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In all the methods discussed thus far, we have 
assumed that the camera and the objects in the 
scene are stationary. However, we know that our 
visual world is highly dynamic due to either the 
motion of the observer and/or the objects in the 
scene. While we cannot directly measure the 3D 
motion of points in a scene, we can attempt to 
measure the 2D motion of their image projections. 
This is referred to as the problem of computing 
optical flow. 

 

 

We will develop a method for estimating the 
motion of scene points in the image, from a 
sequence of images taken in quick succession. 
When scene points move with respect to the 
camera, the projection of their motion in 3D onto 
the 2D image plane is called the motion field. 
Although we can't directly measure the motion 
field, we can measure the motion of brightness 
patterns in the image, which is referred to as the 
optical flow. We discuss when optical flow 
corresponds to motion field, and when it does not. 
It turns out that we cannot uniquely determine 
optical flow at a pixel by simply looking at its brightness variation over time. However, we can derive an 
optical flow constraint equation that constrains the optical flow at a pixel. To uniquely solve for the 
optical flow at each pixel, the Lucas-Kanade method uses a small neighborhood of pixels.  

 

The optical flow constraint equation relies on the assumption that local spatial and temporal derivatives 
of the image can be accurately computed. This assumption falls apart when the motion is large, i.e., the 
motion of a scene is significant between two consecutive captured images. To solve this problem, we 
use an image representation called the resolution pyramid. We use the pyramid to first compute optical 
flow at a low resolution, and then propagate the computed flow to a higher resolution. Repeating this 
process, in steps, to the finest resolution results in a computed flow that includes a wide range of 
motions. Finally, we will look at a few interesting applications of optical flow.  

1

Optical Flow

Topic: Motion and Optical Flow, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Method to estimate apparent motion of scene points 
from a sequence of images. 

Optical Flow

Topics: 

(1) Motion Field and Optical Flow

(2) Optical Flow Constraint Equation

(3) Lucas-Kanade Method

(4) Coarse-to-Fine Flow Estimation

(5) Applications of Optical Flow



First Principles of Computer Vision                                                                                                                                Optical Flow 
 
 

FPCV-4-3 2 

Consider a point in the 3D scene which is moving 
in some direction. The projection of that motion 
onto the 2D image plane is referred to as the 
motion field corresponding to the scene point. 
Unfortunately, there is no guarantee that we can 
measure this motion field; all we can measure 
from captured images is the motion of brightness 
patterns in the image, which is referred to as the 
optical flow. We will now discuss the relationship 
between motion field and optical flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the scenario shown on the left. We have a point p! in the 3D scene, that maps via perspective 
projection to the point p" in the 2D image. p! and p" can be represented by the vectors 𝐫# and 
𝐫$ , respectively.	Assume that in time 𝛿𝑡, p! moves to a new location which is given by the vector 𝐫# +
𝛿𝐫#. The velocity 𝐯# of p! is the rate of change of the vector 𝐫#, and the velocity 𝐯$  of p" is the rate of 
change of the vector 𝐫$. We want to derive an expression for the image velocity 𝐯$ , which is called the 
motion field.  

 

Using perspective projection (see 1 ), we get 𝐫$ 	divided by the effective focal length f equals 𝐫# divided 
by the depth of p!, which is the dot product of 𝐫# and z. Using this expression to substitute for 𝐫$  in the 
expression for 𝐯$ , and using the quotient rule of derivatives, we get expression 2 	for the motion field 
𝐯$.  
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Motion Field
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Unfortunately, there is no guarantee that we can 
measure the motion field 𝐯$. We can only hope to 
measure the motion of brightness patterns in the 
image. Consider two images of the scene shown 
here taken in quick succession by a camera moving 
in the horizontal direction. From our lectures on 
stereo, we know that the motion of each point in 
scene between the two images would depend on 
its depth in the scene—the points closer to the 
camera, such as ones on the tree, would move 
faster than distant ones, such as those on the 
house. We would like to develop an algorithm that 
takes a small window around each pixel in the first image and figure out where it moved to in the second 
image.  If we have a successful algorithm for doing that, we would get the result shown on the right. At 
each pixel, we have a vector that represents the motion of the local brightness pattern. This is called the 
optical flow vector—its length represents the speed of the point and its direction reveals the direction 
along which the point is moving. Ideally, optical flow is equal to the motion field. While this is often the 
case, it is not always true. Let us now look at a few cases where optical flow does not correspond to 
motion field.  

 

Consider the setup shown here. We have a sphere 
made of a single material, i.e., it has the same 
reflectance properties everywhere. Assume that 
the sphere is spinning about the vertical axis that 
passes through its center. The sphere is lit by a 
point light source, which results in some shading 
over its surface. Since the sphere is spinning, there 
is motion field, i.e., points on its surface are 
moving. However, despite this motion, the image 
of the sphere does not change, i.e., consecutive 
images taken by a stationary camera will be 
identical. Therefore, there is no optical flow. This 
is an example where we have motion field, but no optical flow.  

Now, consider the case on the right where the sphere is stationary and the light source moves around 
it. The motion of the source causes the shading of the sphere to change. In other words, brightness 
patterns in the image move as a function of time, but there is no actual physical motion of points on the 
sphere. This is an example where there is no motion field, but there is optical flow. These two examples 
show that there can be optical flow and no motion field, or there can be motion field and no optical flow. 

6
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The barber poll illusion is an interesting example 
where we have both optical flow and motion field, 
but they do not correspond to each other. In this 
case, we have a cylinder spinning about a vertical 
axis, so we know that the motion field is 
horizontal. However, if we look at the pattern in 
consecutive images (see online lecture video), the 
pattern appears to move in the vertical direction. 
Therefore, we have both motion field and optical 
flow, but they do not correspond to each other.  

 

 

This phenomenon of incorrectly perceiving motion also applies to us, humans, and is referred to as 
motion illusion. Consider the Donguri wave Illusion on the left.  This is obviously a static image, but if we 
move our eye around the image, we see that the leaves appear to move. That is, our visual system 
detects optical flow even though there is no motion field.  

 

The example on the right is called the Ouchi pattern. In this case, we have a little disc in the center with 
a pattern and an outer ring with a different pattern. When we move our eyes around this image, the 
inner disc appears to move with respect to the outer ring. Once again, there is no motion field, but we 
perceive optical flow. 
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Now, let’s consider the problem of estimating 
optical flow. We will first derive the optical flow 
constraint equation and then used it to develop an 
algorithm for estimating the optical flow at each 
point in the image.  

 

 

 

 

 

 

Consider the following scenario where we have 
two images of a bird in flight, taken in quick 
succession. The first image is taken at time 𝑡 and 
second one at time 𝑡 + 𝛿𝑡, where 𝛿𝑡 is small. Let us 
now focus our attention on a single point which is 
on the foot of the bird. Assume that the location of 
the point is (𝑥, 𝑦) in the first image. In the second 
image, taken at time	𝑡 + 𝛿𝑡, the point has moved 
to a new location (𝑥 + 	𝛿𝑥, 𝑦 + 	𝛿𝑦). The 
displacement of the point is therefore (𝛿𝑥, 𝛿𝑦). The 
speeds of the point in the 𝑥 and 𝑦	directions are 𝑢=	
𝛿𝑥/𝛿𝑡 and 𝑣 = 𝛿𝑦/𝛿𝑡, respectively. (𝑢,	 𝑣) is the 
optical flow we wish to measure.   

 

In order to measure the flow (𝑢,	 𝑣), we need to 
make a few assumptions. The first assumption is 
that the image brightness of a scene point remains 
constant over time. The problem becomes hard to 
solve if the brightness of the scene point changes 
significantly between consecutive images. Since 
the time between the images, 𝛿𝑡, is small, this is a 
reasonable assumption. Under this assumption, 
the intensity of point (𝑥,	𝑦) at time 𝑡 is equal to the 
intensity of point (𝑥 + 𝛿𝑥,	𝑦 + 𝛿𝑦) at time 𝑡 + 𝛿𝑡. 
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Optical Flow
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[Horn 1981]
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Optical Flow Constraint Equation

Assumption #1: 

Brightness of image point remains constant over time
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The second assumption we make is that the spatial 
displacements	𝛿𝑥 and 𝛿𝑦 are small and the 
timestep 𝛿𝑡 is also small. Since the images are 
taken in quick succession, as in the case of a video, 
this assumption is often valid. The assumption is 
important to our derivation of the optical flow 
constraint equation as it allows us to use a linear 
approximation via the Taylor series expansion. 

