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This lecture is about an interesting vision problem known as structure from motion. Consider a video of 
the artifact shown on the right taken while simply walking around it. Such a video can be referred to as 
a casual, or uncontrolled, video because the motion of the camera during the capture is unknown. It 
turns out that from this video, we can not only reconstruct the 3D structure of the artifact but also 
determine how the camera moved in 3D space during the capture of the video. The technique that makes 
all this possible is called structure from motion. 

  

Structure from motion is a method for computing 
from a video the 3D structure of a scene and the 
motion of the camera during the capture of the 
video. We will begin by formulating the structure 
from motion problem. The first step is to track 
features through the entire video. The image 
coordinates of these features are then arranged as 
a single matrix called the observation matrix. Our 
goal then is to recover scene structure and camera 
motion from the observation matrix. 
 
What makes the observation matrix interesting is 
that it has a very low rank. This allows us to construct a rank constraint, which can be used to decompose 
the observation matrix into two matrices: the scene structure matrix and the motion matrix. This 
algorithm was initially developed by Tomasi and Kanade and is called the factorization algorithm. We 
will discuss the algorithm in detail and conclude with some results produced by it. 
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Uncontrolled (Casual) Video
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Compute 3D scene structure and camera motion from 
a sequence of frames.
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Let us take a closer look at the structure from motion problem. Our input is a video of a scene, which is 
a sequence of frames. Shown on the right is the first frame of an input video. We apply feature detection 
to this frame and the detected features are overlaid as black dots. These features could be corners, SIFT 
features, or any type of interest points. We track these features through the entire video using any one 
of the methods we have discussed—template matching, optical flow, or comparing SIFT descriptors. 
Eventually, we end up with a set of features that are tracked through the entire video sequence. The 
image coordinates of these tracked features are the input to the structure from motion algorithm. 
 
Shown here is a world coordinate frame and a set 
of 3D scene points denoted by 𝑃!. These points 
represent the 3D structure we wish to recover. 
Multiple images (frames) of this structure are 
captured, each frame giving us 2D image 
projections of the 3D scene points. We assume that 
we have a total of  𝑁 scene points and 𝐹 frames. 
The 2D image coordinates of the scene points can 
then be denoted as $𝑢",!, 𝑣",!(, where 𝑓 denotes 
the frame number and 𝑝 denotes the point in the 
scene.  
 
Given the set of image coordinates $𝑢",!, 𝑣",!(,	we wish to find the 3D coordinates 𝑃! of the scene points. 
This is the general formulation of the structure from motion problem. To make this problem tractable, 
Tomasi and Kanade used the simplifying assumption that the camera is orthographic. 
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Feature Detection and Tracking

• Detect feature points: Corners, SIFT points, …

• Track feature points: Template Matching, Optical Flow…

6

Orthographic Structure from Motion

!

"

#

Given sets of corresponding image points (2D): !$,& , #$,&
Find scene points (3D)    , assuming orthographic camera.

Points$ = 1,2, … , )

Frame 1

Frame (

Frame )

!!

[Tomasi 1992]
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In the case of an orthographic camera, we assume that the range of depths in the scene is small in 
comparison to the distance of the scene from the camera. Thus, the magnification of the camera is the 
same for all scene points and through the entire sequence of captured images. Under this camera model, 
in a given image, all scene points can be assumed to map to the image plane using parallel rays that are 
perpendicular to the image plane.  
 
This simplifying assumption of an orthographic camera makes the structure from motion problem easier 
to formulate and solve. While this assumption was used in the early work of Tomasi and Kanade, it has 
been replaced with the more general perspective projection model in subsequent work.  
 
We will now take all our tracked image 
coordinates, $𝑢",!, 𝑣",!(,	 and organize them into a 
single matrix called the observation matrix. 
 
