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Consider the following scenario. You and your 
friend are standing in front of a monument, and 
each of you takes a photo of it. You have different 
cameras and you have no knowledge of how your 
cameras were positioned and oriented with 
respect to each other. It turns out that, if you know 
the internal parameters of the two cameras, you 
can compute the translation and rotation of one 
camera with respect to the other. Once that is 
done, you have a calibrated stereo system and 
hence can compute the three-dimensional 
structure of the monument. This approach is called 
uncalibrated stereo. 
 

First, we let’s briefly review calibrated stereo, or simple stereo. In simple stereo, we have a left camera 
and an identical right camera that is displaced with respect to the left one along the x-axis by a distance 
𝑏, called the baseline.  From images taken with these two cameras, we can compute the 3D structure of 
the scene. 
 
For a point (𝑢, 𝑣) in the left image, we first find the corresponding point in the right image using template 
matching. We now have two outgoing rays and the intersection of these rays is where the physical scene 
point corresponding to the matched image points lies. If we know the baseline b and the internal 
parameters 𝑓! , 𝑓" , 𝑜! , 	and	𝑜", we can compute the coordinates x, y, and z of the scene point using the 
perspective projection equations for the left and right cameras. The term (𝑢# − 𝑢$) in the expressions 
for x, y, and z is called disparity.  
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We will now explore the more ambitious problem 
of uncalibrated stereo. The goal of uncalibrated 
stereo is to recover the 3D structure of a scene 
from two arbitrary views of it. We will assume that 
the internal parameters of both cameras are 
known. In the case of modern digital cameras, 
these parameters are often included in the meta-
tag of each captured image. However, we do not 
know the rotation and translation of one camera 
with respect to the other.  
 
In order to solve this problem, we need to 
formulate a geometric relationship between the two cameras. This relationship can be concisely 
described using the concept of epipolar geometry. Epipolar geometry relates points in the left and right 
images through a single 3x3 matrix called the fundamental matrix. We develop a method for computing 
the fundamental matrix from a small number of corresponding points in the left and right images. Then, 
we use the fundamental matrix to find the rotation and translation of one camera with respect to the 
other. At this point, the stereo system is fully calibrated.   
 
Then, to recover the 3D structure of the scene, we will need to find dense correspondences between the 
two images. Ideally, for every point in the left image, we want to find the corresponding point in the 
right image. We will show that, for each point in the left image, finding correspondence reduces to a 1D 
search in the right image. Once we have all the correspondences, we compute depth using a least-
squares estimation process. Finally, we will describe how stereo vision is exploited by different animals, 
and explore how it works in the case of humans.  

 
Let us examine the problem of uncalibrated stereo 
in more detail. Assume that we have a monument 
and two photos (referred to as left and right views) 
are captured using two different cameras. We 
want to compute the 3D structure of the scene 
from these two images. We will assume that we 
know the internal parameters of the two cameras, 
i.e., the focal lengths 𝑓! , 𝑓" and the location 𝑜! , 𝑜" 
of the principal point of each camera are known. 
This is not an unrealistic assumption since we can 
either calibrate the camera using the method 
described in the previous lecture, or retrieve the 
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Method to estimate 3D structure of a static scene from 
two arbitrary views. 

Uncalibrated Stereo

Topics: 
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(3) Estimating Fundamental Matrix

(4) Finding Dense Correspondences

(5) Computing Depth

(6) Stereopsis: Stereo in Nature 
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internal parameters from the meta-tag embedded in each image. To calibrate our stereo system, we 
want to find its unknown extrinsic parameters, which are the relative position and orientation of one 
camera with respect to the other camera. 
 
 
Here we show a 3D scene imaged by the two 
cameras. The left camera has a 3D coordinate 
frame 𝑂#, and the right camera has its frame 𝑂$. It 
should be noted that we do not know the 
relationship between 𝑂#  and 𝑂$. All we have are 
two images where each pixel is defined by its 
image coordinates 𝑢 and 𝑣. Once again, we are 
assuming that the camera matrix K (made of 
intrinsic parameters) of each camera is known.  
 
 
 
 
To find the relationship between the 3D frames 𝑂#  
and 𝑂$ 	of the two cameras, we first need to find a 
small number of reliable correspondences 
between the two images. For this, we can apply 
SIFT and chose the most robust matches. For the 
calibration method we will soon describe, we need 
a minimum of eight corresponding pairs of image 
points. 
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Initial Correspondence
Find a set of corresponding features (at least 8) in left and 
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After finding the initial corresponding pairs, we will 
find the rotation 𝑅 and translation t of each camera 
with respect to the other. At this point, our stereo 
system is calibrated. The next step is to find dense 
correspondences between the two images. Since 𝑅 
and t	 are	 known, each correspondence can be 
found using a 1D search. Finally, with the dense 
correspondences, we can compute the 3D 
structure of scene by triangulation. 
 
