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We know how to find edges and corners in images, 
and how to use them to compute object 
boundaries. This approach is very useful in 
computer vision. Now let us discuss the problem 
of recognizing objects, particularly those with 
complex appearances. In this case, we want to be 
able to detect and match features that are more 
intricate than edges and corners. That is what the 
Scale Invariant Feature Transform (SIFT) does for 
us.  
 
 
 
 
Let us start with a little quiz. For this image, what 
technique would we use to recognize the objects? 
This is a fairly simple case. From the lecture on 
binary image processing, we know that we can 
apply a threshold to get a clean binary image. We 
can then compute the geometric properties of the 
objects to recognize them, and find their positions 
and orientations as well.  
 
 
 
 
 
What about this image? While it may appear 
somewhat more complex, we can still apply some 
kind of a thresholding scheme to extract the 
letters and numbers on the license plates. We can 
then, once again, use our binary image processing 
methods to recognize the characters and read the 
license plates.  
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How would you recognize the following types of objects?

A Little Quiz

Objects on an assembly line
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How would you recognize the following types of objects?

A Little Quiz
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Now let’s consider a more interesting case. Here 
we have a 2D object on the left, a planar object, 
but one with a fairly complex appearance. We 
want to find this object in the image on the right. 
What technique should we use? Our first instinct 
may be to apply template matching, which we 
know how to do using normalized correlation. The 
problem, however, is that the object does not 
actually show up in its original form — it is rotated 
and magnified differently in the image on the 
right. In order to deal with rotation and scale, we 
would have to create many templates of the 
object under a variety of rotations and scales and then apply template matching using each one of the 
templates. Such an approach would be computationally impractical, especially when the number of 
objects of interest is large.  
 
There is an even harder problem we need to cope with here, which is occlusion. We can see that the 
object is partially obstructed by other objects. To deal with this using template matching would require 
us to create a lot of little (partial) templates of the object. After applying each one, we would then have 
to make sure that, in our final output, there are enough of the object’s templates that appear in the 
image and that they lie in a certain geometric configuration. Such an approach, again, would not scale 
well with the number of objects. Instead, what we would like to do is directly extract highly descriptive 
features from the image of the object on the left. If we can then find many of these features in the image 
on the right, and their appear in the same relative configuration with respect to each other, then we 
have found the object. In fact, we can compute its rotation and scale as well. That is exactly what the 
SIFT detector enables us to do.  
 
We will describe the theory behind the SIFT 
detector, its implementation, and how it is used to 
solve vision problems such as image stitching and 
object recognition. We are going to start by asking 
the question: what is an interesting point in an 
image? This is an area of computer vision research 
that has a long history. The concept of an “interest 
point” was first put forward by Hans Moravec in 
the late 1970s. Since then, there has been much 
work in this area that suggests that edges and 
corners are not interesting enough in many real-
world applications. We need features that are 

4

How would you recognize the following types of objects?

A Little Quiz

Template Rich 2D image

Find and Match “Interesting Points or Features”
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Scale Invariant Feature Transform (SIFT) and its use 

for image alignment and 2D object recognition.
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more descriptive. Over time, it was realized that the notion of a “blob,” which has some local appearance 
within it, is potentially a good interest point.  Here, we use the term blob loosely – it is simply a patch 
with a well-defined local appearance. As in the case of edge detection, we will use image derivatives to 
develop a theory of blob detection. This approach has the advantage that it can detect blobs over 
multiple scales, or sizes, of the object. We have to be able to deal with scale if we would like to allow the 
object of interest to lie at any depth with respect to the camera.  
 
Using this theory, we will develop the SIFT detector, which was proposed by David Lowe. We will see 
how the SIFT detector is implemented in practice. Once SIFT features are detected in an image, we want 
to be able to match them with features in other images. For this, we need to extract from each feature 
some kind of signature that describes the local appearance around the location of the feature. That 
brings us to the SIFT descriptor. We need to ensure that the descriptor is rotation and scale invariant so 
it can be used for matching. We also need to ensure that it is insensitive to other factors such as the 
illumination of the scene. 
 

