
SIFT Detector

Shree K. Nayar

Monograph: FPCV-2-3

Module: Features

Series: First Principles of Computer Vision

Computer Science, Columbia University

August 31, 2022

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision SIFT Detector

FPCV-2-3 1

We know how to find edges and corners in images,
and how to use them to compute object
boundaries. This approach is very useful in
computer vision. Now let us discuss the problem
of recognizing objects, particularly those with
complex appearances. In this case, we want to be
able to detect and match features that are more
intricate than edges and corners. That is what the
Scale Invariant Feature Transform (SIFT) does for
us.

Let us start with a little quiz. For this image, what
technique would we use to recognize the objects?
This is a fairly simple case. From the lecture on
binary image processing, we know that we can
apply a threshold to get a clean binary image. We
can then compute the geometric properties of the
objects to recognize them, and find their positions
and orientations as well.

What about this image? While it may appear
somewhat more complex, we can still apply some
kind of a thresholding scheme to extract the
letters and numbers on the license plates. We can
then, once again, use our binary image processing
methods to recognize the characters and read the
license plates.

1

SIFT Detector

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

How would you recognize the following types of objects?

A Little Quiz

Objects on an assembly line

3

How would you recognize the following types of objects?

A Little Quiz

License plates

First Principles of Computer Vision SIFT Detector

FPCV-2-3 2

Now let’s consider a more interesting case. Here
we have a 2D object on the left, a planar object,
but one with a fairly complex appearance. We
want to find this object in the image on the right.
What technique should we use? Our first instinct
may be to apply template matching, which we
know how to do using normalized correlation. The
problem, however, is that the object does not
actually show up in its original form — it is rotated
and magnified differently in the image on the
right. In order to deal with rotation and scale, we
would have to create many templates of the
object under a variety of rotations and scales and then apply template matching using each one of the
templates. Such an approach would be computationally impractical, especially when the number of
objects of interest is large.

There is an even harder problem we need to cope with here, which is occlusion. We can see that the
object is partially obstructed by other objects. To deal with this using template matching would require
us to create a lot of little (partial) templates of the object. After applying each one, we would then have
to make sure that, in our final output, there are enough of the object’s templates that appear in the
image and that they lie in a certain geometric configuration. Such an approach, again, would not scale
well with the number of objects. Instead, what we would like to do is directly extract highly descriptive
features from the image of the object on the left. If we can then find many of these features in the image
on the right, and their appear in the same relative configuration with respect to each other, then we
have found the object. In fact, we can compute its rotation and scale as well. That is exactly what the
SIFT detector enables us to do.

We will describe the theory behind the SIFT
detector, its implementation, and how it is used to
solve vision problems such as image stitching and
object recognition. We are going to start by asking
the question: what is an interesting point in an
image? This is an area of computer vision research
that has a long history. The concept of an “interest
point” was first put forward by Hans Moravec in
the late 1970s. Since then, there has been much
work in this area that suggests that edges and
corners are not interesting enough in many real-
world applications. We need features that are

4

How would you recognize the following types of objects?

A Little Quiz

Template Rich 2D image

Find and Match “Interesting Points or Features”

5

Scale Invariant Feature Transform (SIFT) and its use

for image alignment and 2D object recognition.

Topics:

(1)What is an Interest Point?

(2)Detecting Blobs

(3)SIFT Detector

(4)SIFT Descriptor

SIFT Detector

First Principles of Computer Vision SIFT Detector

FPCV-2-3 3

more descriptive. Over time, it was realized that the notion of a “blob,” which has some local appearance
within it, is potentially a good interest point. Here, we use the term blob loosely – it is simply a patch
with a well-defined local appearance. As in the case of edge detection, we will use image derivatives to
develop a theory of blob detection. This approach has the advantage that it can detect blobs over
multiple scales, or sizes, of the object. We have to be able to deal with scale if we would like to allow the
object of interest to lie at any depth with respect to the camera.

Using this theory, we will develop the SIFT detector, which was proposed by David Lowe. We will see
how the SIFT detector is implemented in practice. Once SIFT features are detected in an image, we want
to be able to match them with features in other images. For this, we need to extract from each feature
some kind of signature that describes the local appearance around the location of the feature. That
brings us to the SIFT descriptor. We need to ensure that the descriptor is rotation and scale invariant so
it can be used for matching. We also need to ensure that it is insensitive to other factors such as the
illumination of the scene.

Let us discuss what really makes a point interesting in an image. Shown here are two images of an object
taken under different conditions. If we consider the outlined patch, we see that there is a difference in
size due to the different magnifications of the object in the two images. There are also differences in
orientation and lighting. Any interest point detector that we develop should be able to either
compensate for, or remove, these variations. Only then can we match a feature in one image to a feature
in another image.

