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ABSTRACT 
Finger gesture recognition is gaining great research interest for 
wearable device interactions such as smartwatches and AR/VR 
headsets. In this paper, we propose a hands-free fne-grained fn-
ger gesture recognition system AO-Finger based on acoustic-optic 
sensor fusing. Specifcally, we design a wristband with a modifed 
stethoscope microphone and two high-speed optic motion sensors 
to capture signals generated from fnger movements. We propose a 
set of natural, inconspicuous and efortless micro fnger gestures 
that can be reliably detected from the complementary signals from 
both sensors. We design a multi-modal CNN-Transformer model for 
fast gesture recognition (fick/pinch/tap), and a fnger swipe contact 
detection model to enable fne-grained swipe gesture tracking. We 
built a prototype which achieves an overall accuracy of 94.83% in 
detecting fast gestures and enables fne-grained continuous swipe 
gestures tracking. AO-Finger is practical for use as a wearable de-
vice and ready to be integrated into existing wrist-worn devices 
such as smartwatches. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile de-
vices; Virtual reality; Gestural input; Interaction devices. 
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1 INTRODUCTION 
Recent years have witnessed the explosion of Extended Reality 
(i.e., AR, VR, and MR) applications that can dramatically improve 
productivity and user experiences in many scenarios (e.g., remote 
collaboration [33], design [35], entertainment [27], etc.). The XR 
market size is projected to grow by 300% and reach $98 billion by 
2025 [18]. While the interactable space is extended freely to the 
reachable range, the XR interaction is still limited and requires 
a large efort from users. Users need to lift their hands to reach 
either a small 2D on-device touch surface [10] or a limited Line-
of-Sight space covered by the Field-of-View of the head-mount 
tracking cameras [31]. VR headsets [22] usually come with hand-
held controllers for interaction which are not hands-free and require 
the users to press buttons without seeing them. 

To provide natural and low-efort XR interactions, studies pro-
posed wrist-worn solutions, which can follow hands continuously 
without hand grasping, to capture gesture interactions. With the 
advances in sensing technologies, many gesture-related modalities 
were proposed, which can be categorized into two types. The type 
I solutions are to infer fnger gestures by directly sensing part of 
the hand from wrist (e.g., palm [38] and back of hands [36, 39]). 
The modalities (e.g., cameras and IR sensors) used in this type of 
solution recognize gestures by directly sensing a fraction of hand 
within the feld of view (FoV). However, the most expressive part of 
the hands –fnger tips– are usually not visible to such wrist-worn 
sensors. To achieve larger FoV, such sensors need to be lifted of 
the wrist which are uncomfortable to wear [36, 39] or multiple 
cameras are required which incurs heavy computation overhead 
and large latency [13]. The type II solutions infer fnger gestures by 
capturing gesture-induced physiological signal on wrist, including 
skin deformation [29], ultrasound image [21], muscle electrical ac-
tivities [16], vibrations [37], etc. The modalities in type II solutions 
capture indirect signals from fnger gestures which make the recog-
nition task more challenging. Although such sensors do not have 
line-of-sight requirement, they are usually prone to disturbances 
due to the low Signal to Noise ratio. Type II solutions are usually 
limited to discrete gestures with no fne-grained gesture tracking. 
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reveals that fnger gestures are controlled by the coordination of 
hand muscles and tendons going through wrists [21], thus fnger 
gestures create both visual signals that can be observed by optic 
sensor and internal signals that can be sensed from the wrist. Given 
this observation, we propose a novel fne-grained gesture recogni-
tion system AO-Finger , which is built upon high-speed low-power 
optic motion sensors (i.e., type I modality) and modifed stetho-
scope microphone (i.e., type II modality). Our optic sensor has a low 
profle and only observes a small thumb area (as shown in Figure 2) 
such that it can be built into a wristband in a compact design. The 
modifed stethoscope microphone is sensitive to sound signals con-
ducted from fnger tips through tendons. By taking advantages of 
the complementary strength of both sensing modalities, AO-Finger 
enables hands-free, fne-grained fnger gestures detection with a 
compact wrist-worn device. This facilitates multiple important ad-
vantages for gesture recognition in XR applications: 1) Hands-free: 
AO-Finger is wrist-worn system that releases both hands for other 
tasks and interactions in XR applications. 2) Inconspicuousness and 
efortless: unlike existing solutions which require to the users to 
lift up arms in the air to enable camera tracking or using the touch 
pad on HMD, we design a set of inconspicuous, efortless micro 
gestures that are easy to perform with minimum fnger movements. 
3) Fine-granularity: one unique advantage of AO-Finger is that it 
enables continuous thumb swipe tracking, which provides more 
fne-grained interactions compared to a large set of existing work 
which only recognize discrete gestures [14, 21, 28, 29, 37]. 

To achieve hands-free, fne-grained and efortless fnger gesture 
recognition with these advantages, we must address several critical 
challenges: 1) design a set of gestures that are easy and natural to 
perform, and fts to AO-Finger sensing modalities; 2) build a sensing 
hardware prototype with strategic sensor mounting to ensure stable 
signals (e.g., optimal microphone location and contact, optic feld 
of views); 3) analyze the complementary sensing data and develop 
models and systems that take advantage of their signals organically 
by sophisticated sensor fusion algorithms design. 

Specifcally, we make the following contributions: 

• We comprehensively investigate existing sensing modalities 
and identify the combination of acoustic-optic sensor fusing 
for hands-free, fne-grained fnger gesture recognition. To 
take full advantage of our sensors, we design a set of incon-
spicuous micro fnger gestures that are natural to perform 
with minimum eforts. 

• We design a low-cost, noise-resilient modifed stethoscope 
microphone to capture the gesture-induced acoustic signal 
within a wide spectrum. We customize two low-energy optic 
sensors with robustness to ambient light and fne-tuned 
sensing range for privacy-preserving fne-grained gesture 
tracking. 

• We propose a multi-modal CNN-Transformer model for fast 
gesture (fick/pinch/tap) detection which outperforms the 
baseline model signifcantly with an 15% accuracy increase. 
We also train a separate fnger swipe contact detection model 
which enables fne-grained continuous swipe gesture track-
ing. 

• We develop a series data augmentation techniques based on 
physics simulations which overcome the overftting problem 

and improves overall accuracy signifcantly by almost 20%. 
To further enhance the performance, we propose an aggre-
gation model for robust gesture detection and a system level 
readiness detection mechanism to suppress false alarms in 
noisy scenarios. 

• We build a prototype with 3D printing and evaluate the user 
experience in multiple applications including interaction 
with AR glasses. Results show AO-Finger is robust in detect-
ing fast gestures with an overall accuracy of 94.83% and has 
high usability of fne-grained swipe gesture tracking. 