Let us discuss what really makes a point interesting in an image. Shown here are two images of an object 
taken under different conditions. If we consider the outlined patch, we see that there is a difference in 
size due to the different magnifications of the object in the two images. There are also differences in 
orientation and lighting. Any interest point detector that we develop should be able to either 
compensate for, or remove, these variations. Only then can we match a feature in one image to a feature 
in another image.  
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Raw Images are Hard to Match

Different size, orientation, lighting, brightness, etc.
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In other words, matching interest points becomes 
easier if we can remove variations due to 
magnification, orientation and lighting.  
 
 
 
 
 
 
 
 
 
 
When developing an interest point detector, we do 
not want it to respond to every patch in an image. 
In fact, most patches in an image are simply not 
interesting. Consider the patches shown here – 
they include weak textures but they are neither 
unique nor interesting enough to use for matching.  
 
 
 
 
 
 
 
 
With the above discussion in mind, let us list some 
of the desirable attributes of an interesting point. 
First, it needs to have rich image content around it 
in terms of brightness and color variation, such 
that there is a certain degree of uniqueness that 
can be exploited while matching. Second, it should 
have a well-defined representation, meaning that 
we should be able to compute a signature from the 
appearance around it. Third, it must have a well-
defined position — when we recognize an object, 
we typically want to know where it is located. 
Fourth, its signature should be invariant to 
rotation and scaling. Finally, it should be insensitive to the illumination of the scene.  

8

Removing Sources of Variation

Matching becomes easier if we can 
remove variations like size and orientation.
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Some Patches are not “Interesting”

10

What is an Interesting Point/Feature?

• Has rich image content (brightness variation, color 
variation, etc.) within the local window

• Has well-defined representation (signature) for 
matching/comparing with other points

• Has a well-defined position in the image

• Should be invariant to image rotation and scaling

• Should be insensitive to lighting changes
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Given that we know how to find edges, we may ask 
why don’t we use them as interest points. Shown 
on the left is an image with one of its edges 
highlighted. On the right is a slightly more 
magnified version of the same scene. In this image 
it is easy to see that there are numerous edges that 
appear similar to the one in the left image. In short, 
edges are not unique, or descriptive, enough to 
use for matching.  
 
This might lead us to believe that perhaps corners 
are good interest points. Indeed, corners are 
interesting and they have been used for object recognition and other tasks. However, they tend to be 
useful only in applications that involve simple objects — they are not descriptive enough for recognizing 
complex objects.  
 
 
Now let us take a look at something else. Shown 
here is a patch in the image on the left, which we 
will call a blob. On the right, is the same blob as it 
appears in the magnified image on the right. In the 
image patches shown in the bottom, the two blobs 
are normalized in scale and we see that they look 
similar. Even this simple blob is useful as it has 
some kind of a local appearance due to the 
brightness variation within it. Unlike an edge, the 
position of the blob is well-defined. For these 
reasons, a blob is a good candidate for an interest 
point. 
 
 
There are certain criteria for a blob-like feature to be useful. First, we need to be able to locate the blob, 
meaning there should be a position associated with it. The position is not necessarily related to any 
particular feature inside the blob, but rather emerges from the way we perform blob detection. Second, 
it needs to have a size associated with it. Size is an interesting concept, as it has nothing to do with the 
edges or boundaries inside the blob. It is simply the rough scale of its appearance, a fairly abstract 
concept, as we shall see. Third, since the blob itself can appear in different orientations, we need to be 

11

Are Lines/Edges Interesting?

Cannot “Localize” an Edge

12

Are Blobs Interesting?

Yes! Blobs have fixed position and definite size.
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able to compute a principal orientation for it. 
Finally, we need to be able to extract a description 
— a signature — which relates to the appearance 
of the blob. As mentioned earlier, this signature is 
crucial for matching purposes. 
 