 
 
 
 
 
 
 
 
 
Let us first look at how a 3D scene point is mapped 
to its 2D image coordinates in the case of 
orthographic projection. Shown here is a scene 
point 𝑃 and a camera coordinate frame 𝐶. Unlike 
perspective projection, where the camera 
coordinate frame is placed at the pinhole of the 
camera, in this case, we will place it at one of the 
corners of the image. 𝐶 is defined by two unit 
vectors, 𝐢 and 𝐣, which are aligned along the two 
edges of the image plane. We can now project the 
scene point 𝑃, which is represented in the camera 
coordinate frame by the vector 𝐱$, by using a ray 
parallel to the optical axis (dotted line) to obtain the image point 𝐮 =	(𝑢, 𝑣), where 𝑢 is the dot product 
between 𝐱$  and 𝐢, and 𝑣 is the dot product between 𝐱$  and 𝐣. These dot products can be equivalently 
represented as 𝐢%  times 𝐱$  and 𝐣%  times 𝐱$ , respectively 1 . 
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From 3D to 2D: Orthographic Projection
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!
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-

.
"

Perspective cameras exhibit orthographic projection when 
distance of scene from camera is large compared to depth 
variation within scene (magnification is nearly constant).

1  
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Ultimately, we wish to recover the 3D coordinates 
of each scene point 𝑃 in the world coordinate 
frame 𝒲. To this end, we want to relate our image 
coordinates (𝑢, 𝑣) to the world coordinates 𝐱&  of 
𝑃. Let the location of the camera in the world 
coordinate frame be 𝐜& . Then, in the world 
coordinate frame, the vector 𝐱$  is simply (𝐱& − 
𝐜&). Substituting for 𝐱$  in the equations in slide 8, 
we get the two equations in 1 .	 To simplify our 
notations, we will use 𝑃 and 𝐶 to denote the 3D 
coordinates of 𝐱& and 𝐜& , respectively.  
 
 
The orthographic structure from motion problem 
can be stated as follows: given the 2D image points 
$𝑢",!, 𝑣",!(, where 𝑓 denotes the frame number 
and 𝑝 denotes the scene point, we wish to find the 
3D coordinates 𝑃! of each scene point 𝑝. 
Unfortunately, the camera positions 𝐶" and their 
orientations 𝐢" and 𝐣" are also unknown.  
 
 
 
 
 
 
To account for the fact that we have a sequence of 
frames, we can rewrite the two equations in slide 9 
as shown here (see 1 ). In these equations, 
everything on the right side of the equations—𝑃!, 
𝐶" , 𝐢", and 𝐣"— is unknown. This is what makes the 
structure from motion problem challenging. In 
order to make it tractable, we need to reduce the 
number of unknowns. This brings us to the 
centering trick.  
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Orthographic SFM
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"
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""
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!$,& = #$"(*& −+$)
&$,& = '$"(*& −+$)
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!!
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We can remove "% from equations to simply SFM problem.

Frames
9 = 1,2, … , :

1  

1  
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The centering trick allows us to remove an 
unknown, namely 𝐶", from the right-hand side of 
the equations in slide 11. Here is a set of 3D points 
that we project orthographically to the 2D points 
in the image 𝑓. We will assume that the origin of 
the world coordinate frame, which we are free to 
place anywhere we wish, lies at the centroid 𝑃9 of 
the 3D scene points that we are trying to estimate. 
𝑃9 is simply the average of the 3D coordinates of all 
the 𝑁 scene points 𝑃!  1 . This implies that when 
we ultimately recover the 3D coordinates of the 
scene points 𝑃!, they will be with respect to the 
centroid 𝑃9. 
 
 
Let us now look at the centroid (𝑢9" , �̅�") of the 
image coordinates of the scene points 𝑃!.	 𝑢9" is the 
average of all the 𝑢",! coordinates in frame 𝑓. By 
substituting the 𝐢"%  times 𝑃! minus 𝐶" for 𝑢",! (from 

slide 11), we get expression 1 . Upon expanding 
1 , we get equation 2 , where the first term 

includes the sum of all the scene points 𝑃!. This 
term is equal to zero since we set the origin of the 
world coordinate frame to be the centroid of the 
scene points. The second term in 2  is an average 
computed over 𝐢"%  times 𝐶", which is a constant. 