To the best of our knowledge, AO-Finger is the frst wrist worn 
system for hands-free, fne-grained inconspicuous micro fnger 
gesture detection based on acoustic-optic sensor fusion. Despite its 
advanced capabilities, AO-Finger achieves a compact low-profle 
hardware design, which is ready to be integrated into existing wrist 
worn devices such as smartwatches or used as a standalone input 
device. 

2 OVERVIEW 
We briefy introduce the fnger gesture set we propose, rational 
behind our sensing modality selection and the high-level system 
overview. 

Figure 1: Gesture set and the start/end defnition for data 
labelling. 

2.1 Gesture Set 
2.1.1 Gesture Design Consideration. During the gesture set design, 
we have two considerations. First, it is essential to design a set 
of fnger gestures that is easy and natural to remember for most 
users. As the touch-screen interaction has been widely adopted 
and accepted, the gesture set that supports a smooth transition 
from the existing touch-screen interaction method to AO-Finger 
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Table 1: Comparison of typical wrist worn sensors for fnger gesture recognition. 

Sensor Wearability Functionality Limitations 

IR sensor (point to wrist skin) [20] High Medium Low sensor density 
Camera/IR sensor (point to fngers) [36, 38, 39] High High Power hungry, high latency, require line-of-sight 

Pressure sensor [7, 28] Medium Medium/High Require frm contact 
Ultrasound [14] Low Medium Require frm contact, coupling gel 
EMG sensor [26] Medium High Require good electric contact 
Magnetic [5] Low High Additional sensors on fngers 

Microphone [12, 43] High Medium Background noise interference 

is targeted. Therefore, we avoid involving more than two fngers 
in our gesture design and limit the number of gestures. Second, 
inconspicuous and fne-grained micro gestures [4] are preferred 
so users can use AO-Finger in most environments with minimum 
efort. Therefore, we include gestures that users are not required 
to fnish the whole movement to use, i.e., the user’s progress of 
gesture should be mapped to a scale (e.g., slider). 

2.1.2 Gestures. With these considerations, we design a set of fve 
gestures in AO-Finger , i.e., Flick, Pinch, Tap, Swipe_Left, and Swipe_Right, 
as shown in Figure 1. Since each gesture is a sequence of fnger 
movements, we clearly defne the start and end state of fngers for 
data labelling. These defnitions are critical to ensure gestures can 
be labelled consistently among all sessions labelled by diferent 
users. We divide the gesture set into two categories: fast gestures 
(i.e., fick, pinch and tap) and fne-grained gestures (i.e., swipe left 
and swipe right) which require continuous tracking. Fast gestures 
involves faster fnger movements and create high energy in au-
dio signals, and usually they have shorter duration. Fine-grained 
gestures like swipes involve continuous movement and usually 
last longer duration. Continuously tracking the precise swiping 
fnger movements enables fne-grained control in human computer 
interactions. 

2.2 Why Acoustic-Optic Fusion? 
Sensing Modalities. Various sensing modalities have been ex-
plored for fnger gesture recognition from the wrist. We evaluate 
the possible modalities from three aspects: wearability, functionality 
and limitations. Wearability has direct impact on the comfortable-
ness of prolonged wearing and the sensors should have small form 
factor that can be easily integrated into space constrained wrist-
band. Functionality shows the capability of the sensors in detecting 
fnger gestures from the unique signal features. We investigate each 
sensing modality and propose sensor fusing design to overcome 
the limitations. 

Table 1 shows the typical sensors that have been explored for 
wrist-worn fnger gesture recognition systems. Wrist worn cam-
eras pointing to the fngers [36, 38, 39] reconstruct 3D hand pose 
from camera frames of a hand part such as palm and hand back. 
While these solutions are straightforward, they usually have high 
latency and consume a lot of power on processing large volume 
of video data in realtime, making them not suitable as wearable 
device. Additionally, regular cameras sufer privacy issues. Others 
like pressure [7, 28], ultrasonic [14] and EMG [26] sensors have 

lower wearability since they require frm contact against the skin. 
Microphones have shown the capability of distinguishing fnger 
gestures from the sound signals [12, 43]. They have high weara-
bility due to the low profle form factor with limited functionality 
due to the poor Signal to Noise Ratio (SNR) and background noise 
interference. 

Why Sensor Fusion? When fnger gestures are performed, the 
friction between contact surfaces (e.g., thumb vs. index fnger) and 
internal bone/tendon movements generate sound signals, which 
conducted through the body and can be picked up by microphones 
on the wrist. Depending on the type of gestures, the captured 
sound signal has varied energy and frequency distributions, which 
creates features for gesture recognition. However, some gestures 
generate very similar sound signals. For example, tap and pinch 
gestures are close to each other since they only difer slightly on 
the contact position: thumb contacts index fnger center area vs. 
tip. Swiping thumb against index fnger left and right create similar 
sound signals with weak energy which makes it very challenging to 
distinguish from purely audio signals. Additionally, sound signals 
are known for poor SNR due to noises from outside environment 
as well as internal body conduction. In order to complement these 
limitations, we seek an additional sensing modality in our design. 

We choose optic motion sensors as complementary sensing 
modality in AO-Finger for sensing the proposed gesture set. By 
strategically placement on the wrist, optic sensor is capable on 
tracking thumb movements (e.g., raising up/down and swiping 
left/right), which helps resolving the ambiguities between tap vs. 
pinch and swipe directions. Flick is so unique in acoustic signal 
with high energy, high frequency and sharp duration that it can be 
reliably detected from sound signals. Through acoustic-optic sensor 
fusion, AO-Finger captures sufcient sensor signals to recognize 
our defned gesture set reliably with little ambiguity. Additionally, 
leveraging the object tracking capability of optic sensors, AO-Finger 
enables fne-grained continuous thumb swipe gesture tracking for 
the next level of interactions compared to existing discrete gesture 
classifcation solutions. 