 
 
 
 
 
 
 
Now, let us look at how we can find blobs in an 
image. We are going to develop a technique that 
uses the derivatives of images, so we can use some 
of the tools that we developed for detecting edges. 
As with edges, we are going to start with a 1D 
signal and then extend our analysis to 2D.  
 
 
 
 
 
 
 
First, we will review some of the tools we used for 
edge detection. Shown here on top is our 1D 
image, a noisy signal with an edge where the 
vertical line is overlaid. To reduce noise, we 
convolve it with the Gaussian shown in the middle 
to get the result in the bottom, which is a signal 
that is more or less free of noise, but one with the 
edge blurred. 
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Blobs as Interest Points

For a Blob-like Feature to be useful, we need to:

• Locate the blob

• Determine its size

• Determine its orientation

• Formulate a description or 

signature that is independent of 

size and orientation
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Review: Gaussian Filter

!

"!

"! ∗ !

Gaussian

Gaussian Filter is used for removing noise by smoothing
REVIEW
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Our second tool involves using the first derivative 
to find the position of an edge. Instead of applying 
the first derivative to the image, we can find the 
first derivative of the Gaussian, shown in the 
middle, and convolve the image with this function. 
We end up with the output shown at the bottom, 
where we get a clear peak at the location of the 
edge.  
 
 
 
 
 
As we know from our lecture on edge detection, 
we can also locate an edge by using the second 
derivative. Again, instead of finding the second 
derivative of the image, we find the second 
derivative of the Gaussian, which is shown in the 
middle. This is referred to as the inverted Mexican 
hat operator. When we apply this operator to the 
noisy input signal, we get the result at the bottom, 
which has a zero-crossing at the location of the 
edge. 
 
 
 
Now, let’s return to blobs. Shown here are some 
1D blobs of different shapes. We want to find all of 
these as blobs in the image. For our analysis here, 
we will use the simple model shown in the top left 
corner. Note, however, that the SIFT detector can 
be used to find all the blobs shown here and more.  
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Review: 2nd Derivative of Gaussian

!

$" "!

$" "! ∗ !

2nd Derivative of
Gaussian

Zero Crossing in 2nd Derivative of Gaussian denote an Edge
REVIEW
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1D Blobs

Examples of 1D Blob-like structures
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Review: Derivative of Gaussian

$ "! ∗ !

!

$ "!
Derivative of

Gaussian

Extremum of Derivative of Gaussian denotes an Edge
REVIEW
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First, we will look at a case where we have three 
blobs, A, B, and C, where blob B is twice the width 
of blob A, and blob C is three times as wide as blob 
A. Note that they all have the same maximum 
values. We will use the 𝜎 of the Gaussian to 
explore what is called a “scale space” associated 
with the input image.  
 
If we apply the second derivative of the Gaussian 
shown in the third row to the image in the first 
row, we end up with the output shown in the 
fourth row. Note that we get two distinct zero-
crossings in the output for blob C, but since blobs A and B are thinner, in these cases, the two zero-
crossings overlap.  
 
Note that the strength of the output shown in the fourth row depends on the value of 𝜎 we use for the 
Gaussian. As 𝜎 gets wider, the peak value of the output will decrease. To address this problem, we are 
going to multiply the second derivative of the Gaussian with 𝜎2. The resulting output, shown in the fifth 
row, is what is called a 𝜎-normalized output. In our case, all that does is change the scale, or the 
amplitude, of the responses for all the three blobs.  
 
 
Now let us see what happens when we change the 
𝜎 of the Gaussian. If we increase it, we see that the 
response (fifth row) for blob A gets much sharper, 
with a distinct peak exactly where the center of the 
blob lies. If we can find this peak, we have found 
the blob. To find blobs B and C, we continue to 
increase 𝜎 until the peaks for blob B and C appear 
as well. Note that, as we increase 𝜎 in order to find 
B and C, the response for A will decrease. That is, 
for each blob, as we increase 𝜎, a peak will emerge 
and then fade away.  
 