6

What is an Interest Point?

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

7

Raw Images are Hard to Match

Different size, orientation, lighting, brightness, etc.

First Principles of Computer Vision SIFT Detector

FPCV-2-3 4

In other words, matching interest points becomes
easier if we can remove variations due to
magnification, orientation and lighting.

When developing an interest point detector, we do
not want it to respond to every patch in an image.
In fact, most patches in an image are simply not
interesting. Consider the patches shown here –
they include weak textures but they are neither
unique nor interesting enough to use for matching.

With the above discussion in mind, let us list some
of the desirable attributes of an interesting point.
First, it needs to have rich image content around it
in terms of brightness and color variation, such
that there is a certain degree of uniqueness that
can be exploited while matching. Second, it should
have a well-defined representation, meaning that
we should be able to compute a signature from the
appearance around it. Third, it must have a well-
defined position — when we recognize an object,
we typically want to know where it is located.
Fourth, its signature should be invariant to
rotation and scaling. Finally, it should be insensitive to the illumination of the scene.

8

Removing Sources of Variation

Matching becomes easier if we can
remove variations like size and orientation.

9

Some Patches are not “Interesting”

10

What is an Interesting Point/Feature?

• Has rich image content (brightness variation, color
variation, etc.) within the local window

• Has well-defined representation (signature) for
matching/comparing with other points

• Has a well-defined position in the image

• Should be invariant to image rotation and scaling

• Should be insensitive to lighting changes

First Principles of Computer Vision SIFT Detector

FPCV-2-3 5

Given that we know how to find edges, we may ask
why don’t we use them as interest points. Shown
on the left is an image with one of its edges
highlighted. On the right is a slightly more
magnified version of the same scene. In this image
it is easy to see that there are numerous edges that
appear similar to the one in the left image. In short,
edges are not unique, or descriptive, enough to
use for matching.

This might lead us to believe that perhaps corners
are good interest points. Indeed, corners are
interesting and they have been used for object recognition and other tasks. However, they tend to be
useful only in applications that involve simple objects — they are not descriptive enough for recognizing
complex objects.

Now let us take a look at something else. Shown
here is a patch in the image on the left, which we
will call a blob. On the right, is the same blob as it
appears in the magnified image on the right. In the
image patches shown in the bottom, the two blobs
are normalized in scale and we see that they look
similar. Even this simple blob is useful as it has
some kind of a local appearance due to the
brightness variation within it. Unlike an edge, the
position of the blob is well-defined. For these
reasons, a blob is a good candidate for an interest
point.

There are certain criteria for a blob-like feature to be useful. First, we need to be able to locate the blob,
meaning there should be a position associated with it. The position is not necessarily related to any
particular feature inside the blob, but rather emerges from the way we perform blob detection. Second,
it needs to have a size associated with it. Size is an interesting concept, as it has nothing to do with the
edges or boundaries inside the blob. It is simply the rough scale of its appearance, a fairly abstract
concept, as we shall see. Third, since the blob itself can appear in different orientations, we need to be

11

Are Lines/Edges Interesting?

Cannot “Localize” an Edge

12

Are Blobs Interesting?

Yes! Blobs have fixed position and definite size.

First Principles of Computer Vision SIFT Detector

FPCV-2-3 6

able to compute a principal orientation for it.
Finally, we need to be able to extract a description
— a signature — which relates to the appearance
of the blob. As mentioned earlier, this signature is
crucial for matching purposes.

Now, let us look at how we can find blobs in an
image. We are going to develop a technique that
uses the derivatives of images, so we can use some
of the tools that we developed for detecting edges.
As with edges, we are going to start with a 1D
signal and then extend our analysis to 2D.

First, we will review some of the tools we used for
edge detection. Shown here on top is our 1D
image, a noisy signal with an edge where the
vertical line is overlaid. To reduce noise, we
convolve it with the Gaussian shown in the middle
to get the result in the bottom, which is a signal
that is more or less free of noise, but one with the
edge blurred.

13

Blobs as Interest Points

For a Blob-like Feature to be useful, we need to:

• Locate the blob

• Determine its size

• Determine its orientation

• Formulate a description or

signature that is independent of

size and orientation

14

Detecting Blobs

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

15

Review: Gaussian Filter

!

"!

"! ∗ !