2.3 System Overview 
Figure 2 shows the overall system design of AO-Finger . It takes two 
signals as input for fnger gesture recognition: dual optic sensors 
that track the continuous movement of the skin area connecting 
thumb and wrist (highlighted in Figure 2) and one modifed stetho-
scope microphone in contact to the inner wrist. We process and 
enhance the signals on the sensing hardware to provide reliable 
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Figure 2: System overview of AO-Finger which contains three major components: sensing modalities, hardware-assist processing 
and fne-grained fnger gesture recognition algorithms. 

signals with high SNR. Specifcally, instead of retrieving raw low 
resolution images (30x30 pixels) from optic sensors to the Micro 
Controller Unit (MCU) for processing, we leverage the on-chip 
image processing to enable object tracking and outputs the infor-
mation of the tracked object only (e.g., position, size and brightness). 
This enables low power consumption of the system and achieves a 
high frame rate of 386 fps which is essential for capturing signals 
from fast fnger gestures such as fick, pinch and tap. We strategi-
cally placed two optic sensors on the wristband to expand the FoV. 
We also modify an of-the-shelf MEMS microphone to suppress skin-
coupling noise, amplify skin-conducted sound signals and isolate 
air-conducted noises. Last, we design a set of algorithms for fne-
grained fnger gesture recognition which consists of a multi-modal 
CNN-Transformer network for fast gesture recognition, a fnger 
swipe contact detection model (contact between thumb and index 
fnger to trigger swipe gestures), and a heuristic aggregation mod-
ule to output fnal gestures. In total, AO-Finger enables three fast 
fnger gestures detection and two continuous fne-grained swipe 
gestures tracking, which are inconspicuous and efortless to per-
form. AO-Finger maintains a lower profle such that it is ready to be 
integrated into existing wrist-worn devices or use as a standalone 
input wearable device for AR/VR interactions. 

3 APPROACH 

3.1 Hardware and Sensor Signals 
To capture the designed gesture set, we design our wristband pro-
totype as shown in Figure 3. The sensors carried by the wrist-
band include two strategically positioned optical sensors (modifed 
PAJ7620U2) for larger FoV and a modifed MEMS microphone for 
skin-coupling noise reduction and signal amplifying. A Bluetooth 
Low Energy (BLE) controller board (Adafruit Feather nRF52840 
Express) is attached to capture the data reported by sensors and 
communicate with XR devices requiring gesture inputs. The sen-
sors are soldered on soft Printed-Circuits for the fexible placement 
on wristband. To secure sensor mount and ensure consistent rela-
tive sensor positions in repeatable wearing, we designed and 3D-
printed a wristband skeleton. The wristband skeleton consists of 
three pieces on wrist locations, i.e., the volar-wrist piece (VP), the 
dorsal-wrist piece (DP), and the radial-wrist piece (RP) as shown in 
Figure 3. The three parts are chained through elastic bands. Wrist 
anatomy reveals that the volar wrist area is thinner and closer to 
the tendons that controls fnger gestures than the other two loca-
tions. Therefore, we place the microphone on the volar-wrist part 

of the wristband for a better capture of the gesture-induced acoustic 
signal. 

Dual Optic Sensors. One of the key challenges to vision based 
sensing modalities is the disturbance from ambient lights. To get rid 
of the infuence of ambient lights, AO-Finger’s optic sensor works 
in infrared spectrum and carries its own IR LED. Specifcally, for 
each sensing frame, the IR LED frst illuminates the sensing area 
and then dims (5% duty cycle). The illumination area is fne-tuned 
and limited to 5-15 cm to keep a low energy consumption. The 
sensor array then takes an IR image (30x30 pixels) when the IR 
LED is on and of, respectively. Due to the ultra-low resolution and 
short depth range, our sensors mitigate privacy issues. Subtraction 
is then performed on the two adjacent shots to remove any possible 
IR noises from environment and generate a single frame. To detect 
the object in the view, we apply a threshold on the frame and select 
the pixels brighter than the threshold as valid pixels followed by a 
clustering algorithm to fnd out the largest cluster of bright pixels. 
We use the center of the cluster to represent the object location 
and convert the center pixel location to X/Y coordinate values. 
Note that these image processing procedures execute on highly 
optimized integrated circuits in the sensor for extreme efciency 
and high frame rate. In our settings, we achieve a frame rate of 386 
fps for capturing fne-grained fnger movements. The optic sensor 
captures the shroud of thumb fnger in the view. We used two optic 
sensors with slightly diferent tilting angles to expand the feld of 
view. On average, each optic sensor only consumes 2.82 mA current 
when operating, including IR LED illumination, imaging, running 
image processing, and communication. In contrast, a typical camera 
(OV5647 [24]) designed for IoT applications draws 200 mA (10 
times of our optical sensors), excluding any image processing and 
illumination. 

Modifed Stethoscope Microphone. One important diference 
between the regular microphone and our skin-contact microphone 
is the skin-coupling noises due to the capacitance between skin 
and microphone shell. To prevent radiated disturbances, the COTS 
MEMS microphone is usually encapsulated into a metal shell. How-
ever, given the small form factor of MEMS microphone, the contact 
area between the shell and skin will be limited and tend to gener-
ate capacitance. Consequently, the skin-coupling capacitance can 
disturb the MEMS microphone (as MEMS Mic leverages the inner 
capacitance to measure the sound pressure) and the fltering ca-
pacitors on FPC. The skin-coupling noise frequency band overlaps 
that of fnger gesture acoustic signals, thereby making it hard to be 



AO-Finger CHI ’23, April 23–28, 2023, Hamburg, Germany 

removed by post signal fltering. To mitigate the noise, we specif-
cally design a z-shape slot on the volar-wrist part for microphone 
installation (shown in Figure 3). It can be seen that the capacitors 
of microphone can be hide in z-slot and is well isolated from skin 
surface. In addition, we apply a thin metallic membrane (aluminium 
foil) to expand the microphone contact area with skin to mitigate 
the disturbing capacitance. The metal membrane also brings two 
important benefts: 1) the metal membrane isolate the air vibration 
from the environment and only takes the vibration from contacted 
wrist skin which increase the SNR signifcantly. Therefore, AO-
Finger does not require extra noise-cancellation microphone and 
algorithms1. 2) As the opening of microphone shell is covered by 
the metallic membrane, the microphone works similar as a stetho-
scope. The acoustic signals from fnger gestures is further amplifed 
by the formed metal drum. 

Sensor Data Synchronization. Intuitively, the controller board 
can retrieve the sensors’ readings by looping to keep all the sensors 
synchronized. However, the gestures that AO-Finger recognizes is 
usually fast (less than half a second) and the acoustic and optical 
sensing modalities are of diferent and high sensing rates. In AO-
Finger , the controller board access the two optical sensors via I2C in 
a synchronized way as their sample rates are the same (386fps) and 
relative low compared with the microphone. As the microphone 
sends acoustic signals to the controller board via Pulse-density 
modulation (PDM) at 41667 Hz, we enable asynchronous trans-
mission for acoustic signals utilizing direct memory access with 
double-bufering. The interruption triggered by bufer full event is 
minimized to reduce the infuence on the loop duration. In addition, 
we make the controller board send the same amount data in each 
loop to keep the communication overhead consistent. 