Thus, our approach is to apply the second derivative of the Gaussian using multiple values of 𝜎,	which	is	
referred to as the scale parameter. Irrespective of the size of the blob, at some scale, the output will 
attain a maximum value at the location of the blob. Note that the scales at which we obtain peaks for 
the three blobs are proportional to the widths of the blobs themselves. At this point, we have a stack of 
output images corresponding to different scales. This output can be represented with two parameters: 

1D Blob and 2nd Derivative of Gaussian

!(#)

%!

&"%!
&#"

&"%!
&#" ∗ ! #

(" &
"%!
&#" ∗ ! #
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1D Blob and 2nd Derivative of Gaussian

!(#)

%!

&"%!
&#"

&"%!
&#" ∗ ! #

Blob A Blob B Blob C

(" &
"%!
&#" ∗ ! #

Local Extrema in #, % -Space Represent Blobs

Characteristic Scale (%∗)
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x as the spatial coordinate and 𝜎 as the scale. We going to identify local extrema in this two-dimensional 
output. The x values where the extrema lie correspond to the locations of the blobs, and the values of 𝜎 
at the extrema correspond to the sizes of the blobs. Shown in the second row are the widths of the 
Gaussians that produced the maximum outputs (fifth row) for the three blobs. The 𝜎 values 
corresponding to these Gaussians are called the characteristic scales of the blobs. 
 
 
Note that we are not just finding a blob, but also 
estimating its size or characteristic scale. 
Continuing with our example signal with three 
blobs, we find that blob A’s characteristic scale is 
𝜎1 while blob B’s is exactly two times 𝜎1, since the 
width of B is twice that of A. For blob C, we get 
three times 𝜎1.  
 
 
 
 
 
 
In summary, to do blob detection in 1D, we take 
the 1D image and apply the 𝜎-normalized second 
derivative of the Gaussian at many different scales. 
This produces an image stack in which we can find 
the (x,𝜎) pairs where the local extrema are located. 
Here, we denote x* as the position of a blob and 𝜎* 
as its characteristic scale. 
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Characteristic Scale and Blob Size

%"∗ = %# %$∗ = 2%# %%∗ = 3%#

Characteristic Scale ∝ Size of Blob

Size of Blob A

Size of Blob B

"!∗
"#∗

=
Size of Blob B

Size of Blob C

!!∗

!#∗
=;

Characteristic Scale: The " at which "-normalized 
2nd derivative attains its extreme value.

!(#)

%!

Blob A Blob B Blob C

Characteristic Scale (%∗)
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1D Blob Detection Summary

"∗: Blob Position

%∗, '∗ = arg max
(+,!)

'" .
""!
.%" ∗ ! %

'∗: Characteristic Scale (Blob Size)

Given: 1D signal #(%)

!$ #
$$%
#"$ ∗ & "Compute:                   at many scales "$, "%, "&, … , "' .

Find:
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It is easy to extend this approach to 2D images. 
Here we will use the 𝜎-normalized Laplacian of the 
Gaussian, which is called the NLoG operator. We 
end up with a stack of images where x and y 
correspond to the spatial coordinates and the 
scale 𝜎 corresponds to the third dimension. Our 
goal then is to locate all the local extrema in this 
stack.  
 
 
 
 
 
Let us explore the scale space associated with an 
image, which is essentially a stack of images where 
the original image I(x,y) is convolved with 
Gaussians with different 𝜎 values. Such a stack can 
be denoted as S(x,y,𝜎). Shown here are four 
images from such a stack, where 𝜎 increases from 
left to right. In effect, the resolution of the image 
decreases as 𝜎 increases.  
 
 
 
 
 
Since, in practice, S(x,y,𝜎) has to be represented 
discretely, we need to decide on which discrete 
values of 𝜎 we should use. A convenient approach 
is to use the expression shown here, where each 
discrete scale is a constant s multiplied by the 
previous scale, and σ! is the first scale.  
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2D Blob Detector

'$ = #$
#"$ +

#$
#*$

Normalized Laplacian of Gaussian (NLoG) is used as 
the 2D equivalent for Blob Detection.

