

Optical Flow

Shree K. Nayar

Monograph: FPCV-4-3

Module: Reconstruction II

Series: First Principles of Computer Vision

Computer Science, Columbia University

April, 2025

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Optical Flow

FPCV-4-3 1

In all the methods discussed thus far, we have
assumed that the camera and the objects in the
scene are stationary. However, we know that our
visual world is highly dynamic due to either the
motion of the observer and/or the objects in the
scene. While we cannot directly measure the 3D
motion of points in a scene, we can attempt to
measure the 2D motion of their image projections.
This is referred to as the problem of computing
optical flow.

We will develop a method for estimating the
motion of scene points in the image, from a
sequence of images taken in quick succession.
When scene points move with respect to the
camera, the projection of their motion in 3D onto
the 2D image plane is called the motion field.
Although we can't directly measure the motion
field, we can measure the motion of brightness
patterns in the image, which is referred to as the
optical flow. We discuss when optical flow
corresponds to motion field, and when it does not.
It turns out that we cannot uniquely determine
optical flow at a pixel by simply looking at its brightness variation over time. However, we can derive an
optical flow constraint equation that constrains the optical flow at a pixel. To uniquely solve for the
optical flow at each pixel, the Lucas-Kanade method uses a small neighborhood of pixels.

The optical flow constraint equation relies on the assumption that local spatial and temporal derivatives
of the image can be accurately computed. This assumption falls apart when the motion is large, i.e., the
motion of a scene is significant between two consecutive captured images. To solve this problem, we
use an image representation called the resolution pyramid. We use the pyramid to first compute optical
flow at a low resolution, and then propagate the computed flow to a higher resolution. Repeating this
process, in steps, to the finest resolution results in a computed flow that includes a wide range of
motions. Finally, we will look at a few interesting applications of optical flow.

1

Optical Flow

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Method to estimate apparent motion of scene points
from a sequence of images.

Optical Flow

Topics:

(1) Motion Field and Optical Flow

(2) Optical Flow Constraint Equation

(3) Lucas-Kanade Method

(4) Coarse-to-Fine Flow Estimation

(5) Applications of Optical Flow

First Principles of Computer Vision Optical Flow

FPCV-4-3 2

Consider a point in the 3D scene which is moving
in some direction. The projection of that motion
onto the 2D image plane is referred to as the
motion field corresponding to the scene point.
Unfortunately, there is no guarantee that we can
measure this motion field; all we can measure
from captured images is the motion of brightness
patterns in the image, which is referred to as the
optical flow. We will now discuss the relationship
between motion field and optical flow.

Consider the scenario shown on the left. We have a point p! in the 3D scene, that maps via perspective
projection to the point p" in the 2D image. p! and p" can be represented by the vectors 𝐫# and
𝐫$, respectively.	Assume that in time 𝛿𝑡, p! moves to a new location which is given by the vector 𝐫# +
𝛿𝐫#. The velocity 𝐯# of p! is the rate of change of the vector 𝐫#, and the velocity 𝐯$ of p" is the rate of
change of the vector 𝐫$. We want to derive an expression for the image velocity 𝐯$, which is called the
motion field.

Using perspective projection (see 1), we get 𝐫$ 	divided by the effective focal length f equals 𝐫# divided
by the depth of p!, which is the dot product of 𝐫# and z. Using this expression to substitute for 𝐫$ in the
expression for 𝐯$, and using the quotient rule of derivatives, we get expression 2 	for the motion field
𝐯$.

3

Motion Field and Optical Flow

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

5

Motion Field

Image velocity of a point that is moving in the scene

Perspective projection:
$"
& =

$!
$! ' (

= & $! ' (!# − !! ' ($#
$! ' ($

!" = & $!×!# ×(
$! ' ($

Sensor
Pinhole

Scene
point

! !!
!"

" #!

#"

$! % &'

$" % &' !" + #!"

!! + #!!

Image Point Velocity: !" =
#$"
#%(Motion Field)

[Horn 1981]4

Motion Field

Image velocity of a point that is moving in the scene

Sensor
Pinhole

Scene
Point

! !!
!"

" #!

#"

$! % &'

$" % &'

Scene Point Velocity: !! =
#$!
#%Image Point Velocity: !" =

#$"
#%

!" + #!"