Figure 3: AO-Finger’s prototype consists of a modifed stetho-
scope microphone and dual optic sensors. 

Signal Pre-processing. The contact friction between modifed 
microphone and skin may create artifact spikes. To mitigate such 
artifacts, we frst apply a median flter to remove such outliers. After 
1We designed dual microphones in hardware with one reserved for background noise 
cancellation. We decided not to use the second one due to the excellent noise isolation 
capability brought by metal membrane covering. 

fltering on the time domain, we compute the spectrogram of the 
audio signal to convert it into both frequency and time domain to 
capture richer information. We use a time window of 1024 samples 
(24.6 milliseconds) with an stride of 80 samples for computing the 
Power Spectrogram Density map. Then we take the log on the 
signal so that is can be easier to be normalized. We use a min-
max scalar to normalize the spectrogram. Note that the min and 
max are estimated from the whole dataset across all the users. It 
is critical to make sure not to apply sample level normalization 
otherwise we lose amplitude information which is critical for fick 
gesture detection. After the audio signal pre-processing, we get a 
normalized 2D spectrogram as acoustic input for the model. 

Same as the audio signal, we also apply median flter on the optic 
data to flter out possible spike artifacts. To accommodate varying 
wearing positions, we subtract the raw X/Y values for each gesture 
sample window by the mean value. Then we normalize the values 
by dividing the values by a fxed range, which is the maximum 
possible moving distance range estimated from all the dataset. This 
normalization retains the amplitude of the gesture and is agnostic 
to the wearing position. We take signals from both optic sensors 
[X1, Y1, X2, Y2] as input to our model. 

3.2 Gesture Detection Model 
It is relatively intuitive to train a single multi-class classifer to clas-
sify the 5 gestures and negative class with both acoustic and optic 
signals as input. Such straightforward design faces multiple limita-
tions: 1) a simple classifcation model only produces a class label 
for each performed gesture, which lacks the fne-grained gesture 
tracking capability; 2) training a multi-modal neural network on 
certain gestures could lead to overftting to a single modality, thus 
the model ignores other sensing modalities. In our experiments, 
we fnd that swipe gestures are mainly controlled by optic signals 
rather than acoustic signal. This causes a major problem if not 
addressed properly: swiping thumb without touching index fnger 
also triggers gestures, which creates false positives. 

Based on the observations, we decompose our problem into 
two models and then we aggregate the results based on heuristics. 
Specifcally, we train a multi-modal classifcation model for fast 
fnger gestures only to detect fick, pinch and tap; and another 
fnger swipe contact detection model specifcally for detecting the 
thumb/index fnger swipe contact status. If the swipe contact is 
confrmed, the system enters continuous swipe gesture tracking 
mode which keeps tracking the thumb movements for fne-grained 
control. 

3.2.1 Fast Gesture Detection. We frst present our multi-modal 
sensor fusion model for fast gesture detection. 

Input representations. We choose the input signals based on the 
gesture set analysis. Flick gestures usually have shortest duration 
(as shown in Figure 8) and highest pitch (i.e., frequency and energy), 
these features can be captured by acoustic signals. Since fick mainly 
involves index fnger movement, it is hardly visible to the optic 
sensor on the wrist. Pinch gestures create lower pitch sound signals 
compared to fick due to the “soft” contact of thumb and index fnger 
tips, which also applies to tap gesture. Pinch and tap share similar 
acoustic features since the major diference is the contact position: 
tapping requires thumb taps index fnger middle part while pinch 
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Figure 4: Multi-modal CNN-Transformer model for fast gesture detection and fnger contact detection model. 

requires the thumb to “tap” index fnger tip. It is challenging to 
distinguish pinch from tap due to the similar acoustic features. 
Thus, we introduce the optic signals. Tap gestures involve thumb 
moving which can be captured by optic sensors, while pinch mainly 
involve index fnger movements, which is less sensitive to optic 
sensors. We take signals from both optic sensors and the modifed 
microphone as input, and propose a multi-modal neural network 
for signal classifcation. 

Model Architecture. As our model takes two modalities as input, 
we design a dual-branch network, one for acoustic signals and 
one for optic signals. Acoustic data is represented as spectrogram 
after pre-processing, which inspires us to use 2D CNN as initial 
embedding extraction layer. We also 1D CNN on optic data as 
embedding extraction layer. While CNNs have been successful 
in many computer vision tasks such as image classifcation [8] 
and object detection [3], Transformers, which are initially used 
in Nature Language Processing tasks [32] have shown superior 
performance in many of these tasks. We use transformer layers 
an encoder for high level feature extraction and propose a CNN-
Transformer fusion model to classify signal sequences to gestures 
(as shown in Figure 4). After three transformer encoder layers, 
we only take the features at last time stamp, which are fed into 
fully connected layers to enrich the features. We concatenate both 
features from audio and optic, and classify the features with two 
fully connected layers. The output are the one-hot encoding for 
the three gestures and none class. We use cross-entropy loss for 
training the model. 

3.2.2 Continuous Gesture Detection. A naive solution for continu-
ous gesture (swipe left and swipe right) detection is to train similar 
classifer as fast gesture detection model. However, such model 
can only outputs binary results such as left or right, they are not 
capable of continuous fne-grained thumb tracking. This is a big 
sacrifce in user experience (e.g., continuously swiping tracking can 
be used to adjust volume level smoothly). 

As our optic sensor produces raw object movement coordinates 
in pixels, we can directly leverage such measurements for fne-
grained control. The challenge is that without knowing if the thumb 
is contacting the index fnger, the signal will be noisy as optic sensor 
has no idea whether the thumb is contacting the index fnger. Thus, 
we need to do the contact detection so that we can flter out the 

movements when the thumb is moving in the air. To achieve this 
goal, we train another neural network for detecting the contact. 

Finger Contact Detection. It is important to decide which sensing 
modality we should use for contact detection. In this case, we choose 
to use audio signal only without optic signals. When the thumb 
is rubbing against index fnger, the sound can be captured by the 
microphone which gives us opportunity to identify the contact. 
There is also information from optic sensor as well such as high 
Y value since the thumb is usually farther away from the sensor 
when it’s touching the index fnger. However, such absolute signal 
numbers are highly unreliable when the sensor wearing position 
changes. Naively training a model based on both audio and optic 
signals can easily overft the model to optic signals, which turns 
out to be highly sensitive to wearing positions when testing in 
real-time. 

Contact detection based audio signal is not an easy task as well. 
In our experiments, we also found that thumb movements in the 
air without contacting the index fnger also generates non-trivial 
sound signals. Thus, a sophisticated machine leaning model is 
needed rather than heuristic method. We reuse the similar CNN-
Transformer model without the optic branch and modify the output 
as a binary classifer. We also use cross-entropy loss for training 
the model. 