Location of Blobs given by Local Extrema after applying 
Normalized Laplacian of Gaussian at many scales.

Laplacian LoGGaussian NLoG

$""! '"$""!"!
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Scale-Space

Scale Space: Stack created by filtering an image with 
Gaussians of different sigma !

/ %, 0, ' = " %, 0, ' ∗ 1(%, 0)

Increasing %, Higher Scale, Lower Resolution

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(

…
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Creating Scale-Space

Selecting sigmas to generate the scale-space:

'- = '.4-

-: Constant multiplier

!(: Initial Scale

…

. = 0,1,2,3, …

Increasing %, Higher Scale, Lower Resolution

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(
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Let us take a look at a couple of points in the 
original image and see how each one responds to 
the NLoG operator. Consider this point (black dot), 
which is relatively rich in terms of its surrounding 
content. In the bottom, are NLoG operator outputs 
for the point plotted as a function of scale. Note 
that a clear maximum emerges at  σ".	 A circle with 
radius proportional to σ" is drawn in the 
corresponding image. If we take a close look at the 
image content within the circle, we see that the 
circle itself is not close to a real boundary of any 
kind in the image. In other words, the blob we have 
found is not really one in the usual sense of the word, which is, an image patch with uniform brightness 
and a clear boundary around it. It is a blob in a more abstract sense. It is difficult to simply look at an 
image and know exactly where the blobs will end up being detected and how large they will be.  
 
 
If we choose another point on a flat region, since 
the surrounding of the point has little image 
variation, we end up with low operator values at 
all scales. That is, the point does not produce a 
clear extremum and hence will not be detected as 
the center of a blob. 
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Blob Detection using Local Extrema

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(
!$'$+ ", *, !
(5678 ∗ 9(", *))

!( !& !$ !' Scale

Characteristic Scale (%∗)

Extremum

…

[Lindeberg 1994]

27

Blob Detection using Local Extrema

[Lindeberg 1994]

+ ", *, !& + ", *, !$ + ", *, !'+ ", *, !(

!( !& !$ !' Scale

No Strong Extremum ⇒ No Blob

…

!$'$+ ", *, !
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We can now summarize blob detection in 2D. 
Given an image I(x, y), we convolve the image with 
the NLoG operator at many different scales, using 
our simple formula for picking the scales. What we 
end up with is essentially a stack of images. We will 
then find local extrema in the stack. The position 
(x,y) of each extremum corresponds to the position 
of a blob and the corresponding 𝜎 represents the 
size of the blob. 
 
 
 
 
We now have all the tools needed to develop the 
SIFT detector. It uses a few tricks to make it both 
reliable and efficient. 
 
 
 
 
 
 
 
 
 
 
Let us take a look at one of these tricks: an 
approximation to the NLoG operator. If we 
subtract a Gaussian from a second Gaussian with a 
sigma that is the sigma of the first one multiplied 
by a scalar s, it turns out that we get an operator, 
which we can call the Difference of Gaussian (DoG), 
that is a pretty good approximation of the NLoG 
operator multiplied by a scale factor (s–1). 
Therefore, given our image stack S(x,y,𝜎) which 
represents the scale space of an input image, we 
can estimate the output of the NLoG operator for 
one scale by simply finding the difference between 
two consecutive images in the stack.  

28

2D Blob Detection Summary

(%∗, 0∗): Position of the blob

!∗, #∗, $∗ = arg max
(#,%,&)

$(+(,& ∗ .(!, #)

'∗: Size of the blob

Given an image 9(", *)

Convolve the image using NLoG at many scales "

Find:
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Fast NLoG Approximation: DoG

= *() − *) ≈ (- − 1)"&/&*)Difference of Gaussian (DoG)

DoG ≈ (4 − 1) NLoG

NLoG
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Let’s now see how SIFT is implemented. Given an 
image, we first create the stack S(x,y,𝜎) of images by 
convolving the original image with Gaussians of 
increasing width. In order apply the NLoG operator 
to S(x,y,𝜎), we will use the trick we just discussed 
and find the difference between all pairs of 
consecutive images in S(x,y,𝜎). This results in the 
stack shown on the right. 
 
