments. Within each window, the system analyzes the mu-
sic across three key dimensions: energy, tempo, and musical type.
These dimensions are explained in detail below.

Music energy: We define the music energy as the loudness of the
music signal. According to Steven’s power law [81], the loudness
of a music signal is its intensity raised to the power of 0.67. Please
note that this is a rough estimation of the music’s energy, as it is
computationally inexpensive and sufficient for our needs.

Tempo estimation.We utilize BeatNet [27], a state-of-the-art method,
for real-time tempo estimation. Specifically, we apply BeatNet’s
“offline mode” on each 3-second music window, updated every 0.3
seconds. Finally, we employ a filtering process to minimize abrupt
variations in the final tempo estimation results.

Music type estimation. We categorize music into three types: idling
(absence of music), slow-paced, and fast-pacedmusic, similar to [96].
To identify these three music types in real-time, we utilize YAM-
Net [68], a light-weight network known for its great performance

on sound event classification. We train the network on a dataset
created using Jingle Punks [3], with labels corresponding to the
three defined categories: 0 for idling, 1 for slow-paced, and 2 for
fast-paced music. Furthermore, we integrated YAMNet’s original
version on sound event classification to help distinguish between
music, background noise, and human speech. With these two ver-
sions of YAMNet together, our system is able to accurately classify
both music existence and music types in real-time.

4.3 Dance Synthesis
Subsequently, the Dance Synthesis component of our system gener-
ates dance movements in real-time, aligning with the input music’s
characteristics determined by the Music Analysis component. Un-
like the limitations of existing methods discussed in Section 4.1, our
approach instead takes inspiration from the classic graph-based
methodologies.

4.3.1 Inspiration: classic graph-based approaches. This class of
methods synthesize motion sequence by finding an optimal path
within a pre-constructed motion graph. In such a graph, nodes
represent individual motion segments from a database, and edges
denote the probabilities of transitioning between these segments.
The calculation of these probabilities could involve, for instance,
assessing the similarity between ending motion segments of the
two connected nodes.

However, a limitation of this approach lies in the potential spar-
sity of the motion graph. A sparse graph, with insufficient amount
of edges connecting motion segments, can lead to repetitive dance
sequences, contrary to our goal of generating diverse and sponta-
neous dances. Additionally, no music information can be incorpo-
rated in these methods. Therefore, to overcome these issues, our
Dance Synthesis component employs a hybrid approach, combin-
ing the concept of a classic motion graph with a learning-based
method.

4.3.2 Our hybrid approach. Aligning with the classic graph-based
methods, our approach also synthesizes dance movements by con-
necting various dance motion segments. The key distinction lies in
the creation of edges: unlike classic methods that establish edges
between segments based on specific criteria, we connect segments
based on the music information retrieved in real-time, as detailed
in Section 4.2. For instance, when the user initiates a music track,
our Dance Synthesis component immediately connects the current
idle motion to any one of the dance segments that match the music’s
characteristics. This approach yields a highly dense motion graph,
providing an almost limitless array of paths for dance synthesis.

Given this density, our method extends beyond the traditional
confines of a motion graph. In this case, our hybrid approach es-
sentially becomes a task in motion in-betweening, focusing on
generating dance transitions between two motion segments that
are expressive and diverse.

4.3.3 Dataset. Since our hybrid approach adapts a modified ver-
sion of the motion graph, it is necessary to create a comprehensive
and diverse dataset for the approach to run effectively. We engaged
professional dancers to perform improvisational dances to an ex-
tensive selection of over 200 songs. These tracks were meticulously
chosen from a variety of genres, including hip-hop, country, folk,
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Figure 1: Our dance transition generator. The transition generator, G𝑻 , has three components: (a) a skeletal-aware encoder
using skeletal operators; (b) a transformer subnetwork that operates in the latent space generated by the encoder; and (c) a
skeletal-aware decoder that projects latent vectors back to 3D skeletons.

jazz, and disco, to ensure a broad representation of musical styles.
The tempos of these songs varied from 80 BPM to 160 BPM, to
accommodate a diverse set of dance rhythms and patterns.