Thus, 𝑢9"	is equal to the negative of  𝐢"%  times 𝐶" 3 . We get an analogous expression for �̅�". We see that 
now 𝑢9"	and	�̅�" are independent of the 3D scene points 𝑃!.	 
 
 

Centering Trick

Centroid !"!, %̅! of the image points in frame &:
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"
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Centering Trick

!
"

# Frame !3D centroid
!"

Assume origin of world at centroid of scene points:

We will compute scene points w.r.t their centroid!

1
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$
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"!
#!
#!
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Next, we shift the origin 𝐶" of the camera to the 
centroid (𝑢9" , �̅�"), as shown here. We can now 
define all our image coordinates in this new 
coordinate frame, which we refer to as the 
centroid-subtracted coordinates (𝑢A",!, 𝑣A",!). The 
expression for 𝑢A",!  is simply to 𝐢"%  times 𝑃!, since 

the terms with 𝐶" get cancelled out 1 . Similarly, 

the expression for 𝑣A",! simplifies to 𝐣"%  times 𝑃! 2 . 
Thus, the image coordinates of the scene points no 
longer have the camera center 𝐶" in their 
expressions and only have the camera orientation, 
which is given by the two vectors 𝐢" and 𝐣". 
 
 
We now have two expressions for each scene point 
in a particular camera frame 1 . These two 
expressions can be written in vector form as shown 
in 2 . We have 𝑁 points in each of the 𝐹 frames 
and all their expressions can be organized into a 
single equation in matrix form, as shown here. 𝑊 
on the left-hand side is a 2𝐹 × 𝑁 matrix called the 
observation matrix. Its first 𝐹 rows consist of all the 
centroid-subtracted 𝑢 values of the 𝑁 points in 
each of the 𝐹 frames. The next 𝐹 rows consist of all 
the centroid-subtracted 𝑣 values.  
 
The right-hand side includes a matrix consisting the unit vectors i and 𝐣 corresponding to the orientations 
of the camera in the 𝐹 frames. This is called the camera motion matrix 𝑀	and it is a 2𝐹 × 3 matrix. 𝑀 is 
multiplied by the scene structure matrix 𝑆 which is a 3 × 𝑁 matrix made up of the 3D coordinates of the 
𝑁 scene points. Therefore, the observation matrix 𝑊 is the product of the camera motion matrix 𝑀 and 
scene structure matrix 𝑆. Note that while 𝑊 is known, the motion matrix 𝑀 and structure matrix 𝑆 are 
unknown. 
 
 

Centering Trick

Shift camera origin to the centroid !"!, %̅! .

!"!,# = "!,# − %"!
= &!$ '# − (! + &!$(!

!*!,# = *!,# − *̅!
= ,!$ '# − (! + ,!$(!

!"!,# = &!$'# !*!,# = ,!$'#
Camera locations &! now removed from equations.

Image points w.r.t.          :!"!, %̅!

2D centroid !"! , %̅!
!

"

# Frame !3D centroid
!&

Scene

"!
#!

'!
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-:×6

1  2  

1  2  



First Principles of Computer Vision                                                                                                             Structure from Motion 

FPCV-4-4 
 

7 

So, the question is whether we can find the 
structure matrix 𝑆 and the motion matrix 𝑀 from 
the observation matrix 𝑊? It turns out that this is 
possible because 𝑊 has the property that it is low 
in rank. 
 
 
 
 
 
 
 
 
Before we discuss the rank of the observation 
matrix 𝑊, let us review the concept of the rank of 
a matrix. 
 