Gaussian

Gaussian Filter is used for removing noise by smoothing
REVIEW

First Principles of Computer Vision SIFT Detector

FPCV-2-3 7

Our second tool involves using the first derivative
to find the position of an edge. Instead of applying
the first derivative to the image, we can find the
first derivative of the Gaussian, shown in the
middle, and convolve the image with this function.
We end up with the output shown at the bottom,
where we get a clear peak at the location of the
edge.

As we know from our lecture on edge detection,
we can also locate an edge by using the second
derivative. Again, instead of finding the second
derivative of the image, we find the second
derivative of the Gaussian, which is shown in the
middle. This is referred to as the inverted Mexican
hat operator. When we apply this operator to the
noisy input signal, we get the result at the bottom,
which has a zero-crossing at the location of the
edge.

Now, let’s return to blobs. Shown here are some
1D blobs of different shapes. We want to find all of
these as blobs in the image. For our analysis here,
we will use the simple model shown in the top left
corner. Note, however, that the SIFT detector can
be used to find all the blobs shown here and more.

17

Review: 2nd Derivative of Gaussian

!

$" "!

$" "! ∗ !

2nd Derivative of
Gaussian

Zero Crossing in 2nd Derivative of Gaussian denote an Edge
REVIEW

18

1D Blobs

Examples of 1D Blob-like structures

16

Review: Derivative of Gaussian

$ "! ∗ !

!

$ "!
Derivative of

Gaussian

Extremum of Derivative of Gaussian denotes an Edge
REVIEW

First Principles of Computer Vision SIFT Detector

FPCV-2-3 8

First, we will look at a case where we have three
blobs, A, B, and C, where blob B is twice the width
of blob A, and blob C is three times as wide as blob
A. Note that they all have the same maximum
values. We will use the 𝜎 of the Gaussian to
explore what is called a “scale space” associated
with the input image.

If we apply the second derivative of the Gaussian
shown in the third row to the image in the first
row, we end up with the output shown in the
fourth row. Note that we get two distinct zero-
crossings in the output for blob C, but since blobs A and B are thinner, in these cases, the two zero-
crossings overlap.

Note that the strength of the output shown in the fourth row depends on the value of 𝜎 we use for the
Gaussian. As 𝜎 gets wider, the peak value of the output will decrease. To address this problem, we are
going to multiply the second derivative of the Gaussian with 𝜎2. The resulting output, shown in the fifth
row, is what is called a 𝜎-normalized output. In our case, all that does is change the scale, or the
amplitude, of the responses for all the three blobs.

Now let us see what happens when we change the
𝜎 of the Gaussian. If we increase it, we see that the
response (fifth row) for blob A gets much sharper,
with a distinct peak exactly where the center of the
blob lies. If we can find this peak, we have found
the blob. To find blobs B and C, we continue to
increase 𝜎 until the peaks for blob B and C appear
as well. Note that, as we increase 𝜎 in order to find
B and C, the response for A will decrease. That is,
for each blob, as we increase 𝜎, a peak will emerge
and then fade away.

Thus, our approach is to apply the second derivative of the Gaussian using multiple values of 𝜎,	which	is	
referred to as the scale parameter. Irrespective of the size of the blob, at some scale, the output will
attain a maximum value at the location of the blob. Note that the scales at which we obtain peaks for
the three blobs are proportional to the widths of the blobs themselves. At this point, we have a stack of
output images corresponding to different scales. This output can be represented with two parameters:

1D Blob and 2nd Derivative of Gaussian

!(#)

%!

&"%!
&#"

&"%!
&#" ∗ ! #

(" &
"%!
&#" ∗ ! #

19

20

1D Blob and 2nd Derivative of Gaussian

!(#)

%!

&"%!
&#"

&"%!
&#" ∗ ! #

Blob A Blob B Blob C

(" &
"%!
&#" ∗ ! #

Local Extrema in #, % -Space Represent Blobs

Characteristic Scale (%∗)

20

First Principles of Computer Vision SIFT Detector

FPCV-2-3 9

x as the spatial coordinate and 𝜎 as the scale. We going to identify local extrema in this two-dimensional
output. The x values where the extrema lie correspond to the locations of the blobs, and the values of 𝜎
at the extrema correspond to the sizes of the blobs. Shown in the second row are the widths of the
Gaussians that produced the maximum outputs (fifth row) for the three blobs. The 𝜎 values
corresponding to these Gaussians are called the characteristic scales of the blobs.

Note that we are not just finding a blob, but also
estimating its size or characteristic scale.
Continuing with our example signal with three
blobs, we find that blob A’s characteristic scale is
𝜎1 while blob B’s is exactly two times 𝜎1, since the
width of B is twice that of A. For blob C, we get
three times 𝜎1.