In order to capture the dance movements with high fidelity, we
equipped the dancers with the Smartsuit Pro II from Rokoko [71].
This motion capture suit allowed us to record the dances directly
in 3D, ensuring the accuracy and quality of the captured motions.
The result of this process is a comprehensive collection of over 6
hours of dance movements, stored in the Mixamo format [32].

A crucial aspect of our dataset is its versatility to accommodate
a wide range of body shapes, from skinny to obese. Leveraging
retargeting techniques inspired by [93], all captured dance move-
ments to six distinct body shapes. This flexibility ensures seamless
integration of different Bitmojis into our system.

4.3.4 Approach details. Here we introduce the implementation
details of our hybrid approach, specifically, the transition generation
network which we denote as G𝑻 .

G𝑻 vs. typical motion in-betweening. Typical motion
in-betweening methods such as [26, 38], concentrate on generating
transitions from an initial motion sequence to a designated target
pose. In this case, these methods only need to ensure the smoothness
between the initial motion sequence to the transition, as long as the
transition ends in the target pose. In contrast, G𝑻 aims to ensure
smooth motion continuity not only from the initial sequence to the
transition movements but also from the transition to subsequent
dance motions which could originate from a different dance track
with potentially contrasting physical movements.

Network input. The input for the proposed G𝑻 consists of a se-
quence of motion frames divided into three parts: (1) an initial dance
segment from the source track, (2) placeholders for intermediate
transition frames, and (3) a dance segment from the target track,
which may differ from the source. We set the length of the input
sequence as 𝐿 = 𝑀1 + 𝑇 + 𝑀2 = 160 frames, with 𝑀1 = 𝑀2 = 65
frames each for the two dance segments, and 𝑇 = 30 frames for

the transition, equivalent to one second of dance motion at the
system’s frame rate of 30 FPS. These 30 placeholder frames are
initially generated using Linear Interpolation (LERP) for the global
root position and Spherical Linear Interpolation (SLERP) for each
joint’s rotation between the last frame of the initial segment and
the first frame of the subsequent one. G𝑻 then learns to refine these
placeholder frames, ensuring a seamless and natural connection
between the dance segments on each end.

Network architecture. The network architecture of G𝑻 draws
inspiration from the framework of a denoising autoencoder. In
this configuration, the network is trained to accurately predict a
ground-truth motion sequence from an input sequence that has
been altered or perturbed. As depicted in Figure 1, our network fea-
tures a skeletal-aware encoder consisting of two skeletal blocks [5].
Each block is composed of a skeletal convolution, an activation
function, and skeletal pooling, which collectively map each input
motion frame into a corresponding latent vector. The skeletal-aware
decoder, mirroring the encoder, also comprises two skeletal blocks.
These blocks function to project the latent vectors back into the
domain of 3D skeletal motions, thereby reconstructing the motion
sequence.

A key distinction of our network model from the conventional
denoising autoencoders is the integration of a transformer subnet-
work positioned between the encoder and decoder. This transformer
subnetwork, based on the structure from [38], has been adapted to
accept inputs from our skeletal-aware encoder and produce out-
puts compatible with our skeletal-aware decoder. The inclusion of
this transformer subnetwork is critical in our architectural design,
as it is essential in generating an intermediary motion sequence
that is both engaging and relevant to the ongoing dance synthesis.
This is confirmed by the results of the ablation study discussed
in Section 6.1.

4.3.5 Data and training. Here we discuss the data and representa-
tion used to train G𝑻 and its training objectives.
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Data. To train G𝑻 , we randomly selected approximately one-tenth
of the total number of dance tracks from the comprehensive dataset
introduced in Section 4.3.3.

Data representation. In our system, the 3D human skeleton mo-
tions is represented as two components: a static component and a
dynamic component. The static component, denoted as S ∈ R𝐽 ×𝑆 ,
encapsulates the armature information, where 𝐽 represents the
number of armatures and 𝑆 = 3 corresponds to the 3D spatial co-
ordinates. The dynamic component, symbolized as Q ∈ R𝐿× 𝐽 ×𝑄 ,
captures motion dynamics, with 𝐿 indicating the length of the mo-
tion sequence and 𝑄 = 4 reflecting the use of Quaternions for
rotation representation. Additionally, the root joint is represented
as R ∈ R𝐿×(𝑆+𝑄 ) , distinct from the 𝐽 armatures. It comprises a se-
quence of global translations and rotations, crucial for maintaining
the integrity and coordination of the entire skeletal motion.