 
 
 
The method for finding rotation and translation 
between the two cameras from images taken by 
them is based on a concept called epipolar 
geometry, which we will take a closer look at now. 
 
 
 
 
 
 
 
 
 
Shown here again are the left and right cameras. 
The projection of the center of the left camera 𝑂#  
onto the right camera image and the projection of 
the center of the right camera 𝑂$ 	onto the left 
camera image are indicated by the points 𝐞#  and 
𝐞$. These two points are called the epipoles of the 
stereo system. Any given stereo system has a 
unique pair of epipoles, 𝐞#  and 𝐞$. Note that while 
they happen to lie within the right and left images 
in our figure, in general, the epipoles could lie 
outside the images as well.  
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Epipolar Geometry: Epipoles
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Consider a plane formed by a scene point 𝑃, 𝑂#, 
and 𝑂$. This plane also includes the epipoles 𝐞#  and 
𝐞$. This is called the epipolar plane corresponding 
to the scene point 𝑃. Each point in the scene has a 
unique epipolar plane. We will use the epipolar 
plane to setup a constraint that includes the 
external parameters t and 𝑅 that are of interest to 
us. 
 
 
 
 
 
Let n denote a vector that is normal to the epipolar 
plane. We can calculate n as the cross product of 
the unknown translation vector t and the vector xl 
that corresponds to the point 𝑃 in the left 
camera’s frame. Since the normal vector must be 
perpendicular to xl, the dot product of n and xl 
equals 0. This gives us the epipolar constraint: xl	.	
(t	 ×	 xl)	 =	 0. We now want this constraint to 
include both the translation t and the rotation 𝑅. 
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Epipolar Geometry: Epipolar Plane

#%!
"̂!

Scene

Left
Camera

Right
Camera

"̂"

#$"
#%"

%

-! -"

0! 0"#+!
#,! #+"

#,"

&, '

Epipolar Plane of Scene Point 1: The plane formed by camera 
origins (2! and 2$), epipoles (0! and 0$) and scene point 1.

2! 2"

Epipolar
Plane

Every scene point lies on a unique epipolar plane.

1! 1"#$!

13

"̂!

Epipolar Constraint

Scene Point

Left
Camera

Right
Camera

"̂"

#$"
#%"

%

-! -"&, '

Epipolar
Plane

Normal
vector

!! " ($×!!) = 0
Dot product of " and #( (perpendicular vectors) is zero:

) = $×!!Vector normal to the epipolar plane:

) = $×!!
0! 0"

#$!

#%!

14

Epipolar Constraint

!! " ($×!!) = 0
Writing the epipolar constraint in matrix form:
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)×) = ,

Epipolar Constraint
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Substituting into the epipolar constraint gives:

$! )! %!
3'' 3'( 3'%
3(' 3(( 3(%
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= 0

Essential Matrix 5

$ = &×'
[Longuet-Higgins 1981]
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Shown here is the epipolar constraint in matrix form. The cross-product can be expanded and written as 
the product of a translation matrix 𝑇! a xl		 1 . We know that t is the position of the right camera in the 
left camera's frame and 𝑅 is the orientation of the left camera in the right camera's frame. We can 
therefore relate the 3D coordinates of point 𝑃 in the left camera frame to its 3D coordinates in the right 
camera frame as 𝒙# = 𝑅𝒙$ + 𝒕, which can be written in matrix form as  2 .  
 
We can now substitute the right side of expression 2  for xl in the epipolar constraint 1 , to get equation 
3 . Note that the last term in 3 —the product of the translation matrix and the translation vector—

equals 𝒕 × 𝒕, which is 0. Thus, we are left with the product of two 3x3 matrices, which we will define as 
a new matrix called the essential matrix 𝐸. Introduced by Louguet-Higgins in 1981, the essential matrix 
is the product of the translation and rotation matrices and relates xl and xr. 
 