 
 
 
 
 
 
 
 
 
First, let us discuss the notion of linear 
independence. A set of vectors, 𝐯' through 𝐯(, is 
said to be linearly independent if no vector in the 
set can be represented as a weighted sum of the 
other vectors in the set. Shown here are five 
vectors: 𝐢, 𝐣, 𝐯', 𝐯) and 𝐯*, in a two-dimensional 
space. Vectors 𝐢 and 𝐣 are linearly independent 
because they are orthogonal, and hence we cannot 
express 𝐢 as a scaled version of 𝐣. Vectors 𝐢, 𝐣 and 𝐯' 
are linearly dependent since we can represent any 
one of them as a linear combination of the other 
two. The same applies to the set of vectors 𝐢, 𝐣 and 
𝐯* and the set 𝐯', 𝐯) and 𝐯*.  
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Linear Independence of Vectors

MATH PRIMER

A set of vectors 5', 5(, … , 5* is said to be linearly 
independent if no vector can be represented as a 
weighted linear sum of the others.

#, ' is linearly independent.

.

-
@/

@1
@2#, ', 5' is linearly dependent.

#, ', 5+ is linearly dependent.

5', 5(, 5+ is linearly dependent.
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The concept of linear dependence and 
independence can be used to determine the rank 
of a matrix. Consider a matrix 𝐴 with 𝑚 rows and 𝑛 
columns. We can view 𝐴 as a concatenation of 𝑛 
column vectors, 𝐜' through 𝐜(, or 𝑚 row vectors, 
𝐫' through 𝐫+.  
 
A matrix has two types of ranks: column rank and 
row rank. The column rank of a matrix is the 
number of linearly independent columns of the 
matrix, and the row rank of a matrix is the number 
of linearly independent rows of the matrix.  
 
The column rank of 𝐴 must be less than or equal to 𝑛 because 𝐴 has only 𝑛 columns, and the row rank 
of 𝐴 must be less than or equal to 𝑚 because it has only 𝑚 rows. For any matrix, the column rank is equal 
to the row rank, which is simply called the rank of the matrix. By this definition, the rank of 𝐴 is less than 
or equal to the minimum of 𝑚 and 𝑛.  
 
 
Let us now visualize the geometric meaning of the 
rank of a matrix by considering a 3 × 3 matrix 𝐴 
made up of the three column vectors 𝐚, 𝐛 and 𝐜. 
The rank of 𝐴 can be viewed as the dimensionality 
of the space spanned by its column or row vectors. 
If the column vectors 𝐚, 𝐛 and 𝐜 are collinear (i.e., 
they lie on the same line), then 𝐚, 𝐛 and 𝐜  can be 
expressed as a scaled version of a single vector. 
That is, only a single vector, or dimension, is 
needed to span the space defined by the three 
vectors. In this case, the rank of 𝐴 is one. 
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Rank of a Matrix

MATH PRIMER

Column Rank: The number of linearly independent 
columns of the matrix.

Row Rank: The number of linearly independent rows 
of the matrix.

;
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⋮
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4/ 41 … 44= =C

"./$012314(6) ≤ 1 2.92314(6) ≤ 0

"./$012314 6 = 2.92314 6 = 2314(6)

2314(6) ≤ min(0, 1)
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Geometric Meaning of Matrix Rank

MATH PRIMER

Rank is the dimensionality of the space spanned by 
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3: >: ?:

= @ A B

D
E
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In this example, the three vectors 𝐚, 𝐛 and 𝐜 lie on 
a two-dimensional plane. We know that just two 
vectors on this plane are sufficient to represent all 
other vectors on the plane. Therefore, in this case, 
the rank of 𝐴 is two. 
 
 
 
 
 
 
 
 
Here we have three arbitrary vectors, 𝐚, 𝐛 and 𝐜, in 
a three-dimensional space. All three vectors are 
needed to express any arbitrary vector in this 
space. Therefore, the rank of 𝐴 in this case is three. 
With the above examples, we now have a 
geometric intuition for the rank of a matrix. 
 