This approach to data representation lays the groundwork for
implementing skeleton-aware operations in G𝑻 . These operations,
derived from the graph-based structural representation of the skele-
ton, consider key aspects such as bone hierarchy and joint adjacency.
Such consideration is vital for ensuring the physical plausibility of
generated motions. For a comprehensive understanding of these
skeleton-aware operations and their implications in motion syn-
thesis, we direct readers to the foundational work by Aberman et
al. [5], which delves into the intricacies of skeletal convolution and
skeletal pooling.

Training objectives. Let 𝐸, 𝑇 , and 𝐷 denote the encoder, trans-
former, and decoder components of G𝑻 , respectively. We optimize
the following loss function:

L = E(S,Q𝑖 )∼M
[ 


(𝐷 (𝑇 (𝐸 (S, Q̂𝑖 )), S), S

)
− Q𝑖
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]
+ E(S,Q𝑖 )∼M

[ 


FK (
𝐷 (𝑇 (𝐸 (S, Q̂𝑖 )), S), S

)
− P𝑖
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]
,

(1)

where L is a standard reconstruction loss over the joint rotations
and joint positions. Each frame of motion 𝑖 ∈ M is represented
by (S,Q𝑖 ), the pair of skeleton offset and joint rotation. Q̂𝑖 is the
SLERP rotation input. FK is a forward kinematic operator that,
given skeleton offset and joint rotations, returns the joint positions.
P𝑖 = FK (S,Q𝑖 ) are the joint positions of the ground truth dance
sequence.

5 IMPLEMENTATION
Our system’s design and the methodological approach we have
adopted are versatile, allowing for implementation as either a stan-
dalone unit or within a larger online framework. In this paper, we
offer a reference implementation of our system as a web application
specifically designed for a standalone kiosk shown in Figure 2.

5.1 Hardware Design
Our kiosk setup is designed to deliver a realistic and immersive
experience, featuring a 65-inch portrait monitor for displaying life-
size dancing Bitmoji characters. This setup caters to a wide range
of music sources, allowing users to play their choice of music from
smartphones, tablets, MP3 players, or even online web players. An
integral part of this setup is a QR code scanner [4], which lets users

Portrait monitor

iPad

QR scanner

Figure 2: DanceCraft Kiosk: The kiosk features an iPad for
user to play music. The avatar dances in response to the
music on a life-sized portrait monitor. Users can cast their
personal 3D Bitmoji by presenting a QR code to the QR code
scanner.

Portrait 
Monitor

Computer
Music 
Source

Loud
Speaker

QR 
ScannerQR Code

Music

Figure 3: Hardware setup topology diagram.

QR Code

Web UIDance
Synthesizer

Music
Analyzer

QR Parser

Music

Figure 4: High level software architecture

bring their personalized Bitmoji avatars into the dance animation
system, adding a layer of personalization to the experience. We
leverage The computational processing is handled by an Apple M2
Ultra Mac Studio, which synthesizes the 3D dance animations in
realtime that are synchronized with the music.

5.2 Software Design
Our system’s versatility is enhanced by its implementation as a web
application. The software topology diagram, as shown in Figure
4, provides a detailed overview of our system’s architecture. Key
components like Music Analyzer and QR Parser are implemented
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server-side, handling the backend processes. On the client side, we
have developed the Dance Synthesizer engine as a JavaScript ap-
plication, complemented by aWebGL presentation layer for visually
rendering the animations.

The Music Analyzer processes the incoming music stream us-
ing a moving window approach. Based on empirical analysis, we
have determined an appropriate window size of 3 seconds and a
moving increment of 0.3 seconds. Within each window, the Music
Analyzer extracts key musical characteristics, as detailed in Sec-
tion 4.2. This process allows for the extraction of pertinent musical
features such as genre, tempo, and energy. The extracted data is
then relayed in real-time to the Dance Synthesizer engine.