In summary, to do blob detection in 1D, we take
the 1D image and apply the 𝜎-normalized second
derivative of the Gaussian at many different scales.
This produces an image stack in which we can find
the (x,𝜎) pairs where the local extrema are located.
Here, we denote x* as the position of a blob and 𝜎*
as its characteristic scale.

21

Characteristic Scale and Blob Size

%"∗ = %# %$∗ = 2%# %%∗ = 3%#

Characteristic Scale ∝ Size of Blob

Size of Blob A

Size of Blob B

"!∗
"#∗

=
Size of Blob B

Size of Blob C

!!∗

!#∗
=;

Characteristic Scale: The " at which "-normalized
2nd derivative attains its extreme value.

!(#)

%!

Blob A Blob B Blob C

Characteristic Scale (%∗)

22

1D Blob Detection Summary

"∗: Blob Position

%∗, '∗ = arg max
(+,!)

'" .
""!
.%" ∗ ! %

'∗: Characteristic Scale (Blob Size)

Given: 1D signal #(%)

!$ #
$$%
#"$ ∗ & "Compute: at many scales "$, "%, "&, … , "' .

Find:

First Principles of Computer Vision SIFT Detector

FPCV-2-3 10

It is easy to extend this approach to 2D images.
Here we will use the 𝜎-normalized Laplacian of the
Gaussian, which is called the NLoG operator. We
end up with a stack of images where x and y
correspond to the spatial coordinates and the
scale 𝜎 corresponds to the third dimension. Our
goal then is to locate all the local extrema in this
stack.

Let us explore the scale space associated with an
image, which is essentially a stack of images where
the original image I(x,y) is convolved with
Gaussians with different 𝜎 values. Such a stack can
be denoted as S(x,y,𝜎). Shown here are four
images from such a stack, where 𝜎 increases from
left to right. In effect, the resolution of the image
decreases as 𝜎 increases.

Since, in practice, S(x,y,𝜎) has to be represented
discretely, we need to decide on which discrete
values of 𝜎 we should use. A convenient approach
is to use the expression shown here, where each
discrete scale is a constant s multiplied by the
previous scale, and σ! is the first scale.

23

2D Blob Detector

'$ = #$
#"$ +

#$
#*$

Normalized Laplacian of Gaussian (NLoG) is used as
the 2D equivalent for Blob Detection.

Location of Blobs given by Local Extrema after applying
Normalized Laplacian of Gaussian at many scales.

Laplacian LoGGaussian NLoG

$""! '"$""!"!

24

Scale-Space

Scale Space: Stack created by filtering an image with
Gaussians of different sigma !

/ %, 0, ' = " %, 0, ' ∗ 1(%, 0)

Increasing %, Higher Scale, Lower Resolution

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(

…

25

Creating Scale-Space

Selecting sigmas to generate the scale-space:

'- = '.4-

-: Constant multiplier

!(: Initial Scale

…

. = 0,1,2,3, …

Increasing %, Higher Scale, Lower Resolution

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(

First Principles of Computer Vision SIFT Detector

FPCV-2-3 11

Let us take a look at a couple of points in the
original image and see how each one responds to
the NLoG operator. Consider this point (black dot),
which is relatively rich in terms of its surrounding
content. In the bottom, are NLoG operator outputs
for the point plotted as a function of scale. Note
that a clear maximum emerges at σ".	 A circle with
radius proportional to σ" is drawn in the
corresponding image. If we take a close look at the
image content within the circle, we see that the
circle itself is not close to a real boundary of any
kind in the image. In other words, the blob we have
found is not really one in the usual sense of the word, which is, an image patch with uniform brightness
and a clear boundary around it. It is a blob in a more abstract sense. It is difficult to simply look at an
image and know exactly where the blobs will end up being detected and how large they will be.

If we choose another point on a flat region, since
the surrounding of the point has little image
variation, we end up with low operator values at
all scales. That is, the point does not produce a
clear extremum and hence will not be detected as
the center of a blob.

26

Blob Detection using Local Extrema

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(
!$'$+ ", *, !
(5678 ∗ 9(", *))

!(!& !$!' Scale

Characteristic Scale (%∗)

Extremum

…

[Lindeberg 1994]

27

Blob Detection using Local Extrema

[Lindeberg 1994]

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(

!(!& !$!' Scale

No Strong Extremum ⇒ No Blob

…

!$'$+ ", *, !
(5678 ∗ 9(", *))

First Principles of Computer Vision SIFT Detector

FPCV-2-3 12

We can now summarize blob detection in 2D.
Given an image I(x, y), we convolve the image with
the NLoG operator at many different scales, using
our simple formula for picking the scales. What we
end up with is essentially a stack of images. We will
then find local extrema in the stack. The position
(x,y) of each extremum corresponds to the position
of a blob and the corresponding 𝜎 represents the
size of the blob.