 
 
 
 
 
 
Here are the key properties of the rank of a matrix. 
First, the rank of 𝐴%  is equal to the rank of 𝐴. This 
is a consequence of the fact that the column rank 
is equal to the row rank. Second, the rank of the 
product of two matrices, 𝐴 and 𝐵, is the minimum 
of the rank of matrix 𝐴 and the rank of matrix 𝐵. If 
𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝, the rank of the product 
of 𝐴 and 𝐵 must be less than or equal to the 
minimum of 𝑚, 𝑛 and 𝑝. From the above two 
properties, we can show that the rank of 𝐴𝐴%  is 
equal to the rank of 𝐴%𝐴, which is equal to the rank 
of 𝐴. Finally, if 𝐴 is an 𝑚 ×𝑚 matrix	 that is 
invertible, then its rank is 𝑚, and we call it a full rank matrix. 

21

Geometric Meaning of Matrix Rank
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Rank is the dimensionality of the space spanned by 
column or row vectors of the matrix.
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Geometric Meaning of Matrix Rank
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Let us now return to our observation matrix 𝑊, 
which is composed of centroid-subtracted image 
coordinates of the scene points. 𝑊 is a 2𝐹 × 𝑁 
matrix, where 𝐹 is the number of frames and 𝑁 is 
the number of scene points. 𝑊 is equal to the 
product of the motion matrix 𝑀 and the structure 
matrix 𝑆. Our goal is to compute 𝑀 and 𝑆 from 𝑊. 
 
 
 
 
 
 
We know that the rank of 𝑀 must be less than or 
equal to the minimum of 2𝐹 and 3. Similarly, the 
rank of 𝑆 must be less than or equal to the 
minimum of 3 and 𝑁. Since 𝑊 is the product of 𝑀  
and 𝑆, its rank must be less than or equal to the 
minimum of 3, 𝑁 and 2𝐹. Since the number of 
scene points, 𝑁, and the number of camera frames, 
𝐹, can both be expected to be large, we can 
conclude that the rank of 𝑊 is less than or equal to 
3. We will use this fact to develop our structure 
from motion algorithm. 
 
 
 
The structure from motion algorithm we present 
here was proposed by Tomasi and Kanade and is 
referred to as the factorization method.  
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We know that the rank of the observation matrix 
𝑊 must be less than or equal to 3. This rank 
constraint makes it possible for us to factorize the 
observation matrix 𝑊 into its two components 𝑀 
and 𝑆. That is, from just the observed image 
coordinates we can determine both the motion of 
the camera as well as the structure of the scene.  
 
 
 
 
 
 
To factorize the observation matrix 𝑊, we will use 
a popular method in linear algebra called singular 
value decomposition (SVD). It should be noted that 
SVD can be applied to any 𝑀 ×𝑁 matrix 𝐴; it does 
not need to be our observation matrix 𝑊. The SVD 
of matrix 𝐴 is the product of three matrices: 𝑈, Σ 
and 𝑉%. Matrices 𝑈 and 𝑉 are orthonormal, which 
is a concept we have discussed before. The matrix 
Σ is a diagonal matrix and is important to us. It 
consists of all the singular values 𝜎,  along its 
diagonal in decreasing order of value, with 𝜎' being 
the largest and most important singular value, 𝜎) 
being the next largest, and so on. All these singular values are non-negative. But what do these singular 
values really mean? From expression 1 , it can be seen that the largest singular value 𝜎' would end up 
being multiplied with the first column of matrix 𝑈 and the first row of matrix 𝑉%. Hence, this column and 
row make the largest contribution to the reconstruction of the matrix 𝐴. In other words, they are the 
most important column and row of 𝑈 and 𝑉% , respectively. This is one way to think about singular value 
decomposition. 
 
Similarly, since 𝜎) is the next most important singular value, the corresponding column and row of 𝑈 and 
𝑉%, respectively, are the next most important. The columns of 𝑈 are referred to as the left singular 
vectors of the matrix 𝐴 and the columns of 𝑉 are referred to as the right singular vectors of 𝐴. The most 
important aspect of SVD in the context of structure from motion is that if the rank of matrix 𝐴 happens 
to be 𝑟, then only the first 𝑟 singular values in Σ are non-zero. 
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Rank of Observation Matrix

2@×*

We know:

! = # × %
2@×3 3×*

2314(,-) ≤ 2314(,) 2314(,-) ≤ 2314(-)

2314(,-) ≤ min(3,2H) 2314(,-) ≤ min(3,I)

2314 + = 2314(,-) ≤ min(3,I, 2H)

Rank Theorem: 2314(+) ≤ 3

[Tomasi 1992]

We can “factorize” + into , and -!