For users with Bitmoji avatars, the integration is seamless. They
can retrieve a QR code encoding the URL of their Bitmoji through
Snapchat. Scanning this code with the kiosk’s QR code scanner
enables their personalized avatar to be projected into the animation
system. It is important to highlight that all Bitmojis from different
users share a common skeletal structure. This unified skeleton
enables us to seamlessly switch between different Bitmojis in real-
time according to the user’s request. However, as stated in 4.3.3,
Bitmojis can have different body shapes and sizes – from skinny
to obese mesh. The metadata embedded in the retreived Bitmoji
model aids the dance synthesizer in switching to the appropriate
set of dance animations to prevent interpenetration.

6 EVALUATION
This section presents the quantitative evaluations of our method,
comparisons to baseline and prior works, and ablation studies. We
also conduct user studies to assess the proposed system qualita-
tively.

6.1 Quantitative Evaluation
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Figure 5: Dance track coverage histogram.We show the cov-
erage histograms for four randomly selected dance tracks
from our database. It demonstrates our system’s capability
to fully utilize each track for dance synthesis.

Table 1:Comparison on LAFAN1 formotion in-between task (30
frames). The best performance in each category is indicated
in bold and the second-best is highlighted in cyan.

Length = 30 L2P ↓ L2Q ↓ NPSS ↓
Zero-Velocity 6.60 1.51 0.2318
Interpolation 2.32 0.98 0.2013

ERD-QV [26] 1.28 0.69 0.1328
SSMCT [18] 1.10 0.61 0.1222
CMIB [38] 1.19 0.59 0.1415
Δ-Interp [64] 1.00 0.57 0.1217
Ours 1.04 0.54 0.1213

Dance track coverage. A critical aspect of evaluating the perfor-
mance of our proposed system is the assessment of how compre-
hensively individual dance tracks within our database are utilized.
An ideal functioning of the system, in line with our dense motion
graph approach described in Section 4.3, would involve traversing
the full range of all dance tracks in our collection.

To quantitatively evaluate this aspect, we conducted a series of
tests where the system was fed input songs across a spectrum of
tempos, ranging from 80 BPM to 160 BPM, in increments of 5 BPM.
For each tempo level, we initiated 1000 transitions and observed
the extent of coverage for each dance track. The coverage results
for four dance tracks, selected at random, are illustrated in Figure 5.
These findings demonstrate that our system consistently covers
the entire span of each selected dance track, showcasing its ability
to effectively utilize the entire breadth of the dance database. This
extensive coverage is indicative of the system’s capacity to provide
a diverse and comprehensive dance experience, adapting to a wide
range of musical tempos and styles.

Motion in-betweening methods comparison. To assess the ef-
ficacy of our Dance Synthesizer, particularly G𝑻 , the real-time
generation of 30-frame motion in-betweening, we conducted a
comprehensive evaluation using the LAFAN1 dataset [26]. Our
evaluation employed three metrics: i) L2 distances of global posi-
tions (L2P)[26], ii) L2 distances of global rotations (L2Q)[26], and
iii) Normalized Power Spectrum Similarity (NPSS) [22].

Our G𝑻 was compared against various baselines and existing
methods. The zero-velocity baseline approach involves replacing
the intervening frames with the last frame of the source motion.
The interpolation baseline utilizes linear interpolation (LERP on
the global root position and SLERP on the rotation of each joint) be-
tween the final frame of the source motion and the initial frame of
the target motion. Additionally, we compared our method with
several prior techniques, including ERD-QV [26], SSMCT [18],
CMIB [38], and Δ-Interp [64].

The results of this quantitative evaluation, presented in Table 1,
demonstrate the robustness of our approach. Our method not only
surpasses previous state-of-the-art (STOA) methods like ERD-QV,
SSMCT, and CMIB in performance but also competes favorably with
concurrent works, namely Δ-Interp. This indicates the effectiveness
of our G𝑻 in accurately and realistically generating intermediate



DanceCraft MOCO ’24, May 30–June 02, 2024, Utrecht, Netherlands

Table 2:Ablation study.We compared the performance of our
proposed G𝑻 with and without the transformer component.
The best score under each metric is emphasized in bold.