We now have all the tools needed to develop the
SIFT detector. It uses a few tricks to make it both
reliable and efficient.

Let us take a look at one of these tricks: an
approximation to the NLoG operator. If we
subtract a Gaussian from a second Gaussian with a
sigma that is the sigma of the first one multiplied
by a scalar s, it turns out that we get an operator,
which we can call the Difference of Gaussian (DoG),
that is a pretty good approximation of the NLoG
operator multiplied by a scale factor (s–1).
Therefore, given our image stack S(x,y,𝜎) which
represents the scale space of an input image, we
can estimate the output of the NLoG operator for
one scale by simply finding the difference between
two consecutive images in the stack.

28

2D Blob Detection Summary

(%∗, 0∗): Position of the blob

!∗, #∗, $∗ = arg max
(#,%,&)

$(+(,& ∗ .(!, #)

'∗: Size of the blob

Given an image 9(", *)

Convolve the image using NLoG at many scales "

Find:

29

SIFT Detector

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

30

Fast NLoG Approximation: DoG

= *() − *) ≈ (- − 1)"&/&*)Difference of Gaussian (DoG)

DoG ≈ (4 − 1) NLoG

NLoG

First Principles of Computer Vision SIFT Detector

FPCV-2-3 13

Let’s now see how SIFT is implemented. Given an
image, we first create the stack S(x,y,𝜎) of images by
convolving the original image with Gaussians of
increasing width. In order apply the NLoG operator
to S(x,y,𝜎), we will use the trick we just discussed
and find the difference between all pairs of
consecutive images in S(x,y,𝜎). This results in the
stack shown on the right.

Next, we need to find extrema in this stack of
images. We can do this in many different ways. One
way is to treat the stack as a volume and run a small
nxnxn window over the entire volume. At each
location, if the absolute value of center pixel is
significantly larger than the absolute values of its
neighbors, it is declared to be an extremum. This is
similar to the non-maximal suppression algorithm
we used for corner detection.

To suppress the effects of noise, we can use a
threshold to filter out weak extrema. The resulting
extrema are the detected interest points. These are
our candidates for SIFT features at many different
scales. On the right is shown the input image with
just three of the features, detected at three
different scales, overlaid as circles on the image.
The center of each circle corresponds to the
location of the feature and the radius of the circle is
proportional to its size. It is worth mentioning that
while we have highlighted only three features,
many more were detected for this image.

32

Extracting SIFT Interest Points

9(", *)

Gaussian
Scale-Space
+(", *, !)

Difference of
Gaussians (DoG)

≈ (- − 1)!$'$+(", *, !)

Image

⋮

[Lowe 2004]

34
(includes weak extrema)

Interest Point
Candidates

Difference of
Gaussians (DoG)

≈ (- − 1)!$'$+(", *, !)

Find Extremum
in every

3x3x3 grid

⋮ ⋮

Extracting SIFT Interest Points

[Lowe 2004]

35

Extracting SIFT Interest Points

(includes weak extrema)

Interest Point
Candidates

SIFT
Interest Points
(after removing
weak extrema)

⋮ ⋮

[Lowe 2004]

First Principles of Computer Vision SIFT Detector

FPCV-2-3 14

Here are the results of applying the SIFT detector to images of two objects. Again, every circle drawn on
the image is a SIFT interest point. Note that not all of these are obviously blobs. That is, the detected
blobs do not necessarily correspond to our notion of a blob. This does not matter as long as the features
can be robustly detected.

We now know how to find interest points. Let’s
discuss how to make SIFT scale invariant, so it can
be used for matching. On the left is an image of an
object, and on the right is a close-up image of the
same object. Consider the NLoG operator applied
to a single point (the black dot). At the bottom are
shown the outputs of the NLoG operator for the
points in the two images, plotted as a function of
scale. Since the object has different magnifications
in the two images, the NLoG operator peaks at
different sigma values. Since we know these sigma
values, we can normalize for scale, which means,
we can compensate for scale before we match two SIFT features.