!! + #!!

(Motion Field)

[Horn 1981]

2

1

First Principles of Computer Vision Optical Flow

FPCV-4-3 3

Unfortunately, there is no guarantee that we can
measure the motion field 𝐯$. We can only hope to
measure the motion of brightness patterns in the
image. Consider two images of the scene shown
here taken in quick succession by a camera moving
in the horizontal direction. From our lectures on
stereo, we know that the motion of each point in
scene between the two images would depend on
its depth in the scene—the points closer to the
camera, such as ones on the tree, would move
faster than distant ones, such as those on the
house. We would like to develop an algorithm that
takes a small window around each pixel in the first image and figure out where it moved to in the second
image. If we have a successful algorithm for doing that, we would get the result shown on the right. At
each pixel, we have a vector that represents the motion of the local brightness pattern. This is called the
optical flow vector—its length represents the speed of the point and its direction reveals the direction
along which the point is moving. Ideally, optical flow is equal to the motion field. While this is often the
case, it is not always true. Let us now look at a few cases where optical flow does not correspond to
motion field.

Consider the setup shown here. We have a sphere
made of a single material, i.e., it has the same
reflectance properties everywhere. Assume that
the sphere is spinning about the vertical axis that
passes through its center. The sphere is lit by a
point light source, which results in some shading
over its surface. Since the sphere is spinning, there
is motion field, i.e., points on its surface are
moving. However, despite this motion, the image
of the sphere does not change, i.e., consecutive
images taken by a stationary camera will be
identical. Therefore, there is no optical flow. This
is an example where we have motion field, but no optical flow.

Now, consider the case on the right where the sphere is stationary and the light source moves around
it. The motion of the source causes the shading of the sphere to change. In other words, brightness
patterns in the image move as a function of time, but there is no actual physical motion of points on the
sphere. This is an example where there is no motion field, but there is optical flow. These two examples
show that there can be optical flow and no motion field, or there can be motion field and no optical flow.

6

Optical Flow

Motion of brightness patterns in the image

Image Sequence
(2 frames)

Optical Flow

Ideally, Optical Flow = Motion Field

I.4

Velocity of
brightness pattern

7

When is Optical Flow ≠ Motion Field?

Motion Field exists
But no Optical Flow

No Motion Field exists
But there is Optical Flow

Spinning Sphere
Stationary Light Source

Stationary Sphere
Moving Light Source

First Principles of Computer Vision Optical Flow

FPCV-4-3 4

The barber poll illusion is an interesting example
where we have both optical flow and motion field,
but they do not correspond to each other. In this
case, we have a cylinder spinning about a vertical
axis, so we know that the motion field is
horizontal. However, if we look at the pattern in
consecutive images (see online lecture video), the
pattern appears to move in the vertical direction.
Therefore, we have both motion field and optical
flow, but they do not correspond to each other.

This phenomenon of incorrectly perceiving motion also applies to us, humans, and is referred to as
motion illusion. Consider the Donguri wave Illusion on the left. This is obviously a static image, but if we
move our eye around the image, we see that the leaves appear to move. That is, our visual system
detects optical flow even though there is no motion field.

The example on the right is called the Ouchi pattern. In this case, we have a little disc in the center with
a pattern and an outer ring with a different pattern. When we move our eyes around this image, the
inner disc appears to move with respect to the outer ring. Once again, there is no motion field, but we
perceive optical flow.

8

When is Optical Flow ≠ Motion Field?

Barber Pole
Illusion

Motion Field Optical Flow

I.5

9

Motion Illusions

Donguri Wave Illusion
I.6

EYE AND BRAIN 10

Motion Illusions

Ouchi Pattern
EYE AND BRAIN

First Principles of Computer Vision Optical Flow

FPCV-4-3 5

Now, let’s consider the problem of estimating
optical flow. We will first derive the optical flow
constraint equation and then used it to develop an
algorithm for estimating the optical flow at each
point in the image.

Consider the following scenario where we have
two images of a bird in flight, taken in quick
succession. The first image is taken at time 𝑡 and
second one at time 𝑡 + 𝛿𝑡, where 𝛿𝑡 is small. Let us
now focus our attention on a single point which is
on the foot of the bird. Assume that the location of
the point is (𝑥, 𝑦) in the first image. In the second
image, taken at time	𝑡 + 𝛿𝑡, the point has moved
to a new location (𝑥 + 	𝛿𝑥, 𝑦 + 	𝛿𝑦). The
displacement of the point is therefore (𝛿𝑥, 𝛿𝑦). The
speeds of the point in the 𝑥 and 𝑦	directions are 𝑢=	
𝛿𝑥/𝛿𝑡 and 𝑣 = 𝛿𝑦/𝛿𝑡, respectively. (𝑢,	 𝑣) is the
optical flow we wish to measure.

In order to measure the flow (𝑢,	 𝑣), we need to
make a few assumptions. The first assumption is
that the image brightness of a scene point remains
constant over time. The problem becomes hard to
solve if the brightness of the scene point changes
significantly between consecutive images. Since
the time between the images, 𝛿𝑡, is small, this is a
reasonable assumption. Under this assumption,
the intensity of point (𝑥,	𝑦) at time 𝑡 is equal to the
intensity of point (𝑥 + 𝛿𝑥,	𝑦 + 𝛿𝑦) at time 𝑡 + 𝛿𝑡.

11

Optical Flow Constraint Equation

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

12

Optical Flow

Optical Flow: !, # =
$%
$& ,

$'
$&Displacement: %&, %'

((+ %(

&, ' & + %&, ' + %'

[Horn 1981]

13

Optical Flow Constraint Equation

Assumption #1:

Brightness of image point remains constant over time

* &, ', (* & + %&, ' + %', (+ %(

* & + %&, ' + %', (+ %(= * &, ', (

First Principles of Computer Vision Optical Flow

FPCV-4-3 6

The second assumption we make is that the spatial
displacements	𝛿𝑥 and 𝛿𝑦 are small and the
timestep 𝛿𝑡 is also small. Since the images are
taken in quick succession, as in the case of a video,
this assumption is often valid. The assumption is
important to our derivation of the optical flow
constraint equation as it allows us to use a linear
approximation via the Taylor series expansion.

The Taylor series expansion applies to any
infinitely differentiable function, i.e., one for which
all the derivatives exist. If 𝑓(𝑥) is such a function,
then 𝑓(𝑥 + 𝛿𝑥) can be expressed as 1 . Now, if 𝛿𝑥
is small, we can assume the second and higher
order terms are	very small and can be assumed to
be zero. Then 𝑓(𝑥 + 𝛿𝑥) can be expressed in
terms of 𝑓(𝑥) and its first-order derivative. This is
called the first-order Taylor approximation and it is
linear in the displacement 𝛿𝑥. If 𝑓 is a function of
three variables, 𝑥, 𝑦, and 𝑡, the linear
approximation is given by 2 .

Applying the above linear approximation to the
image brightness 𝐼 in the second image allows us
to express it in terms of the brightness in the first
image and its derivatives with respect to the 𝑥
direction, 𝑦 direction, and time 𝑡. These derivates
are denoted 𝐼%, 𝐼&, and 𝐼' , respectively.

14

Optical Flow Constraint Equation

Assumption #2:

Displacement (%&, %') and time step %(are small

* &, ', (* & + %&, ' + %', (+ %(

15

Taylor Series Expansion

Expand a function as an infinite sum of its derivatives

For a function of three variables with small %&, %', %(:

- & + %& = - & +
.-
.&
%& +

.(-

.&(
%&(

2!
+⋯+

.)-

.&)
%&)

2!

If %& is small:

- & + %& = - & +
.-
.&
%& + 3(%&() Almost Zero

- & + %&, ' + %', (+ %(≈ - &, ', (+
.-
.&
%& +

.-

.'
%' +

.-

.(
%(

MATH PRIMER

1

2

16

Optical Flow Constraint Equation

Assumption #2:

Displacement (%&, %') and time step %(are small

* &, ', (* & + %&, ' + %', (+ %(

* & + %&, ' + %', (+ %(= * &, ', (+
.*
.&
%& +

.*

.'
%' +

.*

.(
%(

* & + %&, ' + %', (+ %(= * &, ', (+ *%%& + *'%' + *&%(

First Principles of Computer Vision Optical Flow

FPCV-4-3 7

Slides 13 and 16 give us the two equations shown
at the top here. Subtracting them gives us
expression 1 . Simplifying this equation and
substituting 𝑢 and 𝑣 for the derivatives of 𝑥 and 𝑦
with respect to time, respectively, gives us the
optical flow constraint equation. Given two
images taken in quick succession, we can find the
three derivatives, 𝐼%, 𝐼&, and 𝐼' , for each pixel
using finite differences. Plugging these values into
the optical flow constraint equation gives us a
straight-line equation with 𝑢 and 𝑣 as the
variables.