3.3 Prediction Aggregation 
The aggregation is conducted via an fnite-state machine (FSM). 
The state transition from the current gesture � to a new gesture 
� will be triggered when �� � -consecutive windows are predicted 
to be of the gesture � . Therefore, we have the gesture transition 
matrix as �� � , �, � ∈ � , where � is the states set of gestures including 
the state where no gesture is presented. Considering the gestures 
are usually mapped to atomic input operation, we disabled the 
transition between two gestures, i.e., only transitions between the 
non-gesture state and gesture state are allowed. In this way, the 
aggregation is controlled by ten parameters. 

Aggregation Optimization. we use the number of correct gestures 
as our target function to optimize the ten aggregation parameters. 
The correctly recognized gesture includes the gestures with whom 
the recognition is perfectly matched or partially matched. As the 
solution space is large, we use a random search to approximate the 
optimal solution. The optimization is performed on dedicated data 
and the results are reported on unseen data. 
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Figure 5: AO-Finger fnger gesture recognition logic built upon detection models. 

3.4 Putting It Together 
To give user an integral experience on gesture recognition, we put 
all components together and designed the logic shown in Figure 5. 
The system by default is in Not Ready state, where the incoming 
audio and optic signals are dropped directly without processing. 
AO-Finger uses the signal energy to detect the readiness for gesture 
recognition. Specifcally, if the standard deviation of the optic signal 
energy in the last 3 seconds is less than 6, AO-Finger enters the 
ready state and setup an countdown timer, which brings the system 
back to Not Ready when expires. In addition, once the signal energy 
become greater than 50, the system will be reset to Not Ready 
immediately. This design drastically reduces false alarms brought by 
daily activities and save battery as well as computation resources for 
other tasks on the devices. When AO-Finger is in Ready state, the 
acoustic and optic signals are fed into both fast gesture detection 
and contact detection models, where the fast gesture detection has 
the higher priority, i.e., once fick, pinch, or tap is detected, the 
contact detection result is ignored. If no fast gesture is detected 
and contact is detected, AO-Finger enters swiping mode, where 
the thumb locations is continuously tracked and reported until the 
the swiping is not detect for 1 second (i.e., exit swiping mode). To 
further improve the responsiveness for multiple fnger gestures in 
a row, we also confgure AO-Finger to 1) reset and restart readiness 
countdown timer each time a fast fnger gesture is detected; 2) reset 
the timer when enter swiping mode and restart the timer when exit 
swiping mode. 

4 EXPERIMENT SETUP 

4.1 Data Collection and Labelling 
We collect data from participants using the hardware setup shown in 
Figure 6(a). We develop a data collection tool which display random 
gesture video to the users so that they can perform the designated 
gesture in the time counting down period. In the meantime, we also 
record a video using webcam of the user’s hand gestures which is 
used as reference for manual data labelling. The data collection tool 
captures the audio and optic data via USB connection to a laptop. 
Both the MCU time of sensor data and video frames are saved for 
data synchronization. We capture two stream of audio data at 41667 
Hz and two optic sensors at 368 fps, including the X/Y coordinates. 

Dataset Collection. We invite 20 volunteers for data collection, 
which includes 17 males and 3 females in the age range of 23-
33. Each participant spends around 30 minutes on data collection 
to receive an incentive gift card. We divide the data collection 
in multiple sessions and take of/put on the wristband between 
sessions to make sure the data captures. During these sessions, 
volunteers change their postures freely (e.g., arms on the desk, 
under the desk, on the chair arm, bent and straight). Each volunteer 
contribute 5 sessions of which 4 session are 5-minute sessions for 
positive samples collection. The last session is designed to capture 
hard negative samples. In this session, the participant wear the 
wristband and move the hand/fngers freely by doing daily activities 
such as typing on a keyboard, using smartphones/mouse, drinking 
water, etc. We instruct the participant to perform hard negative 
gestures such as swiping thumbs left and right without touching 
index fngers, attempt pinch/tap gestures without actually fnger 
contacts. These negative data are critical for us to train a model 
that is robust to false positives. 

Data Labelling. We develop a data labelling tool for precise 
start/end positions labelling on the collected data, as shown in 
Figure 6(b). The tool displays the video frames on the left and one set 
of sensor (one microphone and one optic sensor) signal on the right 
side. To speed up the labelling, the tool automatically generates 
start/end positions based on heuristics, e.g., audio signal energy, 
peaks for fick/pinch/tap gestures and optic signal high/low plateaus 
for swipe gestures. The labelling person only needs to verify the 
automatically generated labels and make minor adjustments by 
referencing to the videos. 

4.2 Training Data Preparation 
Given the labeled gesture data collected from our subjects (see 
Section 4.1), in this part, we describe how the training samples are 
generated in detail. 

One critical problem for data preparation is the margin between 
positive and negative samples. For each labeled gesture period, 
multiple samples can be generated by moving the sampling window, 
which is similar to the real-time gesture recognition. An intuition 
is that samples should be considered as positive when they overlap 
the gesture periods and the overlapping duration is longer than 
a threshold. However, a hard threshold brings a problem that the 
samples close to the threshold are similar. We found these similar 
samples can severely confuse classifers. 
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Figure 6: The pipeline for training data collection and labelling. We record the sensor data and RGB videos simultaneously and 
use the videos as reference for gesture labelling in our data labelling tool. 

Raw Clips Generation. We frst generate raw gesture clips and 
then extract positive and negative samples online during training. 
We label the start and end positions of each performed gesture on 
the synchronized audio-optic data precisely following the labelling 
guideline. For each labelled gesture period, we crop a signal segment 
of 3 seconds with the gesture in the middle of the whole segment. 

Training Samples Generation from Raw Clips. Take audio 
signal as example, to generate positive gesture samples, we ran-
domly crop on raw clips with a sample window of fxed length �� , 
which contains � = �� · �� audio data points, where �� is the au-
dio sampling rate. Let’s assume the labeled gesture window has a 
start index ������ and end index ������ in raw clip, as highlighted ����� ���
in Figure 7a. For the cropping, we make sure the complete labeled 
gesture window is fully covered by sample window when the ges-
ture window length is small than �� (as shown in Figure 7a); and 
the sample window is fully occupied by gesture window when the 
gesture window length is larger than �� (as shown in Figure 7b). We 

���� determine the starting index of the sample window � as:����� ( 
− �� ), ������ if �� > ������ − ������ ���� ������� (��� (0, ������ ����� ) ����� ��� ��� ������ = 

������� (������ − �� ) if �� ≤ ������ − ������ ����� , �
����� 
��� ��� ����� 

(1) 
where ������� () is a function to generate a random index number 
within the given range. To generate negative samples, we have two 
resources: 1) The none gesture segments in the raw clips with posi-
tive gestures (Soft Negative Samples); and 2) Raw clips of negative 
samples from the pure negative sessions (Hard Negative Samples). 
For soft negative samples, we randomly crop a window of length 
�� before ������ or after ������ ; for hard negative samples, we just ����� ���
randomly crop a window of length �� from the raw clip of negative 
sessions. 