37

SIFT Detection Examples

38

SIFT Detection Examples

40

Scale(()

("
+"
,(
#,
.,
()

("
+"
,(
#,
.,
()

Scale(()

SIFT Scale Invariance

[Mikolajczyk 2002]

'0∗ '"∗

&*∗
&+∗

: Ratio of Blob Sizes

First Principles of Computer Vision SIFT Detector

FPCV-2-3 15

The other aspect we need to worry about is
orientation, or rotation. Imagine that, after
normalizing for scale, the circle shown here is the
area that the blob occupies. We consider a square
window of pixels that substantially overlaps the
circle. We apply the gradient operator to all the
pixels within the window, which gives us the
magnitude and the orientation of the gradient at
each pixel. Since the magnitude also depends on
factors such as the camera gain and the
illumination of the scene, we ignore the magnitude
and only look at the orientation of the gradient.
We create a histogram, shown on the right, where the x-axis corresponds to the different directions for
the gradient and the bar corresponding to each gradient direction is the number of pixels in the window
on the left that have that direction. The gradient direction corresponding to the maximum value in the
histogram is what we refer to as the principal orientation of the feature.

The characteristic scale of the feature is used to
rescale the image patch that represent the
feature, and its principal orientation is used to
reorient the feature such that the principal
orientation points North. At this point, we are in a
position to match the contents within any two SIFT
features.

42

SIFT Rotation Invariance

Use the principal orientation to undo rotation

41

Computing the Principal Orientation

Principal Orientation

Use the histogram of gradient directions

Image gradient directions

1 = tan&# 56
57 /

56
5#

Choose the most
prominent gradient direction

First Principles of Computer Vision SIFT Detector

FPCV-2-3 16

To match a feature with another, we need to extract a concise signature that represents the visual
information within the feature. Consider the image shown on the right. We will focus on the feature that
is shown as a blue circle.

On the right is shown a scale and rotation
normalized window of pixels that corresponds to
the above SIFT feature. We compute the gradient
at each pixel and, as we did before, we ignore the
magnitude and retain the orientation at each pixel.
Next, we compute the gradient orientation
histogram of each of the four quadrants of the grid
and concatenate them to obtain the histogram
shown at the bottom of the slide. We refer to this
as the normalized histogram of the feature as it is
invariant to scale, rotation and other effects such
as illumination. This normalized histogram is called
the SIFT descriptor. It is used to match one SIFT feature with another.

45

SIFT Descriptor
Histograms of gradient directions over spatial regions

Normalized Histogram: Invariant to Rotation, Scale, Brightness

44

SIFT Descriptor
Histograms of gradient directions over spatial regions

[Lowe 2004]43

SIFT Descriptor

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

First Principles of Computer Vision SIFT Detector

FPCV-2-3 17

There are a few different metrics we can use to
match two SIFT descriptors. Let H1 and H2 be the
normalized histograms of two features. A simple
approach would be to compute the L2 distance
between two normalized histograms. We subtract
the second histogram from the first one, bin for
bin, square the differences, sum them, and find the
square root of the sum to get the L2 distance. If
this distance is zero, then we have a perfect match
between two descriptors.

Another way to compare descriptors is by using
normalized correlation, which we discussed in the
context of template matching. In this case, we
subtract the means from each of the histograms,
take the product of the two resulting histograms,
find the sum over all the bins, and divide the result
by the “energies” of the two histograms. If the
normalized correlation is one, we have a perfect
match.

Another metric that is useful in many settings is
the intersection metric. In this case, we compute
for each bin the minimum of the two histograms
and take the sum over all bins. In this case, we are,
in effect, computing the “overlap” between the
two histograms. The larger the value of the result,
the better the match.

46

Comparing SIFT Descriptors

Let 0%(1) and 0&(1) be two arrays of data of length 2.

Essentially comparing two arrays of data.

L2 Distance:

9 :#, :' = ;
(
:# < − :' <

'

Smaller the distance metric, better the match.

Perfect match when = >& , >$ = 0

47

Comparing SIFT Descriptors

Let 0%(1) and 0&(1) be two arrays of data of length 2.

Essentially comparing two arrays of data.

Normalized Correlation:

9 :#, :' = ∑(:# < − ?:# :' < − ?:'
∑(:# < − ?:# ' ∑(:' < − ?:' '

?:) = #
*∑(+#

* :) <where:

Larger the distance metric, better the match.

Perfect match when = >& , >$ = 1

48

Comparing SIFT Descriptors

Let 0%(1) and 0&(1) be two arrays of data of length 2.

Essentially comparing two arrays of data.

Intersection:

9 :#, :' =;
(
min :# < , :' <

Larger the distance metric, better the match.

First Principles of Computer Vision SIFT Detector

FPCV-2-3 18

Let us take a look at how well the SIFT detector and
descriptor work in practice. First, let us explore the
scale invariance. On the left are two images of the
same object but with different scales. Each one of
the lines drawn corresponds to a successful match.
On the right is another example. Once again, there
are plenty of matches. SIFT is able to find many
matches despite the fact that the scale changes
between the images are large.