28

Singular Value Decomposition (SVD)

MATH PRIMER

For any matrix 7 there exists a factorization:

&!×# = '!×! ( Σ!×# ( *$#×#
where J and K8 are orthonormal

B" 0 0 0 … 0
0 B) 0 0 … 0
0 0 B* 0 … 0
0 0 0 B+ … 0
0 0 0 0 ⋱ 0
0 0 0 0 … B&
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

Σ!×# = 8', … , 8): Singular Values

If 2314 6 = L then 6 has L non-zero singular values.

and Σ is diagonal.
MATLAB: [U,S,V] = svd(A)

1  
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Upon applying SVD to the observation matrix 𝑊, 
we get the three matrices, 𝑈, Σ and 𝑉% , where 𝑈 is 
a 2𝐹 × 2𝐹 matrix, 𝑉%  is a 𝑁 × 𝑁 matrix, and Σ is a 
2𝐹 × 𝑁 matrix.  
 
 
 
 
 
 
 
 
 
We know that the rank of 𝑊 must be less than or 
equal to three. Therefore, 𝑊 can have at most 
three non-zero singular values.  
 
 
 
 
 
 
 
  
 
 
Let us focus on the shaded submatrices of 𝑈, Σ and 
𝑉%  shown here. Since only the shaded 3 × 3 
submatrix in Σ has non-zero values, the submatrix 
𝑈) of matrix 𝑈 makes no contribution to the 
observation matrix 𝑊. Similarly, submatrix 𝑉)%  of 
matrix 𝑉%  makes no contribution to 𝑊. This is 
because all the values in 𝑈) and 𝑉)%  are multiplied 
by zeros since all the corresponding singular values 
are zero. Only the submatrices 𝑈' and 𝑉'%  end up 
contributing to 𝑊. Even though the observation 
matrix 𝑊 is massive, and after applying SVD we get 
three large matrices 𝑈, Σ and 𝑉%, only small parts 
of these large matrices have any bearing on 𝑊.  
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Enforcing Rank Constraint

Using SVD: ! = ' Σ *$

' *$=

B" 0 0 0 … 0
0 B) 0 0 … 0
0 0 B* 0 … 0
0 0 0 B+ … 0
0 0 0 0 ⋱ 0
0 0 0 0 … B&
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

Where: 8' ≥ 8( ≥ 8+ ≥ ⋯ ≥ 8) are the singular values of 4

2@×* *×*2@×2@
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Enforcing Rank Constraint

Using SVD: ! = ' Σ *$

' *$=

B" 0 0 0 … 0
0 B) 0 0 … 0
0 0 B* 0 … 0
0 0 0 0 … 0
0 0 0 0 ⋱ 0
0 0 0 0 … 0
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

All except first 3 diagonal elements of Σ must be 0.

2@×* *×*2@×2@

Since 2314(+) ≤ 3, 2314(Σ) ≤ 3.
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Enforcing Rank Constraint

Using SVD: ! = ' Σ *$

'%
*&$

=

B" 0 0 0 … 0
0 B) 0 0 … 0
0 0 B* 0 … 0
0 0 0 0 … 0
0 0 0 0 ⋱ 0
0 0 0 0 … 0
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

'&
*%$

3 2@ − 3

3

*
−
3

2@×* *×*2@×2@

Submatrices ;(and <("do not contribute to 4.

Since 2314(+) ≤ 3, 2314(Σ) ≤ 3.
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We therefore have a more economical 
representation of 𝑊, given by  1 . Note that this 
representation is not an approximation but in fact 
exact. In summary, the 2𝐹 × 𝑁 observation matrix 
𝑊 can be decomposed into three matrices: a 
2𝐹 × 3 matrix 𝑈', a 3 × 3 matrix Σ', and a 3 × 𝑁	
matrix 𝑉'%. 
 