Similarly, we apply the same cropping on optic signals so that 
both modalities are synchronized. When a raw clip with positive 
gesture is loaded during training, we use a parameter ��������� 
to control the probability of cropping a soft negative sample vs. 
positive sample. This helps us to control the percentage of negative 
samples for a balanced training set. Hard negative samples are in 
addition to these cropped negative samples. Note that the cropping 

happens in realtime during training which serves as one of the data 
augmentation techniques to make the model inference robust to 
signal time shifts. 

4.3 Machine Learning Pipeline 
4.3.1 Data Augmentation. Since gestures performed by diferent 
users are usually diferent, and gestures could also difer for the 
same person under diferent trials as well. We found many interest-
ing insights through extensive human data labelling and analysis 
(tens of hours of labelling). Flick gesture is most consistent across 
all samples while pinch gesture can difer a lot. Some people tend 
to keep the thumb and index fnger in contact for a longer period 
before separating them. Gestures are performed at various speed, 
resulting diferent lengths (see statistics in Figure 8). The gesture 
strength also varies resulting higher or lower signal energy. These 
factors make the model trained with limited data performs poorly 
on unseen data since the model can be severely overftted. 

We analyze the sensor signals from a physics point of view (e.g., 
moving speed, contact impact energy, friction noises, environment 
background noises, etc.), and propose a set of data augmentation 
techniques to enhance both acoustic and optic signals to avoid 
overftting. Specifcally, we design four types of augmentations: 

• Speed Augmentation. We randomly choose a scaling factor 
������ from a normal distribution ������ ∼ N(1.0, �2). We 
may generate ������ multiple times to make sure ������ is 
within a given range [����, ���� ]. Given the speed scaling 

′factor, we draw � = ������ · �� · �� audio data points during 
the training sample generation instead. Then, we utilize 
Akima interpolation [1] that fts audio signal well to resample 

′the � audio data points to � and its corresponding optic 
signals. 2 

• Random Time Shift Augmentation. This step is done as we 
randomly cropping training samples, described earlier train-
ing data preparation. 

2We also tried a Python audio processing library Librosa [19] for audio speed augmen-
tation in frequency domain, which is much slower than interpolation while the results 
are similar. 
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• Amplitude Augmentation. We scale the amplitude of the sig-
nals by multiplying the signals by a scaling factor ���������� 
which is randomly drawn from a normal distribution ���������� ∼ 
N(�, �2). 

• Jitter Noise Augmentation. To simulate the sensor noises, we 
add random white noises to the signals. 

We apply the above augmentations on both audio and optic signals 
in a synchronized manner. There augmentation steps are applied in 
real-time during model training, followed by signal pre-processing 
described in Section 3.1. 

4.3.2 Model Training and Inference. We train our models on Google 
Cloud Platform with Tesla V100 GPUs. To scale up parallel model 
training for parameter fne-tuning, we confgure a virtual machine 
with 32 CPU cores, 64GB RAM and 4 Tesla V100 GPUs. We train 
our models with Adam optimizer with a starting learning rate of 
1e-4 with a decay of 0.9 every 200 epochs for up to 2000 epochs. 
During inference, we stream realtime sensor data from wristband to 
a Macbook pro via USB with Intel 6-Core i7 CPU and 16GB RAM for 
model inference and results visualization. The detection happens 
every 50ms with a moving window of 500ms with a stride length of 
50ms. Then we run the aggregation to output the fnal prediction 
result. Moving the whole inference pipeline to the wristband is our 
future work. 

5 EVALUATION 

5.1 Dataset 
We collected 10 hours of data from 20 subjects from various age 
(22-32), gender (17 males and 3 females) and background (africa 
american, asian, hispanic, and white), each subject contributed half 
an hour on data collection. After labeling and data cleaning, we 
around 3000 positive samples (about 600 samples for each gesture). 
We also generate hard negative samples with sliding window of 
a stride length of 1000 ms, which generates 3500 hard negative 
samples. We reserve 5 individual sessions from participants whose 
data are not used in the model training as user-independent test 
data. We apply sliding window cropping on the raw test data and 
generate about 500 test samples for each gesture, resulting a test 
set of 3000 samples including negative class. 

5.2 Fast Gesture Detection 
The fast gesture detection model classifes the gestures into four 
categories: fick, pinch, tap and none. We set the soft negative 
sample cropping probability ��������� = 0.3 to introduce additional 
negative samples on-the-fy during training. 

5.2.1 Sample Level Detection. Figure 9 shows the multi-modal net-
work classifcation results as normalized by each row on test sam-
ples. Apart from none gesture class, fick gesture has the highest 
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accuracy. This is mainly due to unique high frequency/energy acous-
tic features created by high speed index fnger movement. A small 
portion (~5%) of ficks are classifed as pinch, which we think are 
caused by “slow” ficks when the user puts more energy when con-
tacting thumb and index fnger rather than separating them. There 
is no fick gesture classifed as tap because fick involves nearly no 
optic signal changes. Tap gesture is the second most reliable due to 
the strong optic signals, which distinguishes tap from pinch. We see 
a small portion (~7%) of confusion between pinch and tap gestures. 
This is mainly because pinch gestures sometimes also create optic 
signal changes if the users move the thumb too much. Such errors 
could be minimized by instructing the users on performing more 
standard gestures. Pinch detection has the 83% precision, relatively 
lower than fick and tap. The main reason is that many users pinch 
gently, not generating sufcient acoustic signals nor optic features, 
thus 8% of them are missed (i.e., classifed as none gesture). Overall, 
we have very few false positives with a high precision of 96% on 
none gestures. Note that such results are sample level detection 
result, we further aggregate the results in adjacent sliding windows 
for more stable and robust recognition. 

5.2.2 Ablation Study. We study the impact of multiple factors on 
the model performance such as signal window length, percentage 
of hard negatives, data augmentations and neural network archi-
tecture. 

