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In this lecture, we will discuss the challenging problem of recovering three-dimensional shape 
information from a single shaded image. We are given an image 𝐼 of an object, such as the sphere in 
slide 2, and we know both the direction and the brightness of the light source. We are also given the 
reflectance properties (BRDF) of the object, which is assumed to be uniform over the object. The source 
information and the BRDF can be used to compute a reflectance map, 𝑅(𝑝, 𝑞). This map gives the image 
intensity corresponding any given surface normal (𝑝, 𝑞).  
 
In shape from shading, we want to go the other way: from an intensity value to the surface normal. Can 
we estimate the normal (𝑝, 𝑞) from a single intensity value? We know the answer to be negative. A given 
intensity value corresponds to an iso-brightness contour in the reflectance map, which means that an 
entire family (an infinite number) of (𝑝, 𝑞) values would generate the same brightness in the image. 
 
 
Since the problem of recovering 3D shape from a 
single shaded image is severely under-
constrained, we want to find ways of constraining 
the problem and then solving it. First, we are going 
to take a look at human perception of shading. 
We, humans, are fairly good at perceiving the 
shape of an object just from its shading. It turns 
out that the only reason we are able to do this is 
because we invoke a series of assumptions. To 
develop a shape from shading algorithm, we will 
first come up with a reasonable set of 
assumptions, map those assumptions into 
mathematical constraints, and then develop an algorithm to recover shape from a single shaded image. 

3

Method for recovering 3D shape information from
a single image using shading.

Shape From Shading

Topics: 

(1) Human Perception of Shading 

(2) Shape From Shading Algorithm
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Let us take a closer look at human perception of shading. We can easily figure out that the objects shown 
on the right are a vase, a bunny and a head, respectively. In fact, even if we look at a small piece of the 
head — the cheek, for example — we would be able to perceive the undulations of the surface from its 
shading. We have already established that shape from shading is an under-constrained problem. We, 
humans, are able to come up with interpretations of shape from shading because we invoke strong 
assumptions. In what follows, we present a few simple experiments conducted by V. S. Ramachandran 
that reveal some of the assumptions we make.  

 
 
Shown here are two panels of objects. Most people 
would agree that the panel on the left is a set of 
bumps, meaning they are convex and protrude out 
of the surface. Additionally, most would agree that 
panel on the right is a set of concavities. What 
enables us to arrive at these judgements? It turns 
out that we assume that the light source is above 
us. This is not unreasonable because the world we 
live in is lit by the sun, which is above us. In other 
words, we expect light to arrive at an object from 
above it, rather than below it. We invoke this 
assumption to interpret shape of shading. If the 
lighting is from above, then the objects on the left must be bumbs and the ones on the right must be 
concavities. 

 
  

5

Shape From Shading in Humans

We seem to perceive shape from a single shaded image

We make many assumptions in doing so

6

We Assume Light Source is Above Us!

The shaded objects in the left panel are usually seen as convex, 
whereas those in the right panel are usually seen as concave.

[Ramachandran 1990]EYE AND BRAIN

I.1

4

Human Perception of Shading
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Our assumption that the light source is above us can be further illustrated using this example. We can 
agree that the left slide is a mound with a crater in the center. If we flip this image upside down, we 
might instinctively assume that we would see a mound that is upside down with a little crater in the 
center. However, what we end up seeing (right slide) is a large crater with a little mound in the center. 
Why does our interpretation of shape change so drastically when the image is simply flipped? It is 
because both these interpretations are consistent with our assumption that the light falls on the scene 
from above.  
 
 

What if the illumination is from the side? In this 
case, people’s interpretation can go either way— 
bumps or concavities. If we imagine the light 
source is on the right side, then we would 
interpret the objects as bumps. If we now 
mentally move the light source to the left side, 
then we can convince ourselves that they are 
concavities. We do not make a strong assumption 
regarding lighting from the side, since left lighting 
and right lighting are equally likely.  

 
  

9

What If Illumination is Sideways?

Bumps or Cavities? It depends on where you think the light source is. 
You can reverse the depth of the objects by mentally shifting the light 
source from left to right.

EYE AND BRAIN [Ramachandran 1990]

I.3

7
Crater on a Mound

I.2

We Assume Light Source is Above Us!

[Rittenhouse 1786]EYE AND BRAIN 8
Mound in a Crater

We Assume Light Source is Above Us!

EYE AND BRAIN [Rittenhouse 1786]

I.2
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Here, we illustrate the notion of global 
illumination. If the two rows here were shown 
one after the other, in each case, our 
interpretation would depend on whether we 
assume the lighting to be from the left or from 
the right. However, when we view the two rows 
simultaneously, if we assume the top row to be 
bumps, then we infer the bottom row to be 
concavities. In other words, we prefer not to 
consider the lighting on the scene to varying 
dramatically over the scene. We prefer to assume 
that the lighting of the entire scene is coming 
from a single direction. 
 

There is also the issue of boundaries. On the left, we can see two similarly-shaded strips. However, if we 
give the two strips different boundaries, as shown on the right, we can dramatically change the 
interpretation of their shapes. For instance, the top strip suggests three cylinders sitting next to each 
other, lit from above. In contrast, the bottom strip is perceived as a corrugated surface lit from the right. 
Thus, boundaries are extremely important in the perception of shape from shading.  
 
 

10

We Assume Uniform Global Illumination

Objects in one row can be seen as either convex or concave if the other 
row is excluded; but when both rows are viewed simultaneously, seeing 
one row as convex forces the other to be perceived as concave.

EYE AND BRAIN [Ramachandran 1990]

I.4
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Next, let us consider shading in the context of perceptual grouping. The left slide shows several discs 
with no shading. In terms of appearance, we have two sets of discs. In one set, each disc is black on the 
top and white on the bottom, and in the other set, each disc is white on the top and black on the bottom. 
Looking at this image, it is difficult to quickly group together all the discs that have the same appearance. 
On the right slide one set of discs are replaced with bumps, while the other set is replaced with 
concavities. In this case, if we stare at the center bump, all the bumps become immediately visible and 
grouped to form an “X.” It is clear, therefore, that perceptual grouping is aided by shading. 
 
 
Finally, we have an example here where we 
override our previous assumption regarding the 
direction of illumination. Consider the head-on 
view of this sculpture with two heads. When we 
look at the head on the left 1 , we perceive it has 
being lit from above. In the case of the head on 
the right 2 , it appears to be lit from below. In this 
case, we are willing to override our assumption 
that light falls from above because we are familiar 
with the more or less convex shape of a head.  In 
this case, we are being tricked as the head in 2  is 
actually a concavity as revealed by the side view 
of the sculpture shown on the left 3 . In other words, the two sculptures are both lit from the top. In 
short, while interpreting shaded images, the brain usually assumes that lighting comes from above, but 
it is willing to reject this assumption when it comes to a familiar shape, such as that of a head. 
 
 

12

Perceptual Grouping

Perceptual grouping of objects with the identical appearance 
is difficult to achieve without shading.

EYE AND BRAIN [Ramachandran 1990]

I.6

13

We Use Shading for Perceptual Grouping

Objects that are lighter on top are usually perceived as convex objects 
that can be mentally grouped and segregated (to form an X pattern) 
from the background of concave objects. 

EYE AND BRAIN [Ramachandran 1990]

I.7

14

We Tend to “See” the Familiar

Hollow-Mask interiors lit from above produce an eerie impression of 
protruding face lit from below. In interpreting shaded images the brain 
usually assumes light shining from above but here it rejects the 
assumptions in order to interpret the images as normal, convex objects.

I.8

EYE AND BRAIN [Ramachandran 1990]

1  2  

3  
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Before we develop our shape from shading method, let us revisit our representation of surface 
orientation. Consider a unit surface normal n that makes an angle θ with the 𝑧-axis, which corresponds 
to the viewing direction v of the camera. We already know how to map n to its gradient space 
coordinates (𝑝, 𝑞). As discussed in the photometric stereo lecture, we place a plane at 𝑧 = 1  that is 
parallel to the 𝑥 − 𝑦 plane, and label its two axes 𝑝 and 𝑞. To determine the (𝑝, 𝑞)	value corresponding 
to the unit normal n, we extend the normal so that it intersects the 𝑝 − 𝑞	plane. The point of intersection 
is the (𝑝, 𝑞) that corresponds to n.  
 
Unfortunately, the 𝑝 − 𝑞 space has an undesirable attribute. As θ	approaches 90 degrees, 𝑝 and 𝑞 can 
increase in value rapidly, and at 90 degrees, one or both of them can equal infinity. From a computational 
perspective, we would want the values of 𝑝 and 𝑞 to be bounded. To achieve this, we will use what is 
called the stereographic projection, which we denote as the 𝑓 − 𝑔 space. Given the same unit normal n 
and the same 𝑧 = 1 plane, we now label the axes of the plane 𝑓 and 𝑔. To go from n to (𝑓, 𝑔), we draw 
a line that goes from the point z = −1 through the tip of the unit normal. The intersection of this line 
with the 𝑓 − 𝑔 plane gives us the (𝑓, 𝑔) corresponding to n.  
 
What is the relationship between the 𝑓 − 𝑔 and the 𝑝 − 𝑞 spaces? Consider the triangle formed by the 
origin of the 𝑓 − 𝑔 plane, the intersection point (𝑓, 𝑔), and the point 𝑧 = −1. Then, consider another 
triangle formed by the tip of n, the projection of the n onto the 𝑧 axis, and the point 𝑧 = −1. These are 
two similar triangles, which can be used to derive the expressions 1  that relate (𝑓, 𝑔) to (𝑝, 𝑞).  
 

1  
16

Stereographic Projection

Topic: Shape from Shading, Module: Reconstruction I

First Principles of Computer Vision

Shree K. Nayar

Columbia University



First Principles of Computer Vision                                                                                                                  Shape from Shading 
 

FPCV-3-3 
 

7 

Let us discuss the advantage of using the 𝑓 − 𝑔 
space instead of the 𝑝 − 𝑞 space. Consider the 
unit normal (0, 1, 0) aligned with the 𝑦-axis, 
which has a corresponding (𝑓, 𝑔) value of (0, 2). 
Then, consider the unit normal (1, 0, 0)	aligned 
with the 𝑥-axis, which has an (𝑓, 𝑔)  value of 
(2, 0). With these two examples, we can convince 
ourselves that all (𝑓, 𝑔) values corresponding to 
all the normals that lie in the visible (upper) 
hemisphere, lie within a circle in 𝑓 − 𝑔 space with 
radius 2. Therefore, from a computational 
perspective, it is advantageous to compute 
normals in terms of (𝑓, 𝑔) rather than (𝑝, 𝑞). 
 
We know that n is equivalent to (𝑝, 𝑞), which is 
equivalent to (𝑓, 𝑔). As shown here, we can 
define our coordinate system such that the 
viewing direction v	of	the	camera	is aligned with 
the z-axis. As with photometric stereo, we assume 
that the light source is far away, such that all 
points on the object of interest share the same 
source direction. The reflectance map for a given 
source and a given surface BRDF can be denoted 
as 𝑅!, which is a function of 𝑓 and 𝑔. For any 
normal (𝑓, 𝑔), it gives us the corresponding image 
brightness 𝐼.  
 

20

Shape from Shading Algorithm
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As stated earlier, shape from shading is an under-constrained problem and hence additional assumptions 
are needed to solve it. Our first assumption is related to occluding boundaries. In slide 21, on the right, 
we have a curved object, and on the left, we have its image. The boundary of the object in its image is 
called the occluding boundary—it is where the object curves upon itself, away from the viewing 
direction. We assume that the camera is distant from the object and hence the viewing direction is the 
same for all points on the object. If we apply an edge detector to the image, we get edges along the 
boundary of the object.  If we consider a surface normal n at a point on the occluding boundary, we 
know it must be perpendicular to the viewing direction v and to the edge e computed at the point. Since 
the normal n is perpendicular to both e and v, which are both known, we can compute n as the cross 
product of e and v. We will maintain all the normals computed along the occluding boundary as 
constants when computing the shape of the object from its shading.  
 
The most important constraint we use to 
formulate shape from shading is called the image 
irradiance constraint, which states that the 
intensity value 𝐼 measured at a location (𝑥, 𝑦) 
should equal the result of plugging its (𝑓, 𝑔) value 
into the reflectance map 𝑅!. We therefore 
formulate an error 𝑒", that is the squared 
difference between the measured intensity value 
at each pixel and its estimate from the reflectance 
map, integrated over all the image pixels. We wish 
to find (𝑓, 𝑔) values at all pixels that minimize 𝑒". 
 
 
Since we cannot compute an (𝑓, 𝑔) from each 
measured intensity 𝐼, we use a smoothness 
assumption to relate the (𝑓, 𝑔) values of 
neighboring pixels. That is, we assume that 𝑓 and 
𝑔 vary slowly over the surface. To this end, we 
formulate a smoothness error 𝑒! as the sum of the 
squares of the first derivatives of 𝑓	and	𝑔 (i.e.,  
𝑓# , 	𝑓$ , 𝑔#		and	𝑔$), integrated over the entire 
image. We want our computed (𝑓, 𝑔) values to 
minimize 𝑒! as well. 
 
 

22

Image Irradiance Constraint

Assumption: Image irradiance (intensity) should equal 
the reflectance map. That is, % &, ( = *! #, $ .

Minimize:

/2 =0 % 1, 2 − 43(', )) 4 51 52

Aim: Penalize errors between image irradiance and 
reflectance map.

23

Smoothness Constraint

Assumption: Object surface is smooth. That is, the 
gradient values #, $ vary slowly.

Minimize:

where: '5 = 67
65 , '8 = 67

68 , )5 = 69
65 and )8 = 69

68

/3 =0 '54 + '84 + )54 + )84 51 52

Aim: Penalize rapid changes in # and $ during surface 
estimation.
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Now, we can formalize the shape from shading 
problem as finding the surface gradients (𝑓, 𝑔) at 
all image pixels that minimize a total error 𝑒 that is 
a weighted sum of the smoothness error 𝑒! and 
the image irradiance error 𝑒". The weighting 
constant 𝜆 allows us to control the relative 
importances of the two errors. For instance, we 
can use a high value if we know that our image 
intensity measurements are very accurate. 
Additionally, in an iterative shape from shading 
algorithm, we can progressively increase 𝜆 and 
thus relax our smoothness constraint as the (𝑓, 𝑔) 
values approach convergence. 
 
 
We now present the numerical shape from shading 
algorithm developed by Ikeuchi and Horn. Since all 
the constraints and error terms presented above 
are in the continuous domain, we need to map 
them to the discrete domain. First, we define the 
smoothness error at a pixel (𝑖, 𝑗) to be 𝑒! &,(, which 
includes the first derivatives of 𝑓 and 𝑔 computed 
using finite differences between 𝑓&,(  and 𝑔&,(  and 
their neighboring values. Similarly, we define the 
image irradiance error at pixel (𝑖, 𝑗) to be 𝑒" &,(, 
which equals the squared difference between the 
measured pixel intensity 𝐼&,(  and the value of the 
reflectance map for the corresponding 𝑓&,(  and 𝑔&,(  values. Finally, we compute the weighted sum of 
these two error terms per pixel and add them up for all pixels in the image to obtain the final error 𝑒. 
We want to find all the 𝑓&,(  and 𝑔&,(  values that minimize 𝑒. 
 
 

24

Shape from Shading

Find surface gradients #, $ at all image points that 

minimize the function:

/ = /3 + 7/2
where:

/3: Smoothness Constraint

/2: Image Irradiance Error

7:  Weight

[Ikeuchi 1981]

Known surface gradients (#, $) on 
occluding boundary are held constant.

25

Numerical Shape from Shading

Smoothness Error at point -, . :

Find ':,; , ):,; for all -, . that minimizes:

/3:,;
= <

= 8
9

':><,; − ':,;
4 + ':,;>< − ':,;

4

+ ):><,; − ):,;
4 + ):,;>< − ):,;

4

Image Irradiance Error at point -, . :

/2:,; = %:,; − 43 ':,; , ):,;
4

/ = ∑:∑; /3:,; + 7 /2:,;
[Ikeuchi 1981]
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If 𝑓),*  and 𝑔),*  minimize 𝑒, then the derivatives of 
𝑒	with respect to 𝑓),*  and 𝑔),*  should be equal to 
zero. Given an image with 𝑁 × 𝑁 pixels, we have 
𝑁+ known intensity values. However, we have 
2𝑁+ unknowns since there are two unknowns (𝑓 
and 𝑔) for each pixel. Fortunately, for any given 
pixel (𝑖, 𝑗), the values 𝑓&,( 	and 𝑔&,(  appear in only 
four terms in the error 𝑒 — twice in the term that 
corresponds to pixel (𝑖, 𝑗), once in the term for the 
pixel above it, and once in the term for the pixel 
to the left of it. 
 
  
Therefore, for any given pixel (𝑘, 𝑙),  we can write 
out the four terms of 𝑒 in which 𝑓),*  and 𝑔),*  
appear, find the derivatives of 𝑒 with respect to 

𝑓),*  and 𝑔),*, and set them equal to zero. Here, 𝑓),*  
and 𝑔),*  are the average values of 𝑓 and 𝑔, 

respectively, computed using the four neighbors 
(top, bottom, left and right) of pixel (𝑘, 𝑙). Note 
that 𝑓),*  and 𝑔),*  appear in both the reflectance 
map calculation and the calculation of the 
derivative of the reflectance map. In short, we 
have two non-linear equations in 𝑓),*  and 𝑔),*, that 
do not lend themselves to closed-form solutions 
for  𝑓),*  and 𝑔),*. 
  
Since a simple solution to the above equations is 
not forthcoming, we develop an iterative 
algorithm to solve for 𝑓),*  and 𝑔),* .  We rewrite the 
equations with 𝑓),*  and 𝑔),*  on the left-hand side 
and use the superscripts (𝑛) and (𝑛 + 1) to 
denote the current and next iteration numbers, 
respectively. Then, starting with some initial 𝑓),*  
and 𝑔),*  values, we compute the right-hand side of 
the equations to obtain new 𝑓),*  and 𝑔),*  values for 
all pixels in the image. We repeat this iterative 
process until the 𝑓),*  and 𝑔),*  values for all (𝑘, 𝑙) 

Iterative Solution

!!,#(%&') = ̅!!,#(%) + % &!,# − () !!,#(%), *!,#(%) +,()
,! *!,#

$ ,+!,#
($)

Update Rule:

*!,#
(%&') = *̅!,#

(%) + % &!,# − () !!,#
(%), *!,#

(%) +,()
,* *!,#$ ,+!,#

($)

• Use known normals to fix !, # values on occluding 
boundary. Initialize the rest to (0,0)

• Iteratively compute !, # until the solution has converged. 

$: iteration

29

26

Numerical Shape from Shading

If '?,@, )?,@ minimizes /, then ;/
;'?,@

= 0 ;/
;)?,@

= 0and

Given an image of size /×/, there are 2/" unknowns.
(=4 $",$’s and =4 &",$’s)

However, note that each ':,; and ):,; appears in 4 

terms in / = ∑:∑; /3:,; + 7 /2:,; :

2×
×

×

27

Numerical Shape from Shading

If '?,@, )?,@ minimizes /, then ;/
;'?,@

= 0 ;/
;)?,@

= 0and

23
2##,%

= 2 ##,% − ̅##,% − 26 %#,% −*! ##,%, $#,% 72*!
2# &!,#, '!,#

= 0

23
2$#,%

= 2 $#,% − $̅#,% − 26 %#,% −*! ##,%, $#,% 72*!
2$ &!,#, '!,#

= 0

Therefore:

where ̅'?,@ and )̅?,@ are local averages:

̅'?,@ = <
= '?><,@ + '?A<,@ + '?,@>< + '?,@A<

)̅?,@ = <
= )?><,@ + )?A<,@ + )?,@>< + )?,@A<

Eq 1:

Eq 2:
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converge, that is, all the  differences between the 𝑓),*  and 𝑔),* 	values computed in consecutive iterations 
are below a threshold. Generally, the initial values for 𝑓),*  and 𝑔),*  are chosen to be 0, except along the 
occluding boundries where the values we computed earlier (slide 21) are held constant.  
 
	
Here are a couple of shape from shading results 
(right) computed using rendered images of 
Lambertian objects (left). After applying the shape 
from shading algorithm, we obtain (𝑓, 𝑔) values 
over the entire image. Then, we apply the 
technique discussed in the photometric stereo 
lecture to go from surface normals to a continuous 
depth map. We see that in the case of the 
Lambertian vase (top), the estimated shape is fairly 
accurate. In the case of the bust, however, the 
results are less accurate around the eyes and the 
nose. This is because the normals on the actual 
object vary dramatically in these regions, which violates our smoothness assumption.  
 
 
Here we show results that use real images. In this 
case, a more advanced version of the above 
algorithm is used, which is able to handle the 
changes in reflectance (albedo) over the surface. In 
the case of the face, the reflectances of the 
eyebrows and the eyes are clearly different from 
that of the skin region. It should be noted that even 
the most sophisticated shape from shading 
algorithm can only handle diffuse objects and not 
highly specular ones, such polished metals. 
 
 
 

30

Results: Synthetic Objects

Scene Recovered Shape

Scene Recovered Shape
I.9

31

Results: Real Objects

Scene Recovered Shape

Scene Recovered Shape
I.10
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We conclude with a few examples related to 
shading illusions. Here, we see a large green disc 
with a small fuzzy blueish patch in the center. If 
we fixate our eyes on any one point in the disc, 
after a few seconds, the blue patch fades away, 
and we only see the large green disc. It turns out 
that the human visual system does not measure 
the color at each pixel, independently, but instead 
detects color changes over space and time. 
Generally, when we look at an object, our eyes 
move around, or scan, the object. The eye 
movements cause local changes in color as a 
function of time. In this example, our eye movements enable us to perceive the subtle change in color 
between the small blue patch and the larger green disc. However, when we fixate on a single point, the 
subtle color differences between the small patch and the large disc are no longer detected, causing the 
patch to vanish. 
 

Here we have the checker shadow illusion created by Adelson. In slide 34, patch A appears much darker 
than patch B. However, if we look at the two patches when the rest of the scene is hidden (slide 35), we 
realize that they have exactly the same brightness. What is going on here? Our visual system likes to 
assume that the illumination of a scene varies gradually. It first estimates this gradual change in 
illumination (due to the shadow cast by the cylinder in slide 34, for instance), and then normalizes the 
scene for this varying illumination to perceive the reflectance of each scene point. As a result, despite 
the fact that the two patches have equal brightness, we are able to perceive A as being made of darker 
material than B.  
 

34

Shading Illusions: Checker Shadow

B seems Brighter than A

I.11

[Adelson 1995]EYE AND BRAIN 35
…But, they have the same brightness

EYE AND BRAIN

Shading Illusions: Checker Shadow
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