An interesting property of the essential matrix 𝐸 is 
that it can be decomposed into the translation 
matrix 𝑇! and the rotation matrix R. Notice that 𝑇! 
is a skew symmetric matrix, which means that any 
element 𝑎%&  equals −𝑎&%. We also know from 
previous lectures that the rotation matrix 𝑅 is an 
orthonormal matrix. In turns out that the product 
of a skew symmetric matrix and an orthonormal 
matrix can be decomposed into the two 
component matrices using singular value 
decomposition. This is what makes the essential 
matrix special—if we can compute it, we can find 
the translation t and the rotation R. 
 
How do we then compute the essential matrix? 
The epipolar constraint relates xl and xr	which are 
3D coordinates of the same scene point. We 
unfortunately do not know the 3D locations of 
scene points as this is what we are ultimately 
interested in finding. However, we do know the 
projection of a scene point onto the images, i.e, we 
know (𝑢# , 𝑣#)  and (𝑢$ , 𝑣$). So, our goal is to recast 
our epipolar constraint in terms of these image 
coordinates.   
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Essential Matrix !: Decomposition

3'' 3'( 3'%
3(' 3(( 3(%
3%' 3%( 3%%

=
0 −5) 5#
5) 0 −5"
−5# 5" 0

6'' 6'( 6'%
6(' 6(( 6(%
6%' 6%( 6%%

MATH PRIMER

Given that 7× is a Skew-Symmetric matrix (8*+ = - 8+* ) and /
is an Orthonormal matrix, it is possible to “decouple” 7× and 
/ from their product using “Singular Value Decomposition”.

$ = &×'

Take Away: If 9 is known, we can calculate ( and /.
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How do we find !?

Relates 3D position (*!, +!, ,!) of scene point w.r.t left 
camera to its 3D position (*%, +%, ,%)w.r.t. right camera

#(6$#7 = 0

*! +! ,!
4&& 4&' 4&(
4'& 4'' 4'(
4(& 4(' 4((
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+%
,%

= 0

3D position in right 
camera coordinates

3D position in left 
camera coordinates

3x3 Essential 
Matrix

Unfortunately, we don’t have :! and :$. 

But we do know corresponding points in image coordinates.
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Shown on the left are the perspective projection equations for the left camera, which give us expressions 
for 𝑢#  and 𝑣#. We multiply both sides by 𝑧#, and using homogeneous coordinates, we can write 𝑧#𝑢#, 𝑧#𝑣#, 
and 𝑧#  in matrix form 1 . This matrix, in turn, can be written as the product of the camera matrix 𝐾#  and 
the 3D coordinates (𝑥# , 𝑦# , 𝑧#) of the scene point in the left camera 2 . Since we know the internal 
parameters of the two cameras, 𝐾# 	is known to us. We can obtain a similar equation for the right camera. 
These two equations can be rewritten to get the expressions shown on the right for 𝐱𝑙'  and xr.  

Substituting our expressions for xlT	and xr into the epipolar constraint in slide 17, we get expression 1 . 
In 1  we have the known image coordinates (𝑢# , 𝑣#)  and (𝑢$ , 𝑣$)	and the unknown essential matrix E, 
but also 𝑧#  and 𝑧$ , which are unknown. However, since 𝑧#  and 𝑧$  are the depths of the same scene point 
measured in the camera frames, and the scene lies in front of the two cameras, we know that 𝑧# ≠ 0 
and 𝑧$ ≠ 0. Therefore, we can eliminate  𝑧#  and 𝑧$  to get expression 2 , where the essential matrix is 
the only unknown quantity.  
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Incorporating the Image Coordinates
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Incorporating the Image Coordinates
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Incorporating the Image Coordinates

Epipolar constraint:
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Rewriting in terms of image coordinates:
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Incorporating the Image Coordinates

Epipolar constraint:

*! +! ,!
4&& 4&' 4&(
4'& 4'' 4'(
4(& 4(' 4((

*%
+%
,%

= 0

Rewriting in terms of image coordinates:

!! (! 1 <!/'
.
3'' 3'( 3'%
3(' 3(( 3(%
3%' 3%( 3%%

<$/'
!$
($
1

= 0 2  1  

1  

2  



First Principles of Computer Vision                                                                                                                  Uncalibrated Stereo 
 
 

FPCV-4-2 8 

Since 𝐾#, 𝐾$ , and 𝐸 are 3x3 matrices, 𝐾#()
!
𝐸	𝐾$() 

in slide 21 is also a 3x3 matrix, which we refer to as 
the fundamental matrix 𝐹. We now have a simple 
expression for our epipolar constraint where the 
image coordinates (𝑢# , 𝑣#)  and (𝑢$ , 𝑣$) are known 
and the fundamental matrix 𝐹 is unknown. If we 
can find 𝐹, we can easily compute the essential 
matrix 𝐸  since 𝐾#  and 𝐾$  are known. Once we have 
E, we can find the translation Tx and rotation R 
using singular value decomposition. 
 
