
 
 
 

Neural Networks 
 
 
 
 

Shree K. Nayar 

 

Monograph: FPCV-5-4 

Module: Perception 

Series: First Principles of Computer Vision 

Computer Science, Columbia University 

 

June, 2025 

 

 

FPCV Channel 

FPCV Website 

 

 

 
 

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/


First Principles of Computer Vision                                                                                                                                Perception 
 
 

FPCV-5-4 1 

In this lecture we will describe what a neural 
network is, how such a network can be 
constructed, and how it can be used to solve a 
wide range of detection and recognition problems. 
  
 
 
 
 
 
 
 
  
First, let us look at a few common visual 
recognition problems. Say that our goal is to 
develop a system for detecting and recognizing 
faces. We have already seen a few approaches to 
this problem. One is the use of Haar features and 
support vector machines (SVM) to classify images 
as either face images or non-face images. We have 
also discussed the use of principal component 
analysis (PCA) to compute eigenfaces, which can 
be used to both detect and recognize faces. In 
short, we know how to develop fairly robust 
systems for detecting and recognizing faces. 
 
Here is a more challenging problem: recognizing 
handwritten text. Shown here are various samples 
of handwritten text, and we can see tremendous 
variability between them. If we look at a single 
letter, we can see that it appears very differently 
from one person’s writing to the next. Clearly, this 
is a hard recognition problem, but one that is 
critical in the context of optical character 
recognition. 
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Here is a recognition problem that on first glance 
appears simple. We want to develop a system with 
a very specific purpose—to recognize chairs. All of 
these chairs have the same function but are very 
different in appearance as they differ dramatically 
in terms of their 3D geometry and their material 
properties. How do we humans recognize chairs 
with ease, and how do we build a system that can 
do the same?  
 
 
 
 
 
That brings us to the human brain. While we are 
not good at making precise quantitative 
measurements, we are great at making qualitative 
judgements such as recognizing all the objects in 
slide 4 as chairs.  
 
The brain has an average weight of about 3.3 
pounds and an average volume of about 1200 
cubic centimeters. Although the brain only 
accounts for about 2% of a person’s body weight, 
it consumes about 20% of the energy owing to all 
the processing it does. As shown on the right, the 
brain is nothing but a network of neurons. There are approximately 100 billion neurons and roughly 100 
trillion connections between the neurons. This complex network enables us to seamlessly perform the 
wide range of perception tasks we rely on to function in the world.  
 
 
 

4

Recognizing Chairs

Difficult to define Characteristic Features

I.9 I.10 I.12 I.13

I.14 I.15 I.16

I.11

5

Our Neural Network

Average Weight: 3.3 lbs

Average Size: 1260 cubic cm

Human Brain

100 Billion Neurons

100 Trillion Connections

Neural Network



First Principles of Computer Vision                                                                                                                                Perception 
 
 

FPCV-5-4 3 

The basic building block of the human brain is the 
neuron. It is a single nerve cell with a nucleus that 
receives signals from other neurons via branches 
called dendrites. It takes all the inputs from its 
dendrites and performs a simple computation to 
produce an output, which it transmits as electrical 
impulses, or action potentials, via a thin fiber 
called the axon. The axon can vary in length from 
one millimeter to one meter. The other end of the 
axon has synaptic terminals which are used to 
make connections with dendrites of other 
neurons. The synaptic terminals transfer the 
electrical impulses that they receive via the axon, to dendrites of other neurons that are connected to 
them, