

Object Tracking

Shree K. Nayar

Monograph: FPCV-5-1

Module: Perception

Series: First Principles of Computer Vision

Computer Science, Columbia University

April, 2025

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Object Tracking

FPCV-5-1 1

We have seen in the previous lectures how optical
flow can be used to determine how each point in
the scene moves from frame to frame in a video.
Now, we are going to look at tracking objects from
frame to frame in a video. We want the tracking
algorithm to be insensitive to changes in
illumination, scale, rotation, and even occlusions
as objects move over space and time.

Our goal is to track the location of a target object
from one frame to the next frame in a video. If we
can do this through an entire video, we can come
up with tracks for every object of interest in the
scene, and understand how they move with
respect to each other.

First, we look at the problem of change detection,
where we want to detect when each pixel in a
video undergoes a meaningful change. By
meaningful change we mean a significant event,
such as the motion of an object through the pixel,
and not changes due to noise, illumination, or weather (rain, snow, etc.). To this end, we will look at the
intensity variations at each pixel as a distribution, and then fit a model to the distribution. We model the
pixel intensity distribution using a Gaussian mixture model (GMM). The parameters of the GMM are then
used to classify each pixel as belonging to the foreground (a meaningful change) or the background.

After detecting meaningful changes, we want to track objects over a video sequence. The first method
simply uses the object of interest in one frame as a template and determines using template matching
where it ends up in the next frame. The template can be a window of brightness values or a histogram
of brightness values within the window. Finally, we will develop a tracking algorithm that uses SIFT
features. Features detected in a target window in one frame are used to find a translated and distorted
window in the next frame that includes a large number of detected features in the previous frame.
Finally, we conclude with a few popular applications of object tracking.

1

Object Tracking

Topic: Object Tracking, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Track the location of target objects in each frame of a
video sequence.

Object Tracking

Topics:

(1) Change Detection

(2) Gaussian Mixture Model

(3) Object Tracking using Templates

(4) Tracking by Feature Detection

First Principles of Computer Vision Object Tracking

FPCV-5-1 2

Before we can track objects over space and time,
we want to first figure out which parts of the
scene are undergoing meaningful changes, while
ignoring uninteresting changes. Let us first
examine what we mean by meaningful and
uninteresting changes.

Consider a static camera observing a scene, such
as the highway on the left, or the street
intersection on the right. The objects of interest to
us are vehicles on the highway on the left and
people walking on the street on the right. We
want to classify each pixel in the video captured
by the camera as belonging to the changing
foreground or belonging to a static background.
We refer to this as a foreground/background
classification problem. At first glance, this may
appear to be a simple task. However, as we will
see, it is a challenging one as we want our change
detection to be resilient to changes that are not of interest to us.

What do we mean by uninteresting changes in a
scene? In example 1 , the motion of the boat is
clearly a meaningful change, but the ripples on the
water are not of interest to us even though they
could produce substantial flickering at each pixel.
Similarly, at low light levels, the video produced by
the camera could be noisy, causing rapid
fluctuations of pixel intensity. We would like our
change detection method to be robust to these
kinds of changes.

3

Change Detection

Topic: Object Tracking, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

4

Change Detection

Given: Static cameras observing scene (room, street, etc.)

Find: Meaningful changes (moving objects, people, etc.)

Robust and real-time classification of each pixel as
“foreground” (motion/change) or “background” (static).

I.1 I.2

5

Change Detection: Challenges

Ignore uninteresting changes:

• Background fluctuations

• Image noise

I.4

I.5

• Rain, snow, turbulence

• Illumination changes & shadows

• Camera shake

1

2

3

First Principles of Computer Vision Object Tracking

FPCV-5-1 3

Another cause of uninteresting changes could be weather effects such as rain and snow, as shown in
example 2 . In this case, we want to detect the moving cars on the street but the raindrops and
snowflakes also produce significant brightness fluctuations which are not of interest to us.

Illumination changes are another challenge for change detection. In example 3 , each person moving in
the scene has their shadow attached to them. While the people are of interest to us, their shadows are
not. We would like our change detection algorithm to be resilient to such illumination effects.

Finally, there is camera shake. Consider an outdoor camera mounted on a pole. On a windy day, the
camera can sway back and forth, causing the intensities of all camera pixels to fluctuate. Once again,
these are changes that we want our change detection algorithm to ignore.

Let us start with the simplest method for detecting

changes in a scene, namely, frame differencing.

We simply compute the difference between the
current frame and the previous frame, and check
whether the difference is greater than a threshold
at each pixel in the image. In the example shown
here, we can see that the moving cars produce
detectable changes. However, the waving leaves
in the background produce large changes as well.
Furthermore, if a car has uniform color, as most
cars do, only the edges of the car produce changes
as the car moves. For all these reasons, simple
differencing is not an effective solution.

One way to improve the above differencing
method is by computing a background image that
is more robust than just the previous image. On
the right, the background image is the average of
the first K frames of the video of the scene 1 . The
difference between this image and the current
image is used to detect changes. This works
slightly better, but it cannot handle the waving of
the leaves or any changes in lighting 2 .

1 2

First Principles of Computer Vision Object Tracking

FPCV-5-1 4

We can do a bit better by using the median of the
first K frames. The median is better than the
average because it represents the most popular
intensity seen in the K frames. However, since the
median is computed using just the first few
frames, it loses its meaning with time since the
lighting of the scene is bound to vary.

Thus, we want our background model to not only
represent the past but also want this model to
adapt to gradual scene changes.

In the adaptive model shown here, we still compute a median for the background model, but the median
is computed using the last K frames instead of the first K frames. Note that this model is more expensive
to compute as it needs to be updated for each new frame. We see from the two examples shown here
that this model does a lot better, in particular with the swaying leaves in the highway scene.

This is the simplest form of change detection that works well for simple real-world scenarios. However,
it cannot deal with all the uninteresting changes we discussed in slide 5, such as weather effects like rain
and snow, shadows that are attached to moving objects, or camera shake. Let us now look at how we
might be able to address these problems by creating a more powerful model for the way intensity varies
at each pixel.

First Principles of Computer Vision Object Tracking

FPCV-5-1 5

We have seen how we can develop very simple
change detection algorithms using the average or
the median. We have also seen that there are
limitations to these approaches. To overcome
these limitations, we need a more sophisticated
background model that captures the variation of
intensities or colors at each pixel in the image.
That brings us to the Gaussian mixture model.

Shown here is a challenging scenario where we wish to detect moving vehicles on a rainy day. In this
case, a pixel’s intensity can change not only because of a vehicle passing through it but also due to
raindrops moving through it. Let us consider a single pixel (small square in slide 12), and watch this pixel
over a period of time. For now, we assume the video to be grayscale and we will extend our approach to
color later. We can compute a histogram 1 of the intensity values detected by the pixel, where the
intensity values range from 0 to 255. We want to understand the structure of this histogram. The
measured pixel intensities result from three factors. The first is the static background (the road), which
can only vary gradually due to illumination changes. The second is noise, which could be image noise or
due to raindrops passing through the pixel. Lastly, we have the motion of a vehicle through the pixel.

Statistically speaking, we can view this histogram as a population of intensities, and each one of its
bumps as subpopulations. The bump 2 (blue) corresponds to intensity variations due to the road itself.
The bump 3 (also blue) is due to the rain. The passage of vehicles through the pixels produces the third

11

Gaussian Mixture Model

Topic: Object Tracking, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

1 3 2
4

First Principles of Computer Vision Object Tracking

FPCV-5-1 6

bump 4 (red). The two blue bumps are referred to as the background while the red bump is called the
foreground. Note that in this scenario a pixel is exposed to the background most of the time which is
why the two blue bumps are larger than the red one.

We first normalize the histogram in slide 13 so that the area under it equals one. This makes it a
probability distribution 1 . Next, we model each bump in the distribution as a Gaussian function. If we
fit a Gaussian to the left most bump, we get the function 2 . This Gaussian has a standard deviation
(width) 𝜎 and mean 𝜇. It has a third parameter, ω, known as the scale or evidence associated with the
Gaussian, which accounts for the fact that each bump can have its own height.

Shown in slide 15 are three Gaussians 3 , one for each of the three bumps. On adding them up, we end
up with the function in 4 , which is close in shape to the actual distribution. Such a model that is the
sum of K weighted Gaussians is called a Gaussian mixture model (GMM) 5 . Each Gaussian k has mean
𝜇! , standard deviation 𝜎!, and evidence 𝜔! . Since our distribution has an area of one, the sum of the
𝜔!’s should be equal to one.

14

Gaussian Model

MATH PRIMER

Probability Distribution Gaussian

1-Dimensional Gaussian:

$(&) (, * &, +, ,

" # $, &, ' = " 1
2+' ,

! "
#$! %!&

!

+: Mean

,: Std. Deviation

*

(&: pixel intensity)

(: Scale (Evidence)

15

Gaussian Mixture Model (GMM)

MATH PRIMER

Probability Distribution Mixture of Gaussians Gaussian Mixture Model

GMM Distribution: Weighted sum of / Gaussians

$ & =.
"#$

%
("*" &, +" , ,"

4 5 ≅ 7

&'"

$

8&9& 5, :& , ;&

*$

*&

*'

7

&'"

$

8& = 1such that

$(&) ("*" &, +" , ,"(&: pixel intensity)

1
2

3 4

5

First Principles of Computer Vision Object Tracking

FPCV-5-1 7

The above modeling of pixel intensity variation
with a GMM can also be done in higher
dimensions. Suppose each pixel measures color in
terms of red, green, and blue values	 1 . In this
case, our distribution is three-dimensional and we
can model it as a sum of k three-dimensional
Gaussians 2 . Once again, we want the sum of our
evidences, 𝜔!′𝑠, to be equal to one. In this case,
the mean of each Gaussian is a vector consisting
of the means for the red, green, and blue
channels. Instead of 𝜎	being a single number for
each Gaussian, we now have a co-variance matrix,
∑ 3 . If a Gaussian is symmetric, it would have the same 𝜎 along the red, green, and blue dimensions,
and therefore the covariance matrix ∑ would have the same value, 𝜎" , along the diagonal and zero
everywhere else. If a Gaussian has different 𝜎 values along red, green, and blue, we will still have a
diagonal matrix, but with different values along the diagonal. If the different color channels are
correlated, ∑ could be a full matrix. In theory, we can use a GMM to model a function of any
dimensionality. There a several freely available programs for fitting a GMM to a function. It should be
noted that the use of a GMM makes sense only when we know that the function can be modeled with a
small number of Gaussians.

Let us now return to our change detection
problem. Given a GMM for intensity or color
variation at a pixel over time, we want to first label
each one of the Gaussians in the GMM as being
either foreground or background. Shown here are
the three Gaussians of a GMM that was fitted to
the intensity distribution in slide 13. Our intuition
is that pixels see the background for most of the
time, which corresponds to Gaussians with large
evidence 𝜔 and small deviation 𝜎. Therefore, if 𝜔
divided by 𝜎 is large for a Gaussian, we are going
to call it a background Gaussian. Conversely, a
Gaussian for which 𝜔 divided by 𝜎 is small will be labeled as a foreground Gaussian. In short, a
foreground Gaussian corresponds to meaningful changes at the pixel.

16

High Dimensional GMM

MATH PRIMER

GMM of 4(>): Sum of / @-dimensional Gaussians

4 > ≅ 7

&'"

$

8&9& >, A& , Σ& 7

&'"

$

8& = 1such that

Let 4(>) be a probability distribution of a @-dimensional
random variable > ∈ ℛ(. For example: > = +, ,, E)

where: # -, ., Σ = 1
2+ '/# Σ "/# ,

!"#)!* (+)*)!*

GMM can be estimated from 4(>). (MATLAB: gmdistribution.fit)

Covariance matrixMean A =

:*
:+
:,

Σ =

;# 0 0

0 ;# 0

0 0 ;#
(can be a

full matrix)

1

2

3

First Principles of Computer Vision Object Tracking

FPCV-5-1 8

Now we will present the sketch of an algorithm
developed by Stauffer for change detection. The
algorithm is applied to each pixel independently.
For each pixel, we compute a pixel color histogram
𝐻 using the first 𝑁	frames of the video, and then
normalize the histogram to get 𝐻1 which makes it
a probability distribution. Then, we fit a GMM to
𝐻1. We will assume the GMM is made of a small
number, say, 3 or 4, Gaussians. As described in
slide 17, we use the ratio of 𝜔 and 𝜎 to label each
Gaussian as either background or foreground.

Now we are ready to perform change detection. For each subsequent frame, we take the pixel value, 𝑋,
and find which Gaussian in our model it is closest to it. This is done by find the mean 𝜇! that is closest to
𝑋. We also want to make sure that it is close enough to the mean to classify it as belonging to that
Gaussian. This is done by using the condition that 𝑋 minus 𝜇! is less than 2.5 𝜎! . If this condition is
satisfied, we know from the label of the Gaussian whether 𝑋 belongs to the background or the
foreground. The above process is applied to each new pixel color.

Since the illumination of the scene or the weather conditions could change slowly with time, we update
our histogram	𝐻1	after each frame of the video. We do not want to recompute GMM at millions of pixels
for each frame as it would be computationally prohibitive. Therefore, for each pixel, we recompute the
GMM only when the updated 𝐻1	 deviates significantly from the old 𝐻1.

20

Adaptive GMM based Change Detection

Input Video

Foreground
(Adaptive GMM Method)

Foreground
(Moving Median Method)19

Adaptive GMM based Change Detection

Input video

Input video

Foreground

Foreground

18

Change Detection using GMM

1. Compute pixel color histogram G using first H frames.

2. Normalize histogram: IG ← G/ G .

3. Model IG as mixture of / (3 to 5) Gaussians.

4. For each subsequent frame:

a. The pixel value > belongs to Gaussian L in GMM for which
> − A& is minimum and > − A& < 2.5;&.

b. If ⁄
-! .! is large then classify pixel as background. Else

classify as foreground.

c. Update histogram G using new pixel intensity.

d. If IG and G/ G differ a lot (IG − R
/

/ is large),
IG ← G/ G and refit GMM.

For each pixel:

[Stauffer 1998]

First Principles of Computer Vision Object Tracking

FPCV-5-1 9

Here are some results obtained from applying the above change detection algorithm to the three scenes
we saw before. In all three cases, we see that the algorithm produces robust results. For the traffic scene
on the left, the algorithm can be seen to be fairly resilient to the swaying of the leaves in the background.
It is able to detect each moving vehicle as a separate object. For the bad weather scene on the right, we
see that the GMM-based method does far better than the moving median method described in slide 10.
In the video of this lecture, we can see that the moving vehicles are well detected while the effects of
rain are mostly ignored.

Since we can now find meaningful changes in
videos, they can be used to track an object of
interest. The goal is to track the object through
the entire video sequence. As the object moves
through the video sequence, its magnification
(distance from the camera), pose, and lighting can
change. The object can even be partially occluded
or entirely obstructed for short durations by other
objects in the scene.

Our first approach is very simple, which is to use a
region of interest (perhaps, the output of a change
detection method) as a template and apply template matching to track the object from frame to frame.
As we will see, this approach will work for only simple tracking scenarios.

Here we are given a window (black rectangle)
around one of the players and we want to track
the player over time. By using template matching,
we can do a fairly good job in this case because it
is a simple setting since the background (turf) is
fairly uniform and the players wear one of two
uniforms.

22

Object Tracking

Given: Location of target in initial or previous frame.

Find: Location of target in current frame.

21

Object Tracking using Templates

Topic: Object Tracking, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

First Principles of Computer Vision Object Tracking

FPCV-5-1 10

We can perform template matching in two ways.
One is to use the appearance of the object in full
as the template and apply template matching. In
this case, we essentially have a template created
from our initial image, and we are going to use it
to find the object in the next frame. We then
redefine the template using the current frame and
apply template matching to the next frame. We
refer to this as appearance-based tracking. The
second approach is to use a histogram of the
colors in the window as the template. In this case,
we lose spatial information, but that can make
matching more robust when the pose and magnification of the object vary.

Let us first look at appearance-based tracking. In
this example, a window (template) is chosen
around the soccer ball in the first frame. Template
matching is then applied to a large neighborhood
in the next frame. Once the ball has been found in
the next frame, its appearance in that frame is
used as the template for matching with the next
frame. Our hope is that the change in appearance
of the ball between frames is small. Clearly, this
approach is effective only when inter-frame
changes due to magnification, pose, lighting, and
occlusion are not significant.

A variety of metrics can be used to perform
template matching. We can use the sum of
absolute differences or the sum of squared
differences. To make matching more insensitive
to illumination changes, we could use the
normalized correlation.

 25

Similarity Metrics for Template Matching

Find pixel L, T ∈ S with Minimum Sum of Absolute Differences:

Find pixel L, T ∈ S with Minimum Sum of Squared Differences:

012 3, 4 = 5
(-,/)∈2

6" 7, 8 − 6#(7 + 3, 8 + 4)

002 3, 4 = 5
(-,/)∈2

6" 7, 8 − 6#(7 + 3, 8 + 4) #

REVIEW

Find pixel L, T ∈ S with Maximum Normalized Cross-Correlation:

=>> 3, 4 =
∑(-,/)∈26" 7, 8 6# 7 + 3, 8 + 4

∑(-,/)∈26" 7, 8 #∑(-,/)∈26#(7 + 3, 8 + 4)#

23

Target Templates for Tracking

Image
Template

Histogram
Template

Histogram based Tracking:

Appearance based Tracking:

First Principles of Computer Vision Object Tracking

FPCV-5-1 11

Now, let is discuss histogram-based template
matching. Shown here is a window around a
moving truck. Instead of directly using the window
(appearance) as a template, we compute a
histogram of the window to represent our
template. It could be a brightness histogram or a
color histogram.

Typically, the more reliable points within a window
tend to be closer to the center of the window. As
we approach the edge of the window, there is a
higher likelihood of a pixel belonging to the
background of the object of interest. In the case of the truck shown here, the background would be tree
leaves or the road. To mitigate this problem, we can use a weighted histogram where the contribution
of each pixel to the histogram depends on its location within the window. One such weighted function
is called the Epanechnikov kernel, where the weight drops with the distance of the pixel from the center
of the window. This weighted histogram is used as a template to find the best matching window in the
next frame. Once again, the matching can be done using any of the metrics described in slide 25.
Histogram-based template matching tends to be more resilient than the appearance-based template
matching to changes in object pose, scale, and even occlusion.

Shown here is an example of histogram-based
template matching. Our region of interest is one of
the players. As seen in the online lecture video, the
method works well in this case, except when the
player is crossed by another player with the same
uniform. When this happens, sometimes, the
window gets attached to the crossing player.

29

Histogram Based Tracking: Results

Robust when object appearance is unique in the
environment and its size remains more or less the same.

First Principles of Computer Vision Object Tracking

FPCV-5-1 12

We now present a robust tracking algorithm that
is based on feature detection. This algorithm is
developed by Gu.

Shown here on the left is the initial image, within
which a region of interest (red window around the
face) has been specified. This window could be the
result of a face detection algorithm or manual
selection. The goal is to track the face over an
entire video. First, the SIFT detector is applied to
the image. The detected features in the target
window are shown in blue and the ones outside
the window in red. Remember that each SIFT
feature has a location and a descriptor. The
collection of SIFT features inside the window
represent the object model, and all the features
outside the window represent a background model. That concludes the initialization process, and now
we are ready to do tracking.

We want to find our object of interest, the face, in the new image shown on the right. First, we apply
feature detection to this image to find all its SIFT features. For each of these features, we are going to
find the closest match in the object model and in the background model. All the blue points match well
with the object model, and the red points with the background model. There are also a few black dots,
which are not assigned to either model as they did not match well with either.

We now take the window in the left image and place it on the right image. Our goal is to apply shifts and
distortions to this window to arrive at a window that maximizes the number of object model features
(blue dots). To ensure that new window does not deviate significantly in terms of location, size, and
shape with respect to the old one, we use a cost function related to the shift and distortion of the new

30

Tracking by Feature Detection

Topic: Object Tracking, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

First Principles of Computer Vision Object Tracking

FPCV-5-1 13

window. Once the new window has been found, since the object and the background may have changed
in appearance, we use the features within the window to update the object model and the features
outside it to update the background model. This process is repeated for each new frame of the video.

We now describe the algorithm in detail. Let us
start with the initialization process, which involves
building the object and background models. In the
first frame, we define the object of interest as a
window 𝑊 (red), and then we apply SIFT to the
image. Then, we use all the features inside the
window to create the object model, and the
features outside the window to create our
background model. This concludes the
initialization process and we are ready to perform
tracking.

Here is how tracking works for frame 𝑡. First, we find SIFT features in the image. For each feature 𝑣#, we
find the distance 𝑑$ between it and the best matching feature in the object model, and the distance 𝑑%
between it and the closest matching feature in the background model. If 𝑑$ is much smaller than 𝑑%
(𝑑$divided by 𝑑% is less than 0.5), then we give that feature a confidence, 𝐶(𝑣#) = 	+1, meaning it
belongs to the object. If not, we give it a confidence of -1, as we believe it does not belong to the object.
Every feature now has a 𝐶 value associated with it. In slide 33, each blue dot has a confidence of 1, and
each red one a confidence of -1.

First Principles of Computer Vision Object Tracking

FPCV-5-1 14

Now, we need to figure out where the window 𝑊 has moved to in the image. In other words, we search
for the new location and shape of the window 𝑊. For each window in the search, we are going to add
up all the 𝐶 values inside the window to get a total confidence 𝜑. We also apply a penalty, 𝜏, for the
change in the window shape and position with respect to the window in the previous frame. The match
score 𝜇 for the window is then simply 𝜑 minus 𝜏. The window 𝑊&	that maximizes the match score 𝜇 is
the new position of the object.

The last step is to update the object and background models. Since the appearance of the object and
background may change between frames, the features in the new image can differ slightly from those in
the previous one. We use the matched features inside the window 𝑊& to update the object model, and
the ones outside to update the background model.

The effectiveness of the above algorithm is best
seen in the online video lecture. In the two
examples shown here, the method demonstrates
high resilience to changes in scale and orientation.
On the left, the lighting of the scene changes quite
a bit. On the right, the person spins around and
yet is successfully tracked.

The algorithm is also quite robust to occlusion. In
the two examples shown here, the faces are
partially occluded by the hat and the magazine,
respectively. The tracking remains robust because
the features on these new objects have not been
seen before and therefore are not added to the
object model. These examples demonstrate the
advantage of using a feature-based approach
instead of using a template-based approach for
object tracking.

35

Tracking Results: Scale and Orientation

Resilient to changes in scale and orientation

1

36

Tracking Results: Occlusion

Resilient to occlusion

First Principles of Computer Vision Object Tracking

FPCV-5-1 15

Let us look at a few real-world applications of
object tracking. This system developed by Benfold
can track people in the wild. Most of the people
shown here are detected and tracked reliably. A
rectangle is displayed around each person, and a
smaller rectangle within it indicates the location of
the head of the person. The smaller rectangle can
be used to perform face recognition.

A popular application of tracking is in traffic
monitoring. Since we know the location of the
highway with respect to the camera, we can use
the estimated speed of each vehicle in the image
to determine its speed on the highway. This
information can be used to detect moving
violations as well as gauge traffic conditions.

There are more recent applications of tracking and
motion analysis. Shown here is the use of motion
to determine customer behavior in a store. The
red regions correspond to ones where customers
have spent the most time. This information is
useful as it informs the shop owner about which
products are attracting more attention. Such data
can be used for effective product placement and
inventory management.

37

Tracking Applications

Tracking People in the Wild

I.19

[Benfold 2011]

39

Tracking Applications

Customer Behavior for In-Store Analytics

I.17

First Principles of Computer Vision Object Tracking

FPCV-5-1 16

Acknowledgements: Thanks to Roshan Kenia, Tracy Cui and Nikhil Nanda for their help with
transcription, editing and proofreading.

40

References and Credits

Topic: Object Tracking, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

41

References: Papers

[Comaniciu 2000] D. Comaniciu, V. Ramesh and P. Meer. "Real-time tracking of
non-rigid objects using mean shift ". CVPR 2000.

[Stauffer 1998] C. Stauffer and W. E. L. Grimson. "Adaptive background
mixture models for real-time tracking" . CVPR 1998.

[Gu 2010] S. Gu, Y. Zheng and C. Tomasi. "Efficient Visual Object Tracking
with Online Nearest Neighbor Classifier" . ACCV 2010.

[Benfold 2011] B. Benfold and I. Reid. “Stable Multi-Target Tracking in Real-
Time Surveillance Video.” CVPR 2011.

42

Image Credits
I.1 www.changedetection.net N. Goyette et al., changedetection.net: A new change

detection benchmark dataset, CVPR 2012.

I.2 www.changedetection.net N. Goyette et al., changedetection.net: A new change

detection benchmark dataset, CVPR 2012.

I.3 www.changedetection.net N. Goyette et al., changedetection.net: A new change

detection benchmark dataset, CVPR 2012.

I.4 www.changedetection.net N. Goyette et al., changedetection.net: A new change

detection benchmark dataset, CVPR 2012.

I.5 www.changedetection.net N. Goyette et al., changedetection.net: A new change

detection benchmark dataset, CVPR 2012.

I.8 www.changedetection.net N. Goyette et al., changedetection.net: A new change

detection benchmark dataset, CVPR 2012.

I.10 https://www.epfl.ch/labs/cvlab/research/research-surv/research-balltracking/

Pascal Fua.

I.11 Carlo Tomasi. Used with permission.

I.12 Carlo Tomasi. Used with permission.

I.13 Carlo Tomasi. Used with permission. 43

Image Credits
I.14 Carlo Tomasi. Used with permission.

I.15 Carlo Tomasi. Used with permission.

I.17 https://abcnews.go.com/Business/stores-snooping-holiday-

shoppers/story?id=21153815 . ABC News. Prism Skylabs.

I.19 Ian Reid. Used with permission.

I.20 Purchased from iStock by Getty Images.

First Principles of Computer Vision Object Tracking

FPCV-5-1

References

[Benfold 2011] B. Benfold and I. Reid, “Stable Multi-Target Tracking in Real-Time Surveillance Video,”

CVPR 2011.

[Comaniciu 2000] D. Comaniciu, V. Ramesh and P. Meer, "Real-time tracking of non-rigid objects using

mean shift," CVPR 2000.

[Gu 2010] S. Gu, Y. Zheng and C. Tomasi, "Efficient Visual Object Tracking with Online Nearest Neighbor

Classifier," ACCV 2010.

[Stauffer 1998] C. Stauffer and W. E. L. Grimson, "Adaptive background mixture models for real-time

tracking," CVPR 1998.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022G] Edge Detection, Nayar, S. K., Monograph FPCV-2-1, First Principles of Computer Vision,

Columbia University, New York, May 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

[Nayar 2022I] SIFT Detector, Nayar, S. K., Monograph FPCV-2-3, First Principles of Computer Vision,

Columbia University, New York, August 2022.

[Nayar 2025B] Face Detection, Nayar, S. K., Monograph FPCV-2-5, First Principles of Computer Vision,

Columbia University, New York, February 2025.

[Nayar 2025J] Optical Flow, Nayar, S. K., Monograph FPCV-4-3, First Principles of Computer Vision,
Columbia University, New York, April 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

	Object Tracking SN 04-10-25 COVER
	Object Tracking SN 04-10-25
	References Object Tracking