Now let us examine rotation invariance. Here, the
object is rotated with respect to the reference
image by 45 degrees (left), 90 degrees (middle) and
180 degrees (right). Note that we get a lot of good
matches, even when the object is upside down!

Here we see the benefit of using SIFT when there is
clutter and occlusion in the scene. Occlusion is a
difficult problem, especially in the context of object
recognition. Shown here are three examples. In
each case, the object we are looking for is shown in
the bottom and the scene it lies in is shown on the
top. Note that, in each case, several features on the
object are successfully detected in the scene
image. In the example on the right, the object is
severely occluded in the scene but since many of
its features are detected, we can not only be sure
that the object is in the scene but also use the
detected features to compute its position, scale and orientation in the scene image.

51

SIFT Results: Robustness to Clutter

50

SIFT Results: Rotation Invariance

A B C

49

SIFT Results: Scale Invariance

A B

First Principles of Computer Vision SIFT Detector

FPCV-2-3 19

Now let us take a look at some other applications
of the SIFT detector. A popular one is image
stitching where we are given a set of images of the
same scene taken by rotating a camera and
merging the images to obtain a single contiguous
panorama. We are going to devote an entire
lecture to this problem, but let us take a look at a
simple case here. Shown here are two images of
the same scene with overlapping fields of view. We
first find SIFT features in both the images (white
dots) and then use the descriptors to match
features (red lines). Using these matching features,
we can warp one image such that it aligns with the other one. The process of warping an image requires
a geometric transformation that we will discuss in detail in the next lecture. For our purposes here, just
assume that such a transformation is possible.

After warping one image such that it lies in the
coordinate frame of the other, we overlay them to
get the image shown here, which is a panorama
with a field of view that is larger than that of the
original images. In the next lecture, we will
describe how we can remove the visible brightness
and color differences between the two images to
obtain a seamless panorama.

The same approach can be used to construct collages. Here we have a large collection of images. We
simply apply SIFT to each one and then match features among the different images. In this case, we
overlay the images on top of each other by simply translating, scaling and rotating them, but without
geometrically warping them. Although, the end-result is not a single perspective view of the scene, it
provides a representation that is useful for visualizing an unusually large field of view.

53

Panorama Stitching using SIFT

[Autopano]

Warp and combine images to create a larger image

52

Panorama Stitching using SIFT

[Autostitch]

Image 1 Image 2

Match SIFT Interest Points

First Principles of Computer Vision SIFT Detector

FPCV-2-3 20

We have seen that the SIFT detector and
descriptor can be used to solve a variety of visual
matching and recognition problems.
Unfortunately, it does not solve the general
problem of recognition of three-dimensional
objects. The kinds of objects we have examined
thus far are more or less flat (planar) objects.
When it comes to 3D objects, the problem is more
complex. If we look at an object from different
viewpoints, the local appearance, and hence the
SIFT descriptor, of any given feature is going to
vary with the viewpoint. So, if we applied SIFT to
two images of a 3D object captured from different viewpoints, we can expect to get lots of features in
each of the images, but less matches between the images as the difference in the viewpoints increases.

This is illustrated by the example shown here. On the left are two images of a scene taken from roughly
the same viewpoint. As expected, we get lots of matches, with each one of the lines representing a
successful match. In the center, we see two images taken with a difference in viewpoint of about 30
degrees along the horizontal direction. We see that there is dramatic drop in the number of matches
between the images. If we further increase the difference in viewpoint to about 90 degrees (right), we
hardly get any matches at all. Thus, in the context of recognition, SIFT is only reliable for small changes
in viewpoint. That said, it still is an extremely useful detector that has found many real-world
applications.

56

SIFT for 3D Objects?

No Change in Viewpoint 30° Change in Viewpoint 90° Change in Viewpoint

SIFT is reliable for only small changes in viewpoint

54

Auto Collage using SIFT

Captured Photos
[Nomura 2007] 55

Auto Collage using SIFT

[Nomura 2007]

Collage

First Principles of Computer Vision SIFT Detector

FPCV-2-3 21

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription,
editing and proofreading.

57

References and Credits

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

58

References: Textbooks

Computer Vision: Algorithms and Applications
Szeliski, R., Springer

60

References: Papers

[SIFT] SIFT Binaries. http://www.cs.ubc.ca/~lowe/keypoints/

[Witkin 1983] A. Witkin. “Scale-Space Filtering”. IJCAI, 1983.

[Mikolajczyk 2005] K. Mikolajczyk and C. Schmid. “A Performance
Evaluation of Local Descriptors.” PAMI, 2005.