Now, let us look at how we would compute 𝐼%, 𝐼&,
and 𝐼' given two images taken in quick
succession. For simplicity, we consider a 2x2x2
cube of pixels. We can find 𝐼% by subtracting the
average of the four brightness values in the black
pixels from the average of the four brightness
values in the white pixels. Similarly, we can
calculate 𝐼& and 𝐼'. Therefore, given two
consecutive frames in a video, we can calculate
𝐼%, 𝐼&, and 𝐼' for each pixel.

Shown here is a geometric interpretation of the
optical flow constraint equation. Consider the 𝑢-
𝑣 space show on the right. Let the optical flow at
a particular image point be u(𝑢, 𝑣). We want to
find the vector u but, unfortunately, we only have
the straight line given by the constraint equation.
We know that u lies on this line, but we do not
know exactly where on the line it lies. This makes
the optical flow estimation problem an under-
constrained problem. We can split up the
unknown optical flow vector u into two

17

Optical Flow Constraint Equation

Subtract (1) from (2):

* & + %&, ' + %', (+ %(= * &, ', (

* & + %&, ' + %', (+ %(= * &, ', (+ *%%& + *'%' + *&%(

(1)

(2)

*%%& + *'%' + *&%(= 0

Divide by %(and take limit as %(→ 0: *%
.&
.(
+ *'

.'

.(
+ *& = 0

*%! + *'# + *& = 0Constraint Equation:

*%, *', *& can be easily computed from two frames

(, * : Optical Flow

1

18

* + 1

*

Computing Partial Derivatives !!, !", !#

, , + 1
-

- + 1

+

'

,

Similarly find -# ., /, ' and -$., /, '

-% ., /, ' =
&
' - . + 1, /, ' + - . + 1, /, ' + 1 + - . + 1, / + 1, ' + - . + 1, / + 1, ' + 1

−&
' - ., /, ' + - ., /, ' + 1 + - ., / + 1, ' + - ., / + 1, ' + 1

19

Geometric Interpretation

(

Constraint line

4 (, *
4(

*

4)

.#/ + .$0 + .% = 0For any point (+, ,) in the image,
its optical flow (, * lies on the
line:

*%! + *'# + *& = 0

+ = +% ++&

Optical Flow can be split into
two components.

4): Normal Flow

4(: Parallel Flow

First Principles of Computer Vision Optical Flow

FPCV-4-3 8

orthogonal components, the normal flow un which is normal to the constraint line, and the parallel flow
up which is parallel to the constraint line.

It turns out we can compute the normal flow un.
The direction of un is given by a unit vector that is
perpendicular to the constraint line. The
magnitude of un is the shortest distance of the
origin from the constraint line. Therefore, given
the constraint line, the normal flow can always be
computed. However, we have no way of
computing the parallel flow needed to find the
optical flow vector up. Note that both un and up are
needed to determine the optical flow u.

It turns out that the under-constrained nature of the optical flow problem is applicable to us, humans,
as well. Consider the moving object shown in slide 22. The direction of motion (arrow) is towards the
bottom-right corner of the slide. This is obvious when we view the entire object. However, since flow
can vary significantly over the image, we need to compute flow locally using a small window of attention,
or “keyhole,” like the one shown in slide 23. When we view the motion in slide 22 through this keyhole,
we perceive the local motion to be in the direction normal to the linear boundary of the object, which is
different from the actual motion in slide 22. In other words, we humans too are not able to always
measure the actual flow. Locally, we can only perceive the normal flow. This is referred to as the aperture
problem associated with the estimation of optical flow.