	
	
For calibration, what remains to be done is to 
compute the fundamental matrix 𝐹. We now 
present a method for estimating 𝐹 from a few pairs 
of corresponding points in the two images. 
 
 
 
 
 
 
 
 
 
We first find a small number of corresponding 
features in the two images given to us. This can be 
done by applying the SIFT detector to the two 
images and finding the strongest matches between 
the images. Let’s denote the 𝑖*+ pair of 
corresponding points as (𝑢#

(%), 𝑣#(%)) and 
(𝑢$

(%), 𝑣$(%)). 
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Epipolar constraint:

*! +! ,!
4&& 4&' 4&(
4'& 4'' 4'(
4(& 4(' 4((

*%
+%
,%

= 0

Rewriting in terms of image coordinates:

5! 8! 1
6&& 6&' 6&(
6'& 6'' 6'(
6(& 6(' 6((

5%
8%
1

= 0

Fundamental Matrix =

< = :!,=:%

Fundamental Matrix "

$ = &×'
[Fagueras 1992, Luong 1992]
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Stereo Calibration Procedure
Find a set of corresponding features in left and right images 
(e.g. using SIFT or hand-picked)

Left image Right image

⋮ ⋮
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We can plug each pair of corresponding image coordinates into our epipolar constraint. By expanding 
the matrix form of the epipolar constraint, we get the single linear equation shown at the bottom of 
slide 25. We can stack up the equations for all corresponding pairs and rewrite them in matrix form, as 
shown in slide 26. The matrix 𝐴 is known since it is only comprised of the image coordinates in the left 
and right cameras. The vector f has all the elements of the fundamental matrix. We now have the 
equation A f = 0, which is a form we have seen before. 
 
 
Notice that the image coordinates in the epipolar 
constraint are homogeneous coordinates. 
Therefore, multiplying the fundamental matrix by 
any scalar 𝑘 does not affect the epipolar constraint. 
In other words, 𝐹 and 𝑘𝐹 describe the same 
epipolar geometry. Therefore, the fundamental 
matrix 𝐹 is only defined up to a scale factor. 
Another way to look at this is that if we double the 
size of the world and the stereo system, we end up 
getting the same left and right images. Therefore, 
we can arbitrarily fix the scale of 𝐹. To make it 
easier to solve for 𝐹, we set ‖𝐟‖. = 1. 
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Stereo Calibration Procedure

Step A: For each correspondence >!"#$%&'"()&"'*%*(+,$ -(./&$,%.&0

!!
(*) (!

(*) 1
#'' #'( #'%
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Unknown KnownKnown

Expand the matrix to get  linear equation:
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) + !&&:(
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) + !'' = 0
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Stereo Calibration Procedure

Step B: Rearrange terms to form a linear system.

3##
3%#
3&#
3%#
3%%
3%&
3&#
3&%
3&&*
+

* + = ,

+!# +"# +!# ,"# +!# ,! # +"# ,! # ,"# ,! # +"# ,"# 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

+! ' +"' +! ' ,"' +! ' ,! ' +"' ,! ' ,"' ,! ' +! ' +"' 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

+!$ +"$ +!$ ,"$ +!$ ,!$ +"$ ,!$ ,"$ ,!$ +!$ +"$ 1

(Unknown)

(Known)

=

0
⋮
0
⋮
0

27

The Tale of Missing Scale

Fundamental Matrix = and >= describe the same epipolar 
geometry. That is, = is defined only up to a scale.

!! (! 1
#'' #'( #'%
#(' #(( #(%
#%' #%( #%%

!$
($
1

= 0 = !! (! 1
?#'' ?#'( ?#'%
?#(' ?#(( ?#(%
?#%' ?#%( ?#%%

!$
($
1

Fundamental matrix acts on homogenous coordinates. 

Set Fundamental Matrix to some arbitrary scale.

@ ( = 1



First Principles of Computer Vision                                                                                                                  Uncalibrated Stereo 
 
 

FPCV-4-2 10 

Solving for 𝐹 then turns out to be a constrained 
least-squares problem, where we want to find the 
f that minimizes ‖𝐴𝐟‖. (from our epipolar 
constraint) such that ‖𝐟‖. = 1 (from setting the 
scale). As seen in the lectures on image stitching 
and camera calibration, solving this problem is 
equivalent to solving an eigenvalue problem. In the 
end, we get a solution for the vector f and 
rearrange its elements to get the fundamental 
matrix 𝐹. 
 