 
 
 
 
 
We have decomposed 𝑊 into 𝑈', Σ' and 𝑉'%. But 
how do we factorize 𝑊 into the motion matrix 𝑀 
and the structure matrix 𝑆? One way of factorizing 
𝑊 would be to split up Σ' into two equal 

components where each component is UΣ'	,	as 
shown in 1 . This is a completely valid factorization 
into a 2𝐹 × 3 matrix and a 3 × 𝑁 matrix, but there 
is no reason why these factorized matrices should 
correspond to a valid motion matrix 𝑀 and a valid 
structure matrix 𝑆. 
 
Let us now post-multiply the first factor 𝑈'(Σ')'/) 
with some 3 × 3 matrix 𝑄, and pre-multiply the second factor (Σ')'/)𝑉'%  with 𝑄.', as shown in 2 . The 
matrix 𝑄 will have no impact on the observation matrix 𝑊 but it will change both of the factors. Hence, 
we will pose the structure from motion problem as finding the 3 × 3 matrix 𝑄 that would give us a valid 
motion matrix 𝑀 and a valid structure matrix 𝑆. In order to find this matrix 𝑄, we need to invoke some 
additional information.   
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Enforcing Rank Constraint

Using SVD: ! = ' Σ *$

'%
*&$

2@×*

=

B" 0 0 0 … 0
0 B) 0 0 … 0
0 0 B* 0 … 0
0 0 0 0 … 0
0 0 0 0 ⋱ 0
0 0 0 0 … 0
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

'&
*%$

2@×2@

3 2@ − 3

! = '& Σ& *&$
3×3 3×!2@×3

3

*
−
3

*×*
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Factorization (Finding ", #)

= #? = %?

is also valid.

Not so fast. Decomposition not unique!

3×*2@×3

! = '& Σ& &/% Σ& &/%*&$

For any 3x3 non-singular matrix =:

3×*2@×3

! = '& Σ& &/%, ,(& Σ& &/%*&$

= # = %
How to find the matrix O ?

… for some =.

1  

1  

2  
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It turns out that there is an important constraint 
that we have not yet used, which is the 
orthonormality of the camera motion matrix 𝑀. 
Recall that 𝑀 is made of the camera orientation 
vectors, 𝐢’s and 𝐣’s, of all the 𝐹 camera frames. 𝑀 
can also be expressed as 𝑈'(Σ')'/)𝑄, where 
𝑈'(Σ')'/) (shaded matrix) has already been 
computed and the 3 × 3 matrix 𝑄 is unknown, as 
shown in 1 .  
 
Now, we know that the camera orientation vectors 
𝐢" and 𝐣" are unit vectors and are orthogonal to 
each other. Thus, for any frame 𝑓, 𝒊" times 𝒊" is equal to one, 𝒋" times 𝒋" is equal to one, and 𝒊" times 𝒋" 
is equal to zero. These three orthonormality constraints can be rewritten as shown in 2 , where Ŷ" and 
[̂" are known (see 1 ), and the only unknown is the matrix 𝑄. Note that we get the three constraints 

given by 2  for each camera frame.  
 
 
Since we have a total of 𝐹 camera frames, we get 
3𝐹 equations and 9 unknowns, namely, the 
elements of the matrix 𝑄. As long as we have three 
or more frames (𝐹 ≥ 3), which we almost always 
do, then we have enough equations to solve for the 
9 unknowns. Note that the 3𝐹 equations we have 
are quadratic in the unknown elements of 𝑄. 
Hence, a solution can be obtained using the 
Newton’s method.   
 