 
 
 
 
Next, we need to find extrema in this stack of 
images. We can do this in many different ways. One 
way is to treat the stack as a volume and run a small 
nxnxn window over the entire volume. At each 
location, if the absolute value of center pixel is 
significantly larger than the absolute values of its 
neighbors, it is declared to be an extremum. This is 
similar to the non-maximal suppression algorithm 
we used for corner detection.  
 
 
 
 
To suppress the effects of noise, we can use a 
threshold to filter out weak extrema. The resulting 
extrema are the detected interest points. These are 
our candidates for SIFT features at many different 
scales. On the right is shown the input image with 
just three of the features, detected at three 
different scales, overlaid as circles on the image. 
The center of each circle corresponds to the 
location of the feature and the radius of the circle is 
proportional to its size. It is worth mentioning that 
while we have highlighted only three features, 
many more were detected for this image. 
 

32

Extracting SIFT Interest Points

9(", *)

Gaussian 
Scale-Space
+(", *, !)

Difference of 
Gaussians (DoG)

≈ (- − 1)!$'$+(", *, !)

Image

⋮

[Lowe 2004]
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(includes weak extrema)

Interest Point
Candidates

Difference of 
Gaussians (DoG)

≈ (- − 1)!$'$+(", *, !)

Find Extremum
in every

3x3x3 grid

⋮ ⋮

Extracting SIFT Interest Points

[Lowe 2004]
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Extracting SIFT Interest Points

(includes weak extrema)

Interest Point
Candidates

SIFT
Interest Points
(after removing 
weak extrema)

⋮ ⋮

[Lowe 2004]
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Here are the results of applying the SIFT detector to images of two objects. Again, every circle drawn on 
the image is a SIFT interest point. Note that not all of these are obviously blobs. That is, the detected 
blobs do not necessarily correspond to our notion of a blob. This does not matter as long as the features 
can be robustly detected.  

 
 
We now know how to find interest points. Let’s 
discuss how to make SIFT scale invariant, so it can 
be used for matching. On the left is an image of an 
object, and on the right is a close-up image of the 
same object. Consider the NLoG operator applied 
to a single point (the black dot). At the bottom are 
shown the outputs of the NLoG operator for the 
points in the two images, plotted as a function of 
scale. Since the object has different magnifications 
in the two images, the NLoG operator peaks at 
different sigma values. Since we know these sigma 
values, we can normalize for scale, which means, 
we can compensate for scale before we match two SIFT features. 
 

37

SIFT Detection Examples
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SIFT Detection Examples
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The other aspect we need to worry about is 
orientation, or rotation. Imagine that, after 
normalizing for scale, the circle shown here is the 
area that the blob occupies. We consider a square 
window of pixels that substantially overlaps the 
circle. We apply the gradient operator to all the 
pixels within the window, which gives us the 
magnitude and the orientation of the gradient at 
each pixel. Since the magnitude also depends on 
factors such as the camera gain and the 
illumination of the scene, we ignore the magnitude 
and only look at the orientation of the gradient. 
We create a histogram, shown on the right, where the x-axis corresponds to the different directions for 
the gradient and the bar corresponding to each gradient direction is the number of pixels in the window 
on the left that have that direction.  The gradient direction corresponding to the maximum value in the 
histogram is what we refer to as the principal orientation of the feature. 
 
The characteristic scale of the feature is used to 
rescale the image patch that represent the 
feature, and its principal orientation is used to 
reorient the feature such that the principal 
orientation points North.  At this point, we are in a 
position to match the contents within any two SIFT 
features.  