20

Normal Flow

(

Constraint line

4 (, *
4(

,

4)

.#/ + .$0 + .% = 0
Direction of Normal Flow:

.# , .$

Unit vector perpendicular to the
constraint line:

74) =
-% , -#
-%* + -#*

Magnitude of Normal Flow:

4) = -$
-%* + -#*

Distance of origin from the
constraint line:

4) =
-$

-%* + -#*
-% , -#

22

Aperture Problem

Actual motion
(", $)

23

Aperture Problem

Locally, we can only determine normal flow!

Normal Flow

Actual motion
(", $)

First Principles of Computer Vision Optical Flow

FPCV-4-3 9

So, we have our single constraint equation with
two unknowns. Clearly, to solve for flow we need
additional constraints.

To address the above problem, the Lucas-Kanade
method assumes that the optical flow for all points
within each small window in the image is the same.

Lucas-Kanade Solution

In matrix form:

!! 1,1 !" 1,1
!! $, % !" $, %
⋮ ⋮

!! ', ' !" ', '
=

− !# 1,1
− !# $, %

⋮
− !# ', '

*
+

For all points !, # ∈ %: !! ", $ % + !" ", $ ' + !# ", $ = 0

*
(Known)

+
(Unknown)

,
(Known)

-$ Equations, 2 Unknowns: Find Least Squares Solution

2×1(!×2 (!×1

Let the size of window . be -×-

27

25

Lucas-Kanade Method

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

26

Lucas-Kanade Solution

Assumption: For each pixel, assume Motion Field, and
hence Optical Flow -, / , is constant within a small
neighborhood 0.

That is for all points ., / ∈ ::

*% 7, 8 ! + *' 7, 8 # + *& 7, 8 = 0

:

[Lucas 1981]

24

Optical Flow is Under Constrained

We need additional constraints.

*%! + *'# + *& = 0Constraint Equation:

2 unknowns, 1 equation.

First Principles of Computer Vision Optical Flow

FPCV-4-3 10

We assume that for each pixel in the image, the motion field, and hence the optical flow, is constant
within a small neighborhood around the pixel. Consider the small patch W in the image on the left. The
constraint equation for a single pixel (𝑘, 𝑙) in W is given at the bottom. We get one such equation for
each pixel in W. Since the optical flow within W is constant, we get a large system of equations, which is
shown on the right. If W has 𝑛(pixels, we have 𝑛(equations and just two unknowns, (𝑢, 𝑣). Note that
if the patch W is textured, pixels within it are likely to differ in their derivatives 𝐼% and 𝐼& . In other words,
we can expect our system of equations to have enough linearly independent equations to solve for
(𝑢, 𝑣). We know how to solve this overdetermined system of equations using the least squares method.

The matrix form of the above system of equations
is 𝐴u = 𝐵. We multiply both sides of the equation
by 𝐴) 	and then multiply both sides by the inverse
of 𝐴)𝐴	 to solve for u. This solution is
computationally efficient because 𝐴)𝐴	is a 2x2
matrix. The elements of 𝐴)𝐴 are functions of the
spatial derivatives and the time derivatives only
appear in 𝐵.

We know that this approach will not work when
𝐴)𝐴	 is not invertible. More generally, it will
produce reliable results only when the matrix
𝐴)𝐴	is well-conditioned, which is true when both
the eigenvalues of 𝐴)𝐴	are significant enough, i.e.,
neither eigenvalue is close to zero and neither is
significantly greater than the other.

28

Least Squares Solution

9: = ;Solve linear system:

979: = 97; (Least-Squares using
Pseudo-Inverse)

In matrix form:

∑8 *%*% ∑8 *%*'
∑8 *%*' ∑8 *'*'

!
=

−∑8 *%*&
−∑8 *'*&

Fast and Easy to Solve

2×2

979
(Known)

2×1

97;
(Known)

2×1

:
(Unknown)

Indices &, '
not written

for simplicity

: = 979 9:97;

29

When Does Optical Flow Estimation Work?

• 979 must be invertible. That is

979: = 97;9: = ;

• 979 must be well-conditioned.