Signal window length. We show the infuence of training sample 
window length (i.e., �� ) on fast gesture recognition performance in 
Figure 10(a). The F-score is reported as 0.7708, 0.9005, 0.707, and 0.67 
when the �� is set to 0.3, 0.5, 0.8, and 1.0, respectively. We observe 
that �� has very signifcant infuence on the performance and the 
best F-score in achieved when the window length is 0.5 seconds. On 
the one hand, when the �� is shorter than 0.5 seconds, the captured 
signals could be too similar to be distinguished as gestures have 
shared fnger motions. For example, the tap and pinch share the 
same motion that is the thumb and index fnger are moving toward 
each other. However, the two gestures are diferent before and after 

the shared fnger motions, which needs a window longer than 0.3 
seconds. On the other hand, given a longer signal window can 
signifcantly reduce the SNR because majority segment are noises 
(soft negatives are included). 

Percentage of soft negatives. We also evaluate the impact of the 
��������� defned in Section 4.2, which is a hyperparameter that 
controls the probability of cropping soft negative samples from raw 
data when we generate training samples on-the-fy during training. 
We run experiments with four probabilities: 10%, 20%, 30% and 40%. 
Figure 10(b) shows the result. The model achieves best performance 
with ��������� = 30%. When ��������� gets smaller, the model does 
not get sufcient negative samples in training, hence the resulting 
model is more prone to false positives. As ��������� gets larger, less 
positive samples are generated while training. The performance 
starts to drop as no sufcient positive samples are provided for 
training. Balancing the training dataset with parameter ��������� 
tuning is critical for best performance. 

Data augmentations. To validate our proposed data augmen-
tations improves the gesture recognition performance and helps 
stabilize the training processing, we report the train/test loss with 
and without augmentation in Figure 10(c). The fgure shows that 
the model trained without data augmentation overfts to the train-
ing data after 600 epochs, while the augmented training have 
lower and more stable test loss. The test accuracy reported in Fig-
ure 10(d) also confrms that the model trained with data augmen-
tation (accuracy=87.6%) outperforms the non-augmented model 
(accuracy=68.5%) 

Neural network architecture. AO-Finger utilizes self-attention 
transformer that has the strong capability to capture the temporal 
pattern and relation residing in signals. We are interested in the 
efectiveness of this architecture on our new sensing modalities and 
how much performance improvement the transformer architecture 
could bring to the gesture recognition. Therefore, we use a basic two 
stream CNN model with out self-attention transformer encoders 
as the baseline model. As shown in Figure 10(e), the baseline CNN 
model reports F-score as 0.7827 and AO-Finger can achieve higher 
F-score as 0.9005, which is a 15% improvement. This is because 
the self-attention can guide the model to focus on gesture signals 
rather than noise in the sample window. 

Single model for all gestures. Best F1 score we achieved with 
the same model on detecting 5 gestures is 0.7535, which is way 
below the fast gesture detection model. The main reason is that 
the model overfts to optic sensors in recognizing tap and swipe 
gestures since the optic features are strong. While it tends to ignore 
the acoustic features in swiping, which introduce false positives 
(i.e., none gestures are classifed as swipe gestures. This happens a 
lot when users swipe thumbs left and right without touching index 
fnger.). It also justifes our design with a separate fnger contact 
detection model. 

5.3 Fine-grained Swipe Gesture Detection 
Finger contact detection is the key component whose performance 
can largely infuence the triggering of thumb tracking model. Dur-
ing the test, AO-Finger’s contact detection model reports a high 
precision as 0.9197 and a recall as 0.7975 with a relatively low false 
positive rate (0.0809). We observe some contact samples (20%) are 
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misclassifed. This is because thumb moving without touch friction 
also generates sound signals due to the tendons’ movement within 
the wrist. We found the misclassifcation does not infuence the 
fnal user experience as the aggregation is applied on the detection 
results. Moreover, once entering the continuous swiping mode, the 
tracking will stop only when there is no swiping for 1 second. We 
further study the usability of fne-grained swipe gestures in later 
application study section. 

5.4 Heuristic Aggregation Evaluation 
Figure 11 shows the aggregated results on continuous data. We ob-
serve that the spikes due to misclassifcation can be suppressed by 

aggregation. The naive aggregation cannot accommodate balance 
between false positive and false negative, resulting in the false posi-
tive shown in the fgure. Compared with the naive implementation, 
the aggregation based on our proposed searching method is more 
stable and can deal with misclassifcation that is more complicated. 

AO-Finger also demonstrates strong robustness to false positives 
thanks to the readiness detection module in Figure 5 and model 
training with both soft/hard negative samples. False positives are 
seldom triggered under noisy and challenging scenarios. Please 
check our Video Figure to get a better sense of the performance. 
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Figure 12: AO-Finger applications: a). Realtime sensor data visualization and gesture recognition on laptop; b). Fine-grained 
gesture tracking; c). Interaction with AR glasses, the user can browser applications by swiping left/right, tap to select and fick 
to exit. 

5.5 Application Study 
We experience AO-Finger in multiple applications as shown in 
Figure 12: a) a realtime demo on laptop for gesture detection and 
sensor data visualization; b) precise cursor control via fne-grained 
gesture tracking; and c) interaction with AR glasses. 

Realtime demo on laptop. We invite 4 users to try our demo and 
two of them have no prior knowledge of our system. Users are asked 
to perform fast gestures randomly and we count the correctness. We 
collected 200 samples in total for each gesture, and fnd there are 12 
fick gestures misclassifed as pinch; 6 pinch gestures are classifed 
as fick, 8 classifed as tab; and tab gesture has a high precision that 
only 5 are misclassifed as pinch. The average accuracy reaches 
94.83% in this test. Such result is slightly higher than than our 
ofine sample level accuracy thanks to the aggregation and the 
model has demonstrated good generalizability to new users. 

Fine-grained gesture tracking. In this experiment, we want to 
show the accuracy and usability of fne-grained swipe gesture track-
ing. The users are asked to control a virtual arrow position against 
a ruler, as shown in Figure 12 b). Results show that arrow is follow-
ing swipe gestures smoothly and responsively due to high frame 
rate. Users can easily move the arrow to specifed position with 
minimum trials. Please check our Video Figure for a live demo. 