42

SIFT Rotation Invariance

Use the principal orientation to undo rotation

41

Computing the Principal Orientation

Principal Orientation

Use the histogram of gradient directions

Image gradient directions

1 = tan&# 56
57 /

56
5#

Choose the most 
prominent gradient direction
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To match a feature with another, we need to extract a concise signature that represents the visual 
information within the feature. Consider the image shown on the right. We will focus on the feature that 
is shown as a blue circle.  
 
 
On the right is shown a scale and rotation 
normalized window of pixels that corresponds to 
the above SIFT feature. We compute the gradient 
at each pixel and, as we did before, we ignore the 
magnitude and retain the orientation at each pixel. 
Next, we compute the gradient orientation 
histogram of each of the four quadrants of the grid 
and concatenate them to obtain the histogram 
shown at the bottom of the slide. We refer to this 
as the normalized histogram of the feature as it is 
invariant to scale, rotation and other effects such 
as illumination. This normalized histogram is called 
the SIFT descriptor. It is used to match one SIFT feature with another.  
  
 

45

SIFT Descriptor
Histograms of gradient directions over spatial regions

Normalized Histogram: Invariant to Rotation, Scale, Brightness

44

SIFT Descriptor
Histograms of gradient directions over spatial regions

[Lowe 2004]43

SIFT Descriptor

Topic: SIFT Detector, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University
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There are a few different metrics we can use to 
match two SIFT descriptors. Let H1 and H2 be the 
normalized histograms of two features. A simple 
approach would be to compute the L2 distance 
between two normalized histograms. We subtract 
the second histogram from the first one, bin for 
bin, square the differences, sum them, and find the 
square root of the sum to get the L2 distance. If 
this distance is zero, then we have a perfect match 
between two descriptors. 
 
 
 
Another way to compare descriptors is by using 
normalized correlation, which we discussed in the 
context of template matching. In this case, we 
subtract the means from each of the histograms, 
take the product of the two resulting histograms, 
find the sum over all the bins, and divide the result 
by the “energies” of the two histograms. If the 
normalized correlation is one, we have a perfect 
match.  
 
 
 
 
Another metric that is useful in many settings is 
the intersection metric. In this case, we compute 
for each bin the minimum of the two histograms 
and take the sum over all bins. In this case, we are, 
in effect, computing the “overlap” between the 
two histograms. The larger the value of the result, 
the better the match. 
 
 
 
 
 

46

Comparing SIFT Descriptors

Let 0%(1) and  0&(1) be two arrays of data of length 2.

Essentially comparing two arrays of data.

L2 Distance:

9 :#, :' = ;
(
:# < − :' <

'

Smaller the distance metric, better the match.

Perfect match when = >& , >$ = 0

47

Comparing SIFT Descriptors

Let 0%(1) and  0&(1) be two arrays of data of length 2.

Essentially comparing two arrays of data.

Normalized Correlation:

9 :#, :' = ∑( :# < − ?:# :' < − ?:'
∑( :# < − ?:# ' ∑( :' < − ?:' '

?:) = #
*∑(+#

* :) <where:

Larger the distance metric, better the match.

Perfect match when = >& , >$ = 1

48

Comparing SIFT Descriptors

Let 0%(1) and  0&(1) be two arrays of data of length 2.

Essentially comparing two arrays of data.

Intersection:

9 :#, :' =;
(
min :# < , :' <

Larger the distance metric, better the match.
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Let us take a look at how well the SIFT detector and 
descriptor work in practice. First, let us explore the 
scale invariance. On the left are two images of the 
same object but with different scales. Each one of 
the lines drawn corresponds to a successful match. 
On the right is another example. Once again, there 
are plenty of matches. SIFT is able to find many 
matches despite the fact that the scale changes 
between the images are large. 
 
 
 
 
Now let us examine rotation invariance. Here, the 
object is rotated with respect to the reference 
image by 45 degrees (left), 90 degrees (middle) and 
180 degrees (right). Note that we get a lot of good 
matches, even when the object is upside down! 
 