MATH PRIMER

det 979 ≠ 0

If D: and D(are eigen values of 979, then

D: ≥ D(but not D: ⋙D(

D: > H and D(> H

First Principles of Computer Vision Optical Flow

FPCV-4-3 11

Let's look at how the conditioning of 𝐴)𝐴	 relates
to real images. Consider the patch in the sky shown
here. We take the spatial gradients 𝐼% and 𝐼& at
each pixel in the patch and plot them as shown on
the right. We fit an ellipse to the distribution of
points in 𝐼%-𝐼& space. The semi-major axis and
semi-minor axis of the best fit ellipse correspond
to the eigenvalues 𝜆*	and 𝜆(of the matrix 𝐴)𝐴.
Since the sky is texture-less, the points in 𝐼%-𝐼&
space form a compact cluster around the origin.
The best fit ellipse in this case is a small circle.
Hence both 𝜆*	and 𝜆(are small, indicating that the
matrix 𝐴)𝐴 is not well-conditioned and hence optical flow cannot be computed reliably.

Shown here is a patch that sits on the edge of the
roof of the house. The roof edge has a strong
gradient in one direction but a weak gradient in the
orthogonal direction. Note that moving the patch
along the edge will not significantly change its
content. This gives rise to the aperture problem we
discussed in slide 23. In this case, the best fit ellipse
in 𝐼%- 𝐼& space is thin and long, yielding a large
value for 𝜆*	and a small value for 𝜆(. Again, the
matrix 𝐴)𝐴 is not well-conditioned, and hence
optical flow cannot be computed reliably.

The Lucas-Kanade method works when you have a
richly textured patch with strong gradients in
various directions. For the patch on the ground
shown here, we get a well-scattered distribution of
points in 𝐼%-𝐼& space, resulting in a large ellipse
and hence large values for both 𝜆*	and 𝜆(. In this
case, 𝐴)𝐴 is well-conditioned and the computed
optical flow is reliable.

30

Smooth Regions (Bad)

Equations for all pixels in window are more or less the same.

Cannot reliably compute flow!

+!

+"!!

&"

;'~ ;&
Both are Small

31

Edges (Bad)

Badly conditioned. Prominent gradient in one direction.

Cannot reliably compute flow!
Same as Aperture Problem.

+!

+"

!! &"

;' ⋙ ;&

32

Textured Regions (Good)

Well conditioned. Large and diverse gradient magnitudes.

Can reliably compute optical flow.

+!

+"
!!

&"

;'~ ;&
Both are Large

First Principles of Computer Vision Optical Flow

FPCV-4-3 12

When we derived the optical flow constraint
equation, we assumed that the displacements 𝛿𝑥
and 𝛿𝑦 over time 𝛿𝑡 are small. What happens if we
have large motion between consecutive images?
Consider the two images shown here. Assume that
the camera's movement is the only cause of
motion in this case. Since the tree is close to the
camera, its motion is substantial (tens of pixels). In
this case, we can't assume that 	𝛿𝑥 and 𝛿𝑦 are
small. Hence, the Taylor series approximation we
made in slide 16 is no longer valid, making our
optical flow constraint equation invalid.

We can address the problem of large motion using
a resolution pyramid. Assume that we have two
images taken at time 𝑡 and 𝑡 + 𝛿𝑡. The resolution
of each captured image is 𝑁 × 𝑁. We now

compute lower-resolution versions (+
(
× +

(
, +
,
× +

,
,

+
-
× +

-
, etc.) of these two images, as shown here.

At each resolution, each pixel is the average of four
pixels in the higher resolution image. An important
thing to note is that if the motion of a scene point
in the original 𝑁 × 𝑁 image is 8 pixels, its motion

is 1 pixel in the +
-
× +

-
	image. We can therefore

create a resolution pyramid such that at its lowest resolution the motion at all pixels is less than 1 pixel.
At that resolution, the optical flow constraint equation becomes valid again.

34

What if we have Large Motion?