[Mikolajczyk 2004] K. Mikolajczyk and C. Schmid. “Scale and Affine
Invariant Interest Point Detectors.” IJCV, 2004.

[Nomura 2007] Y. Nomura, L. Zhang and S.K. Nayar. “Scene Collages
and Flexible Camera Arrays.” EGSR, 2007.

59

References: Papers

[Harris and Stephens 1988] C. Harris and M. Stephens. “A Combined
Corner and Edge Detector”. 4th Alvey Vision Conference, 1988.

[Brown and Lowe 2002] M. Brown and D. Lowe. “Invariant Features from
Interest Point Groups”. BMVC, 2002.

[Lindeberg 1994] T. Lindeberg. “Scale-Space Theory: A Basic Tool for
Analysing Structures at Different Scales.” J. of Applied Statistics, 1994.

[Lowe 2004] D. Lowe.“Distinctive Image Features from Scale-Invariant
Keypoints”. IJCV, 2004.

[Mikolajczyk 2002] K. Mikolajczyk. “Detection of Local Features Invariant to
Affine Transformations.” Ph.D. Thesis, 2002.

[Autopano] Software to make panaromas using SIFT. http://user.cs.tu-
berlin.de/~nowozin/autopano-sift/

[Matas 2002] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions. BMVC, 2002.

First Principles of Computer Vision SIFT Detector

FPCV-2-3

References

[Szeliski 2022] Computer Vision: Algorithms and Applications, Szeliski, R., Springer, 2022.

[Autopano] Software to make panaromas using SIFT. http://user.cs.tu-berlin.de/~nowozin/autopano-

sift/

[Brown and Lowe 2002] M. Brown and D. Lowe. “Invariant Features from Interest Point Groups”. BMVC,

2002.

[Harris and Stephens 1988] C. Harris and M. Stephens. “A Combined Corner and Edge Detector”. 4th Alvey

Vision Conference, 1988.

[Lowe 2004] D. Lowe.“Distinctive Image Features from Scale-Invariant Keypoints”. IJCV, 2004.

[Lindeberg 1994] T. Lindeberg. “Scale-Space Theory: A Basic Tool for Analysing Structures at Different

Scales.” J. of Applied Statistics, 1994.

[Matas 2002] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust Wide Baseline Stereo from Maximally

Stable Extremal Regions. BMVC, 2002.

[Mikolajczyk 2002] K. Mikolajczyk. “Detection of Local Features Invariant to Affine Transformations.”

Ph.D. Thesis, 2002.

[Mikolajczyk 2004] K. Mikolajczyk and C. Schmid. “Scale and Affine Invariant Interest Point Detectors.”

IJCV, 2004.

[Mikolajczyk 2005] K. Mikolajczyk and C. Schmid. “A Performance Evaluation of Local Descriptors.” PAMI,

2005.

[Nomura 2007] Y. Nomura, L. Zhang and S.K. Nayar. “Scene Collages and Flexible Camera Arrays.” EGSR,

2007.

[SIFT] SIFT Binaries. http://www.cs.ubc.ca/~lowe/keypoints/

[Witkin 1983] A. Witkin. “Scale-Space Filtering”. IJCAI, 1983.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

https://fpcv.cs.columbia.edu/Monographs

First Principles of Computer Vision SIFT Detector

FPCV-2-3

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022G] Edge Detection, Nayar, S. K., Monograph FPCV-2-1, First Principles of Computer Vision,

Columbia University, New York, May 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

[Nayar 2025A] Image Stitching, Nayar, S. K., Monograph FPCV-2-4, First Principles of Computer Vision,

Columbia University, New York, January 2025.

[Nayar 2025H] Camera Calibration, Nayar, S. K., Monograph FPCV-4-1, First Principles of Computer
Vision, Columbia University, New York, April 2025.

[Nayar 2025I] Uncalibrated Stereo, Nayar, S. K., Monograph FPCV-4-2, First Principles of Computer
Vision, Columbia University, New York, April 2025.

[Nayar 2025J] Optical Flow, Nayar, S. K., Monograph FPCV-4-3, First Principles of Computer Vision,
Columbia University, New York, April 2025.

[Nayar 2025K] Structure from Motion, Nayar, S. K., Monograph FPCV-4-4, First Principles of Computer
Vision, Columbia University, New York, April 2025.

[Nayar 2025L] Object Tracking, Nayar, S. K., Monograph FPCV-5-1, First Principles of Computer Vision,
Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

	SIFT Detector FPCV-2-3
	SIFT Detector FPCV-2-3
	SIFT Detector SN 08-31-22 COVER
	SIFT Detector SN 08-31-22 FINAL

	References SIFT