 
 
 
 
 
 
 
 
Here we see the benefit of using SIFT when there is 
clutter and occlusion in the scene. Occlusion is a 
difficult problem, especially in the context of object 
recognition. Shown here are three examples. In 
each case, the object we are looking for is shown in 
the bottom and the scene it lies in is shown on the 
top. Note that, in each case, several features on the 
object are successfully detected in the scene 
image. In the example on the right, the object is 
severely occluded in the scene but since many of 
its features are detected, we can not only be sure 
that the object is in the scene but also use the 
detected features to compute its position, scale and orientation in the scene image.   
 

51

SIFT Results: Robustness to Clutter

50

SIFT Results: Rotation Invariance

A B C

49

SIFT Results: Scale Invariance

A B
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Now let us take a look at some other applications 
of the SIFT detector. A popular one is image 
stitching where we are given a set of images of the 
same scene taken by rotating a camera and 
merging the images to obtain a single contiguous 
panorama. We are going to devote an entire 
lecture to this problem, but let us take a look at a 
simple case here. Shown here are two images of 
the same scene with overlapping fields of view. We 
first find SIFT features in both the images (white 
dots) and then use the descriptors to match 
features (red lines). Using these matching features, 
we can warp one image such that it aligns with the other one. The process of warping an image requires 
a geometric transformation that we will discuss in detail in the next lecture. For our purposes here, just 
assume that such a transformation is possible.  
 
 
After warping one image such that it lies in the 
coordinate frame of the other, we overlay them to 
get the image shown here, which is a panorama 
with a field of view that is larger than that of the 
original images. In the next lecture, we will 
describe how we can remove the visible brightness 
and color differences between the two images to 
obtain a seamless panorama.  
 
 
 
 
 
The same approach can be used to construct collages. Here we have a large collection of images. We 
simply apply SIFT to each one and then match features among the different images. In this case, we 
overlay the images on top of each other by simply translating, scaling and rotating them, but without 
geometrically warping them. Although, the end-result is not a single perspective view of the scene, it 
provides a representation that is useful for visualizing an unusually large field of view. 

53

Panorama Stitching using SIFT

[Autopano]

Warp and combine images to create a larger image

52

Panorama Stitching using SIFT

[Autostitch]

Image 1 Image 2

Match SIFT Interest Points
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We have seen that the SIFT detector and 
descriptor can be used to solve a variety of visual 
matching and recognition problems. 
Unfortunately, it does not solve the general 
problem of recognition of three-dimensional 
objects. The kinds of objects we have examined 
thus far are more or less flat (planar) objects. 
When it comes to 3D objects, the problem is more 
complex. If we look at an object from different 
viewpoints, the local appearance, and hence the 
SIFT descriptor, of any given feature is going to 
vary with the viewpoint. So, if we applied SIFT to 
two images of a 3D object captured from different viewpoints, we can expect to get lots of features in 
each of the images, but less matches between the images as the difference in the viewpoints increases.  
 
This is illustrated by the example shown here. On the left are two images of a scene taken from roughly 
the same viewpoint. As expected, we get lots of matches, with each one of the lines representing a 
successful match. In the center, we see two images taken with a difference in viewpoint of about 30 
degrees along the horizontal direction. We see that there is dramatic drop in the number of matches 
between the images. If we further increase the difference in viewpoint to about 90 degrees (right), we 
hardly get any matches at all. Thus, in the context of recognition, SIFT is only reliable for small changes 
in viewpoint. That said, it still is an extremely useful detector that has found many real-world 
applications. 

56

SIFT for 3D Objects?

No Change in Viewpoint 30° Change in Viewpoint 90° Change in Viewpoint

SIFT is reliable for only small changes in viewpoint

54

Auto Collage using SIFT

Captured Photos
[Nomura 2007] 55

Auto Collage using SIFT

[Nomura 2007]

Collage
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