1 8 + 98, : + 9:, % + 9%
Taylor Series approximation of

is not valid

Our simple linear
constraint equation not valid

*%! + *'# + *& ≠ 0

35

Large Motion: Coarse-to-Fine Estimation

Resolution
(×(

At lowest resolution, motion ≤ 1 pixel

-

- + #-

Resolution
,
2 ×

,
2

Resolution
,
4 ×

,
4

Resolution
,
8 ×

,
8

First Principles of Computer Vision Optical Flow

FPCV-4-3 13

Using the resolution pyramid, we develop a
coarse-to-fine optical flow estimation algorithm.
We start with the lowest resolution and apply the
Lucas–Kanade algorithm to the images taken at
time 𝑡 and 𝑡 + 	𝛿𝑡. We then use this computed
optical flow to warp the image at time 𝑡 in the next
higher resolution. This warping is done by
“pushing” each pixel in the direction of its
computed flow. Since the optical flow was
computed at a lower resolution, the warped image
is not going to be exactly the same as the
corresponding pyramid image at time 𝑡 + 	𝛿𝑡, but
it will be close to it. Then, we compute the optical flow between the warped image and the
corresponding pyramid image at time 𝑡 + 	𝛿𝑡. This flow computation works well because the flow
between these two images is small, since the large motions are taken care of by the warping. We now
add this newly computed optical flow to the previous one and use the resultant flow to warp the image
at time 𝑡 at the next higher resolution. This process is repeated all the way down to the highest
resolution, at which point we have the final flow at every pixel. A few examples of optical flow computed
using this method can be seen in the online video lecture.

There is another brute-force approach to compute optical flow that is based on template matching.
Consider the two images 𝐼*	 and 𝐼(shown here, taken at time 𝑡 and 𝑡 + 	𝛿𝑡, respectively. For each pixel
in image 𝐼*, we can take a small window 𝑇 around it and use it as a template to find the best matching
window in image 𝐼(. The difference between the location of the original window in 𝐼*	and the best match
window in 𝐼(gives us the optical flow vector. The problem with using this approach is that it could lead
to mismatches—a patch in 𝐼*	could match multiple patches in 𝐼(equally	well.

36

Coarse-to-Fine Estimation Algorithm

Warp OF

+

Warp OF

+

OF
", $ (()

[Bouget 2000]

* * + ,*

*

*

* + ,*

* + ,*

∆ ", $ (*)

∆ ", $ (+,*)

", $ (*)

", $ (+,*)

", $ (+)

40

Alternative Approach: Template Matching

Template Window . Search Window S

Image -& at time (

Determine Flow using Template Matching

Image -* at time (+ %(

For each template window ; in image 1*,
find the corresponding match in image 1$.

41

Large Motion: Template matching

Template Window . Search Window 0

Image -& at time (

Determine Flow using Template Matching

Image -* at time (+ %(

Template matching is slow
when search window < is large.
Also, mismatches are possible.

First Principles of Computer Vision Optical Flow

FPCV-4-3 14

We will conclude by discussing a few applications
of optical flow.

The optical mouse has a complete computer vision
system inside it. It has a light source, which
illuminates the surface that the mouse sits on. This
surface is imaged by a camera that is low in
resolution (e.g., 64x64 pixels) but high in frame-
rate (e.g., 2000 frames a second). Successive
images captured by the camera are used to
estimate optical flow, i.e., the motion of the mouse
between successive frames. This information is
used, for example, to control the cursor on a
computer screen.

Here we see the use of optical flow for traffic
monitoring. We have a stationary camera looking
down at a highway. We know a-priori the plane of
the highway in the camera’s coordinate frame. The
computed aggregate flow of each vehicle is
projected onto the highway plane to determine the
speed of the vehicle.

Traffic Monitoring

Finding Velocities of Vehicles

44

42

Applications of Optical Flow

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

43

Optical Mouse

Estimating Mouse Movements

I.3

First Principles of Computer Vision Optical Flow

FPCV-4-3 15

Another interesting application of optical flow is
video retiming—increasing the frame-rate of an
already captured video. Fast moving objects in a
scene can cause a captured video to appear
choppy. To compute a smooth video that appears
like it was taken with a high-speed camera, we
compute the optical flow between successive
frames of the original video and use the flow
vectors to interpolate intermediate frames. The
end result is a smoother video. This method is
widely used in smartphones to create slow-motion
effects.

Optical flow can be used to remove camera shake
and stabilize a video. Imagine taking a video of a
scene while walking through it. The video is likely
to be shaky. Optical flow is computed between
consecutive images of the video. The dominant
flow, which is how most points in the scene are
moving, is then computed. The dominant flow
usually corresponds to the motion of the
background of the scene. This dominant flow is
then compensated for to reduce the shake in the
video. This process is called stabilization.