The structure from motion is solved once we have 
found 𝑄 because we can plug it into the 
expressions 1 	for the motion matrix 𝑀 and the structure matrix 𝑆.  
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Orthonormality of "
The Motion Matrix ,:

Orthonormality Constraints:

3 =

#'"
⋮
#,"
''"
⋮
',"

= ;' Σ' '/(=

#$ $ #$ = #$"#$ = 1

'$ $ '$ = '$"'$ = 1

#$ $ '$ = #$"'$ = 0 #$"=="'$ = 0^ ^

'$"=="'$ = 1^ ^

#$"=="#$ = 1^ ^

Computed

Computed

^

^

^

^

=

#'"
⋮
#,"
''"
⋮
',"

=

^

^

^

^

=

#'"=
⋮
#,"=
''"=
⋮
',"=
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Orthonormality of "

#$"=="'$ = 0^ ^

'$"=="'$ = 1^ ^

#$"=="#$ = 1^ ^

• O is 3×3 matrix, 9 variables, 3F quadratic equations.

• O can be solved with 3 or more images (F ≥ 3) using 
Newton’s method. 

• We have computed #$", '$" for G = 1,… , F. ^^

O is unknown.

, = J4 Σ4 4/5O

Final Solution:

- = OH4 Σ4 4/5K48

Camera Motion Scene Structure

1  

2  

1  
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Let us summarize the above structure from motion 
algorithm. First, we capture a video of a scene 
while moving around it. Next, we detect and track 
feature points through all the frames of the video. 
Then, we centroid-subtract the image coordinates 
of the feature points. We then construct the 
observation matrix 𝑊 using the centroid-
subtracted coordinates. We apply singular value 
decomposition to 𝑊 and enforce the rank 
constraint to obtain an economical representation 
of W, i.e., 𝑈' Σ' 𝑉'%. 
 
Next, we split Σ' into two equal factors and insert an unknown 3 × 3 matrix 𝑄, so that the camera motion 
matrix 𝑀 is 𝑈'(Σ')'/)𝑄 and scene structure matrix 𝑆 is 𝑄.'(Σ')'/)𝑉'%. The only unknown here is 𝑄, 
which is solved for by using the orthonormality of the camera orientation vectors. We then use 𝑄 to find 
the motion matrix 𝑀 and the structure matrix 𝑆. 
 
 
Shown here are some of the first factorization 
results obtained by Tomasi in the late 1980s. From 
an orthographic video of the house on the left, the 
3D coordinates of points on the house were 
estimated and are shown on the right. The inset 
image on the right is a different perspective of the 
house that was rendered using its recovered 3D 
structure.  
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Summary: Orthographic SFM

[Tomasi 1992]

1. Detect and track feature points.

2. Create the centroid subtracted matrix + of 

corresponding feature points.

3. Compute SVD of + and enforce rank constraint.

4. Set , = J4 Σ4 4/5O and - = OH4 Σ4 4/5K48.

5. Find O by enforcing the orthonormality constraint.

! = ' Σ *$ = '& Σ& *&$
3×3 3×!2@×3

37

Results

Input Image Sequence
I.2

Estimated 3D Points

I.2
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In this example, a sequence of images was taken of 
an outdoor scene. Some of the tracked features are 
shown on the top-right (white marks). The 
estimated structure was used to render the two 
new perspectives shown at the bottom.  
 
These are essentially the first results of structure 
from motion using the factorization method. Since 
then, many extensions have been made to the 
algorithm to make it more widely applicable. For 
instance, the state-of-the art algorithms do not rely 
on the orthographic camera assumption and can 
work on perspective videos that even include zooming, i.e., variation in focal length. Note that we 
assumed that every feature is visible through the entire video. Recent algorithms can handle features 
that may appear and disappear during the capture of the video.   
 
 
Shown here is a video demonstration of a more 
recent structure from motion algorithm developed 
by Marc Pollefeys. From a casual handheld video of 
the artifact seen here (see online lecture video), 
features were tracked, and then the 3D structure 
(depth map) shown on the right as well as the 
camera motion during the capture were 
computed. This depth map can be texture mapped 
using the captured video and then rendered from 
any perspective.   
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Results

Input Image Sequence

3D Reconstruction

Tracked Features

3D Reconstruction

I.3
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