 

 

 

 

The Taylor series expansion applies to any 
infinitely differentiable function, i.e., one for which 
all the derivatives exist. If 𝑓(𝑥) is such a function, 
then 𝑓(𝑥 + 𝛿𝑥) can be expressed as 1 . Now, if 𝛿𝑥 
is small, we can assume the second and higher 
order terms are	very small and can be assumed to 
be zero. Then 𝑓(𝑥 + 𝛿𝑥)  can be expressed in 
terms of 𝑓(𝑥) and its first-order derivative. This is 
called the first-order Taylor approximation and it is 
linear in the displacement 𝛿𝑥. If 𝑓 is a function of 
three variables, 𝑥, 𝑦, and 𝑡, the linear 
approximation is given by  2 . 

 

Applying the above linear approximation to the 
image brightness 𝐼 in the second image allows us 
to express it in terms of the brightness in the first 
image and its derivatives with respect to the 𝑥 
direction, 𝑦 direction, and time 𝑡. These derivates 
are denoted 𝐼%, 𝐼&, and 𝐼' , respectively.  
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Optical Flow Constraint Equation
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Taylor Series Expansion
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Optical Flow Constraint Equation
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Slides 13 and 16 give us the two equations shown 
at the top here. Subtracting them gives us 
expression 1 . Simplifying this equation and 
substituting 𝑢 and 𝑣 for the derivatives of 𝑥 and 𝑦 
with respect to time, respectively, gives us the 
optical flow constraint equation. Given two 
images taken in quick succession, we can find the 
three derivatives, 𝐼%, 𝐼&, and 𝐼' , for each pixel 
using finite differences. Plugging these values into 
the optical flow constraint equation gives us a 
straight-line equation with 𝑢 and 𝑣 as the 
variables.  

 

Now, let us look at how we would compute 𝐼%, 𝐼&, 
and 𝐼' given two images taken in quick 
succession. For simplicity, we consider a 2x2x2 
cube of pixels. We can find 𝐼% by subtracting the 
average of the four brightness values in the black 
pixels from the average of the four brightness 
values in the white pixels. Similarly, we can 
calculate 𝐼& and 𝐼'. Therefore, given two 
consecutive frames in a video, we can calculate 
𝐼%, 𝐼&, and 𝐼' for each pixel. 

 

 

Shown here is a geometric interpretation of the 
optical flow constraint equation. Consider the 𝑢-
𝑣 space show on the right. Let the optical flow at 
a particular image point be u(𝑢, 𝑣). We want to 
find the vector u but, unfortunately, we only have 
the straight line given by the constraint equation. 
We know that u lies on this line, but we do not 
know exactly where on the line it lies. This makes 
the optical flow estimation problem an under-
constrained problem. We can split up the 
unknown optical flow vector u into two 

17

Optical Flow Constraint Equation

Subtract (1) from (2):
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Geometric Interpretation
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orthogonal components, the normal flow un which is normal to the constraint line, and the parallel flow 
up which is parallel to the constraint line. 

 

It turns out we can compute the normal flow un. 
The direction of un is given by a unit vector that is 
perpendicular to the constraint line. The 
magnitude of un is the shortest distance of the 
origin from the constraint line. Therefore, given 
the constraint line, the normal flow can always be 
computed. However, we have no way of 
computing the parallel flow needed to find the 
optical flow vector up. Note that both un and up are 
needed to determine the optical flow u. 

 

 

It turns out that the under-constrained nature of the optical flow problem is applicable to us, humans, 
as well.  Consider the moving object shown in slide 22. The direction of motion (arrow) is towards the 
bottom-right corner of the slide.  This is obvious when we view the entire object. However, since flow 
can vary significantly over the image, we need to compute flow locally using a small window of attention, 
or “keyhole,” like the one shown in slide 23. When we view the motion in slide 22 through this keyhole, 
we perceive the local motion to be in the direction normal to the linear boundary of the object, which is 
different from the actual motion in slide 22. In other words, we humans too are not able to always 
measure the actual flow. Locally, we can only perceive the normal flow. This is referred to as the aperture 
problem associated with the estimation of optical flow.  
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Normal Flow

(
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Aperture Problem

Actual motion
(", $)
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Aperture Problem

Locally, we can only determine normal flow!

Normal Flow
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So, we have our single constraint equation with 
two unknowns. Clearly, to solve for flow we need 
additional constraints.  

 

 

 

 

 

 

 

 

To address the above problem, the Lucas-Kanade 
method assumes that the optical flow for all points 
within each small window in the image is the same. 

 

 

 

 

 

 

 

 

Lucas-Kanade Solution

In matrix form:
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(Unknown)
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-$ Equations, 2 Unknowns: Find Least Squares Solution
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Let the size of window . be -×-
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Lucas-Kanade Solution

Assumption: For each pixel, assume Motion Field, and 
hence Optical Flow -, / , is constant within a small 
neighborhood 0.

That is for all points ., / ∈ ::

*% 7, 8 ! + *' 7, 8 # + *& 7, 8 = 0

:

[Lucas 1981]
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Optical Flow is Under Constrained

We need additional constraints.

*%! + *'# + *& = 0Constraint Equation:

2 unknowns, 1 equation.
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We assume that for each pixel in the image, the motion field, and hence the optical flow, is constant 
within a small neighborhood around the pixel. Consider the small patch W in the image on the left. The 
constraint equation for a single pixel (𝑘, 𝑙) in W is given at the bottom. We get one such equation for 
each pixel in W. Since the optical flow within W is constant, we get a large system of equations, which is 
shown on the right. If W has 𝑛( pixels, we have 𝑛( equations and just two unknowns, (𝑢, 𝑣). Note that 
if the patch W is textured, pixels within it are likely to differ in their derivatives 𝐼% and 𝐼& . In other words, 
we can expect our system of equations to have enough linearly independent equations to solve for 
(𝑢, 𝑣). We know how to solve this overdetermined system of equations using the least squares method. 

 

The matrix form of the above system of equations 
is 𝐴u = 𝐵. We multiply both sides of the equation 
by 𝐴) 	and then multiply both sides by the inverse 
of 𝐴)𝐴	 to solve for u. This solution is 
computationally efficient because 𝐴)𝐴	is a 2x2 
matrix. The elements of 𝐴)𝐴 are functions of the 
spatial derivatives and the time derivatives only 
appear in 𝐵.  

 

 

 

 

We know that this approach will not work when 
𝐴)𝐴	 is not invertible. More generally, it will 
produce reliable results only when the matrix 
𝐴)𝐴	is well-conditioned, which is true when both 
the eigenvalues of 𝐴)𝐴	are significant enough, i.e., 
neither eigenvalue is close to zero and neither is 
significantly greater than the other. 

28

Least Squares Solution

9: = ;Solve linear system:

979: = 97; (Least-Squares using
Pseudo-Inverse)

In matrix form:

∑8 *%*% ∑8 *%*'
∑8 *%*' ∑8 *'*'

!
# =

−∑8 *%*&
−∑8 *'*&

Fast and Easy to Solve

2×2

979
(Known)

2×1

97;
(Known)

2×1

:
(Unknown)

Indices &, '
not written

for simplicity

: = 979 9:97;

29

When Does Optical Flow Estimation Work?

• 979 must be invertible. That is 

979: = 97;9: = ;

• 979 must be well-conditioned.

MATH PRIMER

det 979 ≠ 0

If D: and D( are eigen values of 979, then

D: ≥ D( but not D: ⋙D(

D: > H and D( > H
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Let's look at how the conditioning of 𝐴)𝐴	 relates 
to real images. Consider the patch in the sky shown 
here. We take the spatial gradients 𝐼% and 𝐼& at 
each pixel in the patch and plot them as shown on 
the right. We fit an ellipse to the distribution of 
points in 𝐼%-𝐼& space. The semi-major axis and 
semi-minor axis of the best fit ellipse correspond 
to the eigenvalues 𝜆*	and 𝜆(	of the matrix 𝐴)𝐴. 
Since the sky is texture-less, the points in 𝐼%-𝐼& 
space form a compact cluster around the origin. 
The best fit ellipse in this case is a small circle.  
Hence both 𝜆*	and 𝜆( are small, indicating that the 
matrix 𝐴)𝐴 is not well-conditioned and hence optical flow cannot be computed reliably.  

 

Shown here is a patch that sits on the edge of the 
roof of the house. The roof edge has a strong 
gradient in one direction but a weak gradient in the 
orthogonal direction. Note that moving the patch 
along the edge will not significantly change its 
content. This gives rise to the aperture problem we 
discussed in slide 23. In this case, the best fit ellipse 
in 𝐼%- 𝐼& space is thin and long, yielding a large 
value for 𝜆*	and a small value for 𝜆(.  Again, the 
matrix 𝐴)𝐴 is not well-conditioned, and hence 
optical flow cannot be computed reliably.  

 

The Lucas-Kanade method works when you have a 
richly textured patch with strong gradients in 
various directions. For the patch on the ground 
shown here, we get a well-scattered distribution of 
points in  𝐼%-𝐼& space, resulting in a large ellipse 
and hence large values for both 𝜆*	and 𝜆(. In this 
case, 𝐴)𝐴  is well-conditioned and the computed 
optical flow is reliable. 

 

 

30

Smooth Regions (Bad)

Equations for all pixels in window are more or less the same.

Cannot reliably compute flow!

+!

+"!!

&"

;'~ ;&
Both are Small
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Edges (Bad)

Badly conditioned. Prominent gradient in one direction.

Cannot reliably compute flow!  
Same as Aperture Problem.

+!

+"

!! &"

;' ⋙ ;&
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Textured Regions (Good)

Well conditioned. Large and diverse gradient magnitudes.

Can reliably compute optical flow.

+!

+"
!!

&"

;'~ ;&
Both are Large
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When we derived the optical flow constraint 
equation, we assumed that the displacements 𝛿𝑥 
and 𝛿𝑦 over time 𝛿𝑡 are small. What happens if we 
have large motion between consecutive images? 
Consider the two images shown here. Assume that 
the camera's movement is the only cause of 
motion in this case. Since the tree is close to the 
camera, its motion is substantial (tens of pixels). In 
this case, we can't assume that 	𝛿𝑥 and 𝛿𝑦 are 
small. Hence, the Taylor series approximation we 
made in slide 16 is no longer valid, making our 
optical flow constraint equation invalid.  

 

We can address the problem of large motion using 
a resolution pyramid. Assume that we have two 
images taken at time 𝑡 and 𝑡 + 𝛿𝑡. The resolution 
of each captured image is 𝑁 × 𝑁. We now 

compute lower-resolution versions (+
(
× +

(
, +
,
× +

,
,

+
-
× +

-
, etc. ) of these two images, as shown here. 

At each resolution, each pixel is the average of four 
pixels in the higher resolution image. An important 
thing to note is that if the motion of a scene point 
in the original 𝑁 × 𝑁 image is 8 pixels, its motion 

is 1 pixel in the +
-
× +

-
	image. We can therefore 

create a resolution pyramid such that at its lowest resolution the motion at all pixels is less than 1 pixel. 
At that resolution, the optical flow constraint equation becomes valid again. 

 

 

34

What if we have Large Motion?

1 8 + 98, : + 9:, % + 9%
Taylor Series approximation of

is not valid

Our simple linear
constraint equation not valid

*%! + *'# + *& ≠ 0

35

Large Motion: Coarse-to-Fine Estimation

Resolution 
(×(

At lowest resolution, motion ≤ 1 pixel

-

- + #-

Resolution 
,
2 ×

,
2

Resolution 
,
4 ×

,
4

Resolution 
,
8 ×

,
8
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Using the resolution pyramid, we develop a 
coarse-to-fine optical flow estimation algorithm. 
We start with the lowest resolution and apply the 
Lucas–Kanade algorithm to the images taken at 
time 𝑡 and 𝑡 + 	𝛿𝑡. We then use this computed 
optical flow to warp the image at time 𝑡 in the next 
higher resolution. This warping is done by 
“pushing” each pixel in the direction of its 
computed flow. Since the optical flow was 
computed at a lower resolution, the warped image 
is not going to be exactly the same as the 
corresponding pyramid image at time 𝑡 + 	𝛿𝑡, but 
it will be close to it. Then, we compute the optical flow between the warped image and the 
corresponding pyramid image at time 𝑡 + 	𝛿𝑡. This flow computation works well because the flow 
between these two images is small, since the large motions are taken care of by the warping. We now 
add this newly computed optical flow to the previous one and use the resultant flow to warp the image 
at time 𝑡 at the next higher resolution. This process is repeated all the way down to the highest 
resolution, at which point we have the final flow at every pixel. A few examples of optical flow computed 
using this method can be seen in the online video lecture. 