 
 
Once we have the fundamental matrix, we can 
compute the essential matrix, since we know the 
intrinsic camera matrices. Then, using singular 
value decomposition, we can decompose the 
essential matrix into the translation matrix and the 
rotation matrix. We have now fully calibrated our 
stereo system.  
 
 
 
 
 
 
The next step is to find dense correspondences 
between the left and right images. Ideally, for 
every point in the left image, we want to find the 
corresponding point in the right image. As 
discussed in the lecture on camera calibration, 
stereo works only for image regions that are well-
textured. Therefore, we are not guaranteed 
correspondences for all image pixels.  
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Solving for "
Step C: Find least squares solution for fundamental matrix =.

We want B@ as close to 0 as possible and @ ( = 1:

min
<

*+ = such that + = = 1

Constrained linear least squares problem

Rearrange solution ? to form the fundamental matrix 1.

Like solving Projection Matrix during Camera Calibration.

Or, Homography Matrix for Image Stitching.
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Extracting Rotation and Translation

Step E: Extract / and . from 9.

Step D: Compute essential matrix 9 from known left and 
right intrinsic camera matrices and fundamental matrix =.

< = :!,=:%

$ = &×'
(Using Singular Value Decomposition)
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Uncalibrated Stereo
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Let us review how we found correspondences in 
the case of simple stereo, where the right camera 
is displaced with respect to the left camera along 
the horizontal direction by a distance 𝑏 (the 
baseline). In this special case we showed that for a 
point in the left image, the corresponding point in 
the right image must lie on the same horizontal 
scan line as the point in the left image, which 
reduces stereo matching to a 1D search. 
 
 
 
 
It turns out that in the case of uncalibrated stereo 
as well the stereo matching problem remains a 1D 
search. Let us now look at how to find this 1D 
search space in the right image for any point in the 
left image. This brings us back to epipolar 
geometry. Shown here is the epipolar plane which 
we know is unique for any given scene point 𝑃. The 
epipolar plane intersects with the two image planes 
to produce two lines called the epipolar lines. Thus, 
every scene point has two corresponding epipolar 
lines, one in each of the two images. 
 
 
Consider the coordinates of a scene point 𝑃 in the 
left image. The corresponding point in the right 
image must lie on the epipolar line in the right 
image corresponding to 𝑃. As shown here, the left 
image point corresponds to a single outgoing ray, 
and the projection of this ray onto the right image 
is the epipolar line we are looking for. So, to find 
the corresponding point in the right image we only 
need to search along this epipolar line. 
 
 
 

Epipolar Geometry: Epipolar Line

!"!
$̂!

Scene

Left
Camera

Right
Camera

$̂"

!%"
!""

!

&! &"

'! '"!(!
!)! !("

!)"

", $

Epipolar
Plane

!%!

Given a point in one image, the corresponding point in the 
other image must lie on the epipolar line.

Finding correspondence reduces to a 1D search.

*! *"

+"+!
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Epipolar Geometry: Epipolar Line
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Epipolar Line: Intersection of image plane and epipolar plane.

*! *"

Epipolar
Plane

Every scene point has two corresponding epipolar lines, one 
each on the two image planes.

+"+!
!%!
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Simple Stereo: Finding Correspondences

Corresponding scene points lie on the same horizontal scan-line.
Finding correspondence is a 1D search.

Left Camera Image Right Camera Image

REVIEW
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Now, let us discuss how to find epipolar lines. We 
have calibrated our stereo system and hence know 
its fundamental matrix. We are given a single point 
(𝑢# , 𝑣#) in the left image and want to find the 
epipolar line in the right image. We can use our 
epipolar constraint again, but in this case, (𝑢# , 𝑣#) 
and 𝐹 are known and we have an expression for 
(𝑢$ , 𝑣$). As shown at the bottom, the result is the 
equation of a straight line in 𝑢$ 	and	𝑣$. Similarly, if 
we start with a point in the right image, we can find 
its epipolar line in the left image. 
 
 

As an example, let us assume we are given the fundamental matrix for the two images shown here, as 
well as one point in the left image. We can simply plug these into the epipolar equation in slide 35 to get 
the straight-line equation in 𝑢$ 	and	𝑣$  shown at the bottom. 