Another interesting application is face tracking.
Here, we compute the flow of points on a face.
This gives us a lot of useful information that can be
used to figure out when a person blinks, how the
lips are moving, recognize the person’s
expression, etc.

46

Image Stabilization

Optical Flow is used to remove camera shake.

[Liu 2014]

Captured Video Stabilized Video

45

Video Retiming

Optical Flow is used to determine the intermediate frames
to produce slow-motion effect.

I.10

47

Face Tracking

Tracking of Facial Features

I.2

First Principles of Computer Vision Optical Flow

FPCV-4-3 16

Acknowledgements: Thanks to Pranav Sukumar, Ayush Sharma and Nikhil Nanda for their help with transcription,
editing and proofreading.

49

References and Credits

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

50

References

[Barron 2005] J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance
of optical flow techniques”. IJCV, 2005.

[Black 1993] M. J. Black and P. Anandan, “A framework for the robust
estimation of optical flow.” ICCV, 1993.

[Bouget 2000] J. Y. Bouguet, “Pyramidal Implementation of the Lucas
Kanade Feature Tracker”, Intel Corporation 2000.

[Brox 2004] T. Brox, A. Bruhn, N. Papenberg, and J.Weickert, “High
accuracy optical flow estimation based on a theory for warping.” ECCV,
2004.

[Horn 1981] B. K. P. Horn and B. G. Schunck, “Determining optical flow.”
Artificial Intelligence, 1981.

[Liu 2014] S. Liu, L. Yuan, P. Tan and J. Sun, “SteadyFlow: Spatially
Smooth Optical Flow for Video Stabilization.” CVPR 2014.

[Lucas 1981] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision”. Proceedings of Imaging
understanding workshop, 1981.

51

Image Credits
I.1 http://www.youtube.com/watch?v=49BQVszT5mI . Janaka Liyanage.

I.2 Simon Baker. Used with permission.

I.3 http://howthingswork.org/electronics-how-an-optical-mouse-works/

I.5 https://commons.wikimedia.org/wiki/File:Barber-pole-0 Barber pole illusion.

Licensed under CC BY-SA.

I.6 Akiyoshi Kitaoka. Used with permission.

I.7 Robot Vision. B.K.P. Horn. McGraw-Hill 1986. Used with permission.

I.8 http://vimeo.com/30779242. Alex M. White.

I.9 Hidetoshi Shimodaira. Used with permission.

I.10 https://www.youtube.com/watch?v=HE9NkiSjXRY . Austin Caccavo.

First Principles of Computer Vision Optical Flow

FPCV-4-3

References

[Barron 2005] J. L. Barron, D. J. Fleet, and S. Beauchemin, Performance of optical flow techniques, IJCV,

2005.

[Black 1993] M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV,

1993.

[Bouguet 2000] J. Y. Bouguet, Pyramidal Implementation of the Lucas Kanade Feature Tracker, Intel

Corp., 2000.

[Brox 2004] T. Brox, A. Bruhn, N. Papenberg, and J.Weickert, High accuracy optical flow estimation based

on a theory for warping, ECCV, 2004.

[Horn 1981] B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 1981.

[Liu 2014] S. Liu, L. Yuan, P. Tan, and J. Sun, SteadyFlow: Spatially Smooth Optical Flow for Video

Stabilization, CVPR 2014.

[Lucas 1981] B. D. Lucas and T. Kanade, An iterative image registration technique with an application to

stereo vision, Proceedings of Imaging understanding workshop, 1981.

[Nayar 2022B] Image Formation, Nayar, S. K., Monograph FPCV-1-1, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022C] Image Sensing, Nayar, S. K., Monograph FPCV-1-2, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022G] Edge Detection, Nayar, S. K., Monograph FPCV-2-1, First Principles of Computer Vision,

Columbia University, New York, May 2022.

[Nayar 2025K] Structure from Motion, Nayar, S. K., Monograph FPCV-4-4, First Principles of Computer
Vision, Columbia University, New York, April 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

First Principles of Computer Vision Optical Flow

FPCV-4-3

[Nayar 2025L] Object Tracking, Nayar, S. K., Monograph FPCV-5-1, First Principles of Computer Vision,
Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs

	Optical Flow FPCV-4-3
	Optical Flow SN 03-16-2025 COVER
	Optical Flow SN 03-16-2025

	References Optical Flow