 

There is another brute-force approach to compute optical flow that is based on template matching. 
Consider the two images 𝐼*	 and 𝐼(	 shown here, taken at time 𝑡 and 𝑡 + 	𝛿𝑡, respectively. For each pixel 
in image 𝐼*, we can take a small window 𝑇 around it and use it as a template to find the best matching 
window in image 𝐼(. The difference between the location of the original window in 𝐼*	and the best match 
window in 𝐼(	gives us the optical flow vector. The problem with using this approach is that it could lead 
to mismatches—a patch in 𝐼*	could match multiple patches in 𝐼(	equally	well.  

36

Coarse-to-Fine Estimation Algorithm

Warp OF

+

Warp OF

+

OF
", $ (()

[Bouget 2000]

* * + ,*

*

*

* + ,*

* + ,*

∆ ", $ (*)

∆ ", $ (+,*)

", $ (*)

", $ (+,*)

", $ (+)

40

Alternative Approach: Template Matching

Template Window . Search Window S

Image -& at time (

Determine Flow using Template Matching

Image -* at time ( + %(

For each template window ; in image 1*,
find the corresponding match in image 1$.

41

Large Motion: Template matching

Template Window . Search Window 0

Image -& at time (

Determine Flow using Template Matching

Image -* at time ( + %(

Template matching is slow 
when search window < is large.
Also, mismatches are possible.
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We will conclude by discussing a few applications 
of optical flow.  

 

 

 

 

 

 

 

 

 

The optical mouse has a complete computer vision 
system inside it. It has a light source, which 
illuminates the surface that the mouse sits on. This 
surface is imaged by a camera that is low in 
resolution (e.g., 64x64 pixels) but high in frame-
rate (e.g., 2000 frames a second). Successive 
images captured by the camera are used to 
estimate optical flow, i.e., the motion of the mouse 
between successive frames. This information is 
used, for example, to control the cursor on a 
computer screen. 

 

 

Here we see the use of optical flow for traffic 
monitoring. We have a stationary camera looking 
down at a highway. We know a-priori the plane of 
the highway in the camera’s coordinate frame. The 
computed aggregate flow of each vehicle is 
projected onto the highway plane to determine the 
speed of the vehicle.   

 

 

 

Traffic Monitoring

Finding Velocities of Vehicles
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Applications of Optical Flow
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Optical Mouse

Estimating Mouse Movements

I.3
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Another interesting application of optical flow is 
video retiming—increasing the frame-rate of an 
already captured video. Fast moving objects in a 
scene can cause a captured video to appear 
choppy. To compute a smooth video that appears 
like it was taken with a high-speed camera, we 
compute the optical flow between successive 
frames of the original video and use the flow 
vectors to interpolate intermediate frames. The 
end result is a smoother video. This method is 
widely used in smartphones to create slow-motion 
effects. 

 

Optical flow can be used to remove camera shake 
and stabilize a video. Imagine taking a video of a 
scene while walking through it. The video is likely 
to be shaky. Optical flow is computed between 
consecutive images of the video. The dominant 
flow, which is how most points in the scene are 
moving, is then computed. The dominant flow 
usually corresponds to the motion of the 
background of the scene. This dominant flow is 
then compensated for to reduce the shake in the 
video. This process is called stabilization. 

 

Another interesting application is face tracking. 
Here, we compute the flow of points on a face. 
This gives us a lot of useful information that can be 
used to figure out when a person blinks, how the 
lips are moving, recognize the person’s 
expression, etc.  

 

 

 

 

46

Image Stabilization

Optical Flow is used to remove camera shake.

[Liu 2014]

Captured Video Stabilized Video

45

Video Retiming

Optical Flow is used to determine the intermediate frames 
to produce slow-motion effect. 

I.10
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Face Tracking

Tracking of Facial Features

I.2
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