35

Finding Epipolar Lines

!! (! 1
#'' #'( #'%
#(' #(( #(%
#%' #%( #%%

!$
($
1

= 0

Epipolar Constraint Equation:

(#''!! + #('(! + #%')!$ + (#'(!! + #(((! + #%()($ + (#'%!! + #(%(! + #%%) = 0

Expanding the matrix equation gives:

8!!$ + +!($ + E! = 0Equation for right epipolar line:

Given: Fundamental matrix = and point on left image (!! , (!)

Find: Equation of Epipolar line in the right image

Similarly we can calculate epipolar line in left image for a 
point in right image.

36

Finding Epipolar Lines: Example

9( :( 1
−.003 −.003 2.97
−.028 −.008 56.38
13.19 −29.2 −9999

343
221
1

= 0

The equation for the epipolar line in the right image is

= =
−.003 −.028 13.19
−.003 −.008 −29.2
2.97 56.38 −9999

Given the Fundamental matrix,

?
MN! =

343
221
1

and the left image point

Left Image Right Image
HI#

37

Finding Epipolar Lines: Example

Left Image Right Image

The equation for the epipolar line in the right image is

MN! =
343
221
1

= =
−.003 −.028 13.19
−.003 −.008 −29.2
2.97 56.38 −9999

Given the Fundamental matrix,

and the left image point

HI#

.03!$ + .99($ − 265 = 0

Epipolar Line 
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To find the matching point in the right image for a point in the left image, we use a small window around 
the point in the left image and apply template matching along the epipolar line to find its best match. 
This process is applied to all pixels in the left image. 
 
 
At this point, we have dense correspondences 
between the left image and the right image. Now, 
we want to use each correspondence to estimate 
the 3D coordinates of the corresponding scene 
point. This can be done in either the left camera’s 
or the right camera’s coordinate frame. This 
process is referred to as computing depth.  
 
 
 
 
 
 

38

Epipolar
Line 

Finding Correspondence

Left Image Right Image

Corresponding scene points lie on the epipolar lines.
Finding correspondence is a 1D search.

39

Uncalibrated Stereo

#%!
"̂!

Scene

Left
Camera

Right
Camera

%

-!

0! 0"#+!
#,! #+"

#,"

1. Assume Camera Matrix ! is known for each camera

2. Find a few Reliable Corresponding Points

3. Find Relative Camera Position . and Orientation /

4. Find Dense Correspondence

5. Compute Depth using Triangulation

&, '

1! 1"

"̂"

#$"
#%"

-"

#$!

40

Computing Depth

Topic: Uncalibrated Stereo, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University
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Shown here are the equations for the projections 
of a scene point onto the left and right images.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us refer to these projections as the left and right camera imaging equations 1 . The matrices in these 
imaging equations are the intrinsic matrices, which are known to us. Using ul and ur, we want to find 
either xl or xr. Since we have calibrated our stereo system, we know the translation and rotation 
between the left and right cameras, which gives us the relationship 2  between xr and xl. We can 
substitute equation 2  into equation 1  to get equation 3 . The product of the extrinsic and intrinsic 
matrices in 3  can be denoted as the projection matrix 𝑃# .	We keep the right camera imaging equation 
4 	the same as in equation 1 . The right camera’s intrinsic matrix is denoted as 𝑀%/*$.  
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Computing Depth
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Given the intrinsic parameters, the projections of scene point 
on the two image sensors are:

!!
(!
1

≡
#"
(!) 0 '"

(!) 0
0 ##

(!) '#
(!) 0

0 0 1 0

$!
)!
%!
1

!$
($
1

≡
#"
($) 0 '"

($) 0
0 ##

($) '#
($) 0

0 0 1 0

$$
)$
%$
1
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Computing Depth

Left Camera Imaging Equation Right Camera Imaging Equation

!!
(!
1

≡
#"
(!) 0 '"

(!) 0
0 ##
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$!
)!
%!
1

!$
($
1

≡
#"
($) 0 '"

($) 0
0 ##

($) '#
($) 0

0 0 1 0

$$
)$
%$
1

We also know the relative position and orientation between 
the two cameras.

$!
)!
%!
1

=

6'' 6'( 6'% 5"
6(' 6(( 6(% 5#
6%' 6%( 6%% 5)
0 0 0 1

$$
)$
%$
1
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Computing Depth
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Left Camera Imaging Equation:

Right Camera Imaging Equation:
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≡
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Here, we show the two imaging equations again. 
Note that ul, ur, 𝑃#, and 𝑀%/*$  are all known, while 
xr and xl are unknown. We can rearrange these two 
equations to get the system of equations in 1 . This 
system has 4 equations and 3 unknowns—
𝑥$ , 𝑦$ , 	and	𝑧$. 
 