Length = 30 L2P ↓ L2Q ↓ NPSS ↓
Ours w/o Trans 1.31 0.73 0.1337
Ours 1.04 0.54 0.1213

(a) Bailando++ output (b) Retargeted Bitmoji

Figure 6: Data preparation for user studies.We retargeted the
output from Bailando++, originally in SMPL skeleton format,
to the Bitmoji format. We then associated a random Bitmoji
character with the skeleton, ensuring a fair comparison be-
tween the outputs of Bailando++ and our proposed system.

dance frames in real-time, a crucial capability for the system’s
overall functionality.

Ablation study. To validate the impact of the transformer com-
ponent in our G𝑻 , we conducted an ablation study. This involved
removing the transformer component from our model for com-
parative analysis. The modified version of our model without the
transformer is denoted as “Ours w/o Trans”, and we juxtaposed its
performance against our complete model, denoted as “Ours”.

In the absence of the transformer, our model adopts a configura-
tion akin to a denoising autoencoder, aligning with the structural
outline provided in Section 4.3. The comparative results, detailed
in Table 2, underscore a significant performance discrepancy be-
tween the two versions. The findings from this ablation study high-
light the critical role of the transformer component in enhancing
the system’s capability to accurately and dynamically generate
dance motions, thereby validating its inclusion in our G𝑻 .

6.2 Qualitative User Studies
Quantitative evaluations highlight our G𝑻 ’s in-betweening abili-
ties, but they only partly represent the goal of our full system, Dance
Synthesizer, which is to generate real-time, music-reactive impro-
visational dances. GrooveNet [8], the most closely related work, also
focuses on real-time dance generation but struggles in generalizing
beyond its training data. Hence, for a more effective comparison,
we included Bailando++ [79], an autoregressive method known for
its qualitative strength in generating 3D dance movements based
on music.
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Table 1

Bailando++ sum Ours sum Bailando++ Ours Bailando++ std Ours std

Dance Realism 89 193 2.78 6.03 0.83 0.78 Realism

Music-dance Correlation 88 196 2.75 6.13 0.76 0.87 Correlation

Dance Diversity 65 181 2.03 5.66 0.82 0.79 Diversity

Dance Expressiveness 61 179 1.91 5.59 0.73 0.95 Expressiveness
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Figure 7: Quality of dance comparison. We conducted a blind
comparison between dances generated by Bailando++ and
our method. The results reveal a strong preference among
participants for our system’s dance quality.

Participants.We recruited 32 participants, comprising 19 males
and 13 females, aged between 18 and 37. None of the participants
had previous experience with 3D dance systems.

User Study 1: Quality of dance.
Data preparation. Bailando++ is not a real-time method, as it condi-
tions dance generation on the entirety of the input music. To ensure
a fair comparison in our user studies, we prepared data as follows:

(1) Since Bailando++ is trained on AIST++ dataset [55], we ran-
domly selected 20 music clips from its test set to generate dance
movements for each.

(2) Bailando++ generates dances in SMPL format [57]. We retar-
geted the outputs to the Bitmoji skeleton format, and assigned
random Bitmoji characters to the skeletons. The resulting dance
sequences were then converted into videos, as shown in Fig-
ure 6a and Figure 6b.

(3) Using the same 20 music clips, our system generated corre-
sponding dance sequences in real-time. These sequences were
recorded into videos for comparison.

Procedure and results. To compare dance quality, participants en-
gaged in a blind test viewing 20 videos from either Bailando++ or
our system. They rated each video on a scale from 1 to 7 across four
dimensions: dance realism, music-dance correlation, dance diver-
sity, and movement expressiveness. Participants then repeated the
procedure with the other system. To counter order bias, the study
sequence was counterbalanced. Figure 7 presents the average user
ratings, indicating a marked preference for our proposed system.