Interaction with AR glasses. We compare AO-Finger with diferent 
interaction modalities listed in Table 2 on a commercial AR glasses. 
The users are asked to interact with the AR glasses using the built-
in touchpad, speech recognition and hand tracking, as well as our 
proposed AO-Finger . According to the major feedback, touchpad 
is reliable to use due to the physical touch and haptic feedback. 
It also enables fne-grained control on selecting apps by swiping 
gestures. However, users have to raise the arms while using the 
touchpad which incurs arm fatigue after a short period of contin-
uous use. Speech recognition is not preferred due to the limited 
functionalities and it is not suitable to use in public environments. 
Hand tracking on the tested AR glasses has noticeable lag and adds 
signifcant computation overhead to the device which leads to over-
heating issues more frequently. AO-Finger enables basic interaction 
with fne-grained control. It is highlighted that the inconspicuous, 
efortless micro gestures are highly appreciated compared to other 
modalities. The main negative feedback is the low sensitivity issue 
to trigger swipe gestures (e.g., some swipe gestures are triggered 

with a short delay since contact needs to be detected for trigger-
ing swipe mode), which we will address by fne-tuning the system 
confguration parameters as future work. 

6 RELATED WORK 
We introduce the related work from two topics: 

Finger Gesture Recognition. Finger gesture recognition has 
a long history. Recently, as XR becomes popular, infrastructure-
free solutions, due to its portable user experience, attracts ever-
increasing attention from the research community and industries. 
Naturally, XR devices carries camera for fnger gesture recognition. 
However, the hand interaction is limited to the FoV of the camera 
and results in user’s fatigue. To solve the FoV problem, solutions 
staying with user’s hand is required. Gesture tracking using ring-
shape devices [9, 17, 42] on fngers are proposed. However, ring-
shaped devices cannot achieve the small dimension of a real ring 
(the space on the fnger is very limited), thereby having a hard time 
creating a seamless and efortless experience in daily use. Hands-
free solutions on the wrist nowadays attract more attention due to 
their better user experience. Beamband [15] utilizes an ultrasonic 
array on the wrist to detect the partial hand shape and infer the 
hand gesture. Due to the low resolution of the ultrasonic beam, fne-
grained fnger gesture tracking is not supported. Several studies 
[13, 36, 38, 39] proposed a updated version, i.e., to reconstruct 3D 
hand pose from camera frames of a hand part such as palm and 
hand back. The proposed systems utilize data-driven models to infer 
the fnger gestures. While optic sensing can capture high fdelity 
motion, these solutions require a large area of hand to be visible to 
make inference feasible and consumes much more computational 
resources. Instead of challenging fnger gestures inference using 
part of the hand, more studies choose to utilize the wrist activities 
as large part of tendons that controls gestures go through wrist 
and causes deformation on wrist. Pressure sensors [7], Barometric 
sensors [28], ultrasonic sensor [14], IR sensors [20], EMG sensors 
[26], and IMU [34, 40] are proposed to capture the wrist activities. 
There are also several studies leverage modality fusion, such as 
EMG and IMU [6]. 

Diferent from the existing works, AO-Finger utilizes optic sen-
sors to capture the fne-grained thumb information and a modifed 
stethoscope microphone for the global information of the gestures 
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Table 2: Interaction modalities for AR glasses. 

Modality Advantages Limitations 

Touchpad Physical touch, reliable Arm fatigue, involve macro body movements 
Speech recognition Hands-free Not suitable in public 
Hand tracking Hands-free Latency; line-of-sight and lighting condition requirement 
AO-Finger Inconspicuous, fne-grained, hands-free Require extra hardware 

on wrist. The fusion of the two sensing modalities provides an 
integral fne-grained fnger gesture recognition experience. 

AR/VR Interaction. The ever-increasing demand of XR appli-
cation brings new requirements (e.g., convenient to access and easy 
to use) to the interaction technologies. Beside the traditional in-
teraction such as touchpad [10], hand-held controller [22], camera 
[31], and voice [11], many input methods with better user experi-
ence have been proposed and discussed. Zhang et al. [41] proposed 
Tapskin, a IMU-based system that can turn skin into a touch surface. 
Plopski et al. [25] discussed the gaze/eye-tracking interaction in a 
comprehensive survey Tauscher et al. [30] discussed the feasibility 
of using EEG on XR headset. 

AO-Finger shares the same vision with these studies and brings 
better XR experience by providing efortless inconspicuous and 
fne-grained fnger gesture interaction. 

7 DISCUSSION 
Limitations. AO-Finger is only a research prototype in current 
stage, it has several major limitations: 1) Ofoading inference. Cur-
rent system ofoads sensor data to a laptop via USB for model 
inference, which is only sufcient to validate the gesture detection 
performance. To make it as a well engineered product, we need 
to move the computation to the wristband. 2) Conditioned gesture 
detection. Current system requires the user’s hand to be relatively 
static for a short period to trigger the detection. While this design 
signifcantly reduces the false alarms, it adds additional friction 
on the user to use the system. 3) Validation on large population. 
Due to the pandemic, we only have access to 20+ users for data 
collection and testing. Although AO-Finger has shown promising 
results on this group of users, we need to validate the system on a 
larger population to make it as a mature solution. 

Future Work. We have the following directions as future work: 
1) On-device model inference. AO-Finger uses BLE SoC for both 
wireless communication and data processing, which has very lim-
ited computation resources. In order to achieve on-device model 
inference, we will introduce a separate MCU specifcally for data 
processing and model inference. 2) Sensing hardware optimization. 
We also plan to explore and enhance our sensing hardware. We 
will explore optic sensor with larger FoV so that fnger movements 
can be more reliably captured. A array of modifed microphones 
could enable more features in hand gesture tracking. 3) Large scale 
data collection. Although our physics based data augmentation has 
shown tremendous help given we have limited data. Large scale 
data collection (e.g., hundreds or more) is still needed for a mature 
solution. We will seek ways to do that at such scale. 4) System 
usability study. Our system provides a fne-grained and efortless 
fnger gesture tracking experience to users. To further quantize the 

usability of AO-Finger, we plan to do subjective usability studies, 
such as System Usability Scale (SUS) [2] and NASA Task Load Index 
(TLX) [23]. 

8 CONCLUSION 
In this paper, we propose AO-Finger , a hands-free and fne-grained 
gesture sensing system aiming for next-generation XR input expe-
rience. AO-Finger fuses on-wrist direct optic sensing and indirect 
acoustic sensing. We design a set of inconspicuous and efortless 
micro gestures for AO-Finger and implement AO-Finger with a 
modifed stethoscope microphone and two high-speed optic mo-
tion sensors. The fne-grained gesture sensing is achieved via a 
two-branch architecture: a CNN-Transformer based fast gesture 
(i.e., fick, pinch, and tap) detector and a continuous fne-grained 
fnger tracking model based on fnger contact detection. To further 
enhance system robustness, we propose to utilize data augmen-
tation for stabilized model training and aggregation to suppress 
false alarms. The extensive evaluation shows AO-Finger can per-
form accurate and robust fnger gesture sensing as well as provide 
excellent user experience. 
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