 
 
 
 
 
 
We now have a 4x3 known matrix 𝐴, our unknown 
scene point coordinates 𝐱$ , and a known 4x1 vector 
b. This is an overdetermined system of linear 
equations of the type we have seen before, and we 
can solve for 𝐱$  using the pseudo-inverse method. 
We repeat this process for every pair of 
corresponding points in the left and right image, 
which gives us a complete 3D depth map of the 
scene.  
 
 
 
 
Uncalibrated stereo has a long history and has 
been used to create some impressive systems. One 
such system is called Photo Tourism. The system 
grabs a bunch of arbitrary images of a tourist 
location, for instance the Eiffel tower, from the 
internet and applies the calibration technique 
between all pairs of these images to compute a 
dense, depth map of the scene. On the right is an 
impressive reconstruction of St. Peter's Basilica, 
which was computed using 1275 images. The 
quality of the reconstruction is best seen in the 
video of this lecture.  

!!""# − "## !!""$ − "#$ !!""" − "#"
$!""# − "$# $!""$ − "$$ $!""" − "$"
!%%"# − %## !%%"$ − %#$ !%%"" − %#"
$%%"# − %$# $%%"$ − %$$ $%%"" − %$"

&!
'!
(!

=
"#& − !!""&
"$& − $!""&
%#& − !%%"&
%$& − $%%"&

Computing Depth: Least Squares Solution

Find least squares solution using pseudo-inverse:

!!×# "$
(Known) (Unknown)

#!×%
(Known)

!"$ = #
!&!"$ = !&#

"$ = !&! '%!&#
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Computing Depth

The imaging equations:

Rearranging the terms:

!"! = $" %&! !"# = '$ %&!
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%#" %## %#$ %#%
%$" %$# %$$ %$%
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1

!&
"&
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≡
)"" )"# )"$ )"%
)#" )## )#$ )#%
)$" )$# )$$ )$%

&!
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1

UnknownKnown UnknownKnown

!!%$" − %"" !!%$# − %"# !!%$$ − %"$
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!&)$" − )"" !&)$# − )"# !&)$$ − )"$
"&)$" − )#" "&)$# − )## "&)$$ − )#$

&!
'!
(!

=
%"% − !!%$%
%#% − "!%$%
)"% − !&)$%
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3D Reconstruction with Internet Images

I.11

St. Peter’s Basilica (1275 Images)

[Snavely 2006]

1  
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We know that stereo depends on the existence of 
texture in order to find matches between the two 
images. One way to make stereo more robust is to 
use active illumination. Shown here is a stereo 
system that projects an illumination pattern onto 
the scene. The pattern is not static but rather 
changes over time to create a texture that varies 
over space and time, which makes stereo matching 
very robust. As can be seen from the computed 
depth map on the right, the reconstruction of the 
face is accurate and includes fine details.   
	
 
Let us look at some stereo vision systems found in 
nature. In the natural sciences, stereo is referred to 
as stereopsis. In Greek, stereo means solid and 
opsis means appearance.  
 
 
 
 
 
 
 
 
 
Stereopsis manifests in many different ways in 
animals. For instance, in the case of predators, the 
two eyes overlap substantially in terms of field of 
view. This overlap allows predators to perceive 
depth, which is important in estimating the 
distance of a prey. In contrast, in the case of prey, 
the fields of view of the two eyes have less overlap, 
enabling them to capture a wider field of view. This 
allows prey to be more aware of whether there is 
a predator in their surroundings.  
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Active Stereo Results

Left Image Right Image 3D Structure

I.9

[Zhang 2003]

50

Stereopsis

Prey eyes are configured for 
larger field of view

Predator eyes are configured 
for depth estimation

EYE AND BRAIN

49

Stereo Vision in Nature

Topic: Uncalibrated Stereo, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University
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Let us now take a closer look at the human visual system. The two eyes are separated by an interocular 
distance; in adults, the interocular distance is, on average, around 64 millimeters. When we look at an 
object, the two eyes rotate such that their optical axes intersect at the object. This process is called 
vergence, and is made possible by a sophisticated control system that uses six ocular muscles.  
 
On the right we see how an object is projected onto the retinae (sensors) of the two eyes. The visual 
cortex, which performs depth perception, is distributed over both sides our brain. For this reason, the 
right halves of the two images are directed to the right side of the brain and the left halves to the left 
side of the brain. This routing of the images is done by a relay system called lateral geniculate nucleus.  
 