User Study 2: User experience. Next, we evaluated participants’
user experience with both systems. For ours, participants freely
chose music, paused, and switched tracks, as outlined in Section 3.
With Bailando++, participants used the same iPad kiosk to choose
music. Upon selection, they were asked to run an all-in-one script
for music download and processing, output generation and pro-
cessing, and dance video creation. This process, though automated
to the best extent, still took about 5 minutes or more. Participants
rated their experience on enjoyment, engagement, ease of use, and
responsiveness on a 1-7 scale. They then repeated the process with
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Table 1

Bailando++ sum Ours sum Bailando++ Ours Bailando++ std Ours std

Enjoyment 82 200 2.56 6.25 0.84 0.72 Enjoyment
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Figure 8: User experience comparison. In a blind comparison
of Bailando++ and our method, participants significantly pre-
ferred our system’s user experience, highlighting its superior
engagement and satisfaction.
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Table 1

Bailando++ Ours Bailando++ std Ours std

Better Dance 0 32 0 0 Better Dance

Better Music-dance 
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0 32 0 0 Better Correlation
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Figure 9: Overall preference of participants. In the concluding
phase of our study, participants chose their overall preferred
system, unanimously favoring the experience and capabili-
ties of our system.

the other system. The identity of the systems was not disclosed to
the participants. A blind comparison was carried out in a counter-
balanced order to minimize bias. The mean user ratings for both
systems, as depicted in Figure 8, clearly demonstrate a strong pref-
erence for our proposed system.

User Study 3: Overall preference. Upon completing the blind
interaction with both systems, participants were asked to express
their overall preferences through three categories, including over-
all dance quality, music-dance correlation, and user experience.
Figure 9 shows the results of this final study. Despite not being
informed about the identities of the systems, the participants unan-
imously favored our proposed system across all the categories. This
unanimous preference underscores the effectiveness of our sys-
tem in delivering a superior user experience, characterized by the
combination of dance quality and music-dance synchronization.

Positive feedback. The participants’ response to our proposed
system was overwhelmingly positive. A notable observation was
the universal expression of enjoyment, as evidenced by the smiles
on the faces of all participants while interacting with the system.

27 out of 32 participants expressed astonishment and delight at
seeing their Bitmoji dance in sync with their chosen music on the
large portrait TV. Additionally, 23 participants actively joined in
the experience, mirroring the dance movements of their virtual
counterparts. Furthermore, 12 participants expressed interest in
integrating our system into VR dance parties. Notable feedback in-
cluded Participant #8 returning for a second interaction with their
daughter and Participant #14’s intrigue about the system’s poten-
tial adaptability to complex musical pieces like Broadway shows.
The overall positive user rating and subjective feedback highlight
the system’s practicality and appeal for various applications, from
personal use to social and virtual events.

User suggestions. Participants also provided constructive sugges-
tions for improvement. Many requested a wider range of dance
styles reflecting culture diversity, such as traditional Chinese rib-
bon dance and Japanese Awa Odori.Another common suggestion
was mobile device compatibility, enhancing accessibility and con-
venience. Additionally, over half of the participants envisioned
integrating the system with AR/VR headsets, seeing it as an enrich-
ing addition to immersive virtual environments. Participant #27’s
innovative idea involved creating a physical gadget reflecting their
3D Bitmoji, capable of reacting to music, inspired by our virtual
system. This suggests new, tangible applications of our technology.

7 LIMITATIONS AND FUTUREWORK
Our emphasis on improvisational dances comes at the cost of chore-
ographic accuracy and semantic nuances, which might be perceived
as a drawback by trained dancers. Another limitation lies in our
current dance routine retrieval system, which operates on a basic
lookup table approach based on music genre, tempo, and energy.
Future enhancements aim to evolve this into a more sophisticated
two-tower embedding model [92] with predictive modeling, capa-
ble of not only retrieving semantically relevant dances but also
ensuring synchronization with musical beats. Currently, another
drawback of our system is that it is not computationally efficient
on low-end computers. We would like optimize the method so that
it can even run on mobile phones.

8 CONCLUSION
In this paper, we introduced a production-ready, real-time system
adept at generating realistic, expressive, and captivating improvisa-
tional dances in response to music. Our approach overcomes the
limitations of both data-driven graph-based and deep learning ap-
proaches by implementing a novel hybrid method. We also unveiled
a comprehensive dance dataset encompassing a diverse array of
musical genres, tempos, and energy levels. Our system emphasizes
user interactivity and personalization, creating a deeply engaging
experience. Significantly, user study results show a marked prefer-
ence for our system’s generated dance motions among untrained
users. Finally, our implementation of the system with web tech-
nologies enables versatile deployment options. We can set up the
dance generator as a standalone kiosk or integrate it into larger
virtual concert environments.
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