Many contraptions have been developed to 
understand how human stereo vision works. One 
such device is called the pseudoscope. It consists 
of a set of mirrors that reflect light from the object, 
such that the rays of light that should have 
traveled from the object into the right eye end up 
being redirected into the left eye, and vice-versa. 
In effect, the eyes are swapped causing a reversal 
of depth—convex objects appear concave, and 
vice versa. In the case of the telestereoscope, 
mirrors change the paths of light rays so that the 
effective interocular distance (between the two 
eyes) is altered. This has the effect of making 
objects appear smaller or larger than they really are.  
 

51

The Human Stereo System

I.1

EYE AND BRAIN 52

Stereopsis in Humans

I.2

EYE AND BRAIN

53

Human Stereo Experiments

A psuedoscope gives reversed depth

A telestereoscope increases separation of the eyes

I.3

I.4

EYE AND BRAIN
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Here is an interesting experiment that produces a 
phenomenon called the Pulfrich pendulum effect. 
In front of the left eye is placed a very dark glass 
(with low transmittance). In front of the observer 
is a ball that moves back and forth, along a line.  
Because the left eye is covered by the dark glass, it 
produces an image of the ball with a slight delay. 
As a result, by the time the image of the ball is 
produced in the left eye, the ball has moved to a 
new location and is perceived in that location by 
the right eye. Because of the delay in the left eye, 
the ball appears to be as moving along an ellipse 
even though it is really moving along a line.  
 
 
G.M. Stratton performed a fascinating set of 
experiments in 1896. He was trying to understand 
what happens to our visual perception if we shift 
and rotated images before they entered the eyes. 
The contraption shown here, when worn by the 
observer, makes them view the world downward 
from a point above them. Stratton wore this device 
for many days, to see if he could get used to this 
new perspective of the world. He only took them 
off when he went sleep, during which time he wore 
blinders. In his notes, he documented that he had 
an out of body experience and tried to teach 
himself to handle various objects, tie his shoelaces, and walk around. Although difficult, over time, he 
was able to get used to seeing the world from this unusual perspective. Most interestingly, he reported 
that when he stopped wearing the device, he quickly got used to the “normal” perspective. His 
experiment demonstrated that the human visual system has some ability to adapt to new perspectives 
of the world.  
 
 

54

The Pulfrich Pendulum Effect

A pendulum swinging in a straight arc is viewed through 
dark glass in one eye. The motion appears to be elliptical.

I.8

EYE AND BRAIN [Arden 1954]
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Stratton’s Experiment

When wearing this device, Stratton saw himself 
suspended in space before his eyes.

I.6

EYE AND BRAIN [Stratton 1896]
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This ability to adapt is not true for all animals. In 
this experiment by Pfister, prisms were placed in 
front of the eyes of hens to rotate the fields of view 
of the eyes by 7, 10, or even 15 degrees. When 
trying to peck on a grain, for instance, the hen 
ended up pecking in the wrong place. While 
humans and monkeys can adapt to shifted or even 
inverted images, less intelligent animals such as 
the hen cannot, even after many months. 
 
 
 
 
 
Finally, shown here is a fascinating experiment 
done by Held and Hein, which sought to determine 
whether we need to interact physically with the 
world in order to learn to see. Two kittens were 
raised in darkness initially, and then they were 
placed in the two baskets shown here. One of the 
baskets has holes in it allowing the kitten in it to 
touch the ground. The kitten in the other basket 
has no contact with the ground. The kitten that 
could make contact with the ground was able to 
use its feet spin the contraption. This kitten 
became an active observer while the other one 
remained a passive observer. Both kittens received the same visual stimulus—they were exposed to the 
same environment as the contraption spins.  
 
Over time, the kitten that was able to make contact with the ground and hence spin the contraption 
ended up developing vision and was able to navigate and walk around when it was removed from the 
basket. However, the passive observer remained essentially blind. This result suggests that in order to 
develop visual perception, an organism needs to be an active learner, i.e., physically interact with the 
world.   
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Pfister’s Hen

Prisms are placed in front of each eye to rotate the field 
of view, effecting the efficiency of depth perception

I.5

EYE AND BRAIN [Hess 1953]
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Percpetual Learning and Vision

Apparatus designed by Held and Hein to discover 
whether learning takes place in a passive animal.

I.7

EYE AND BRAIN [Held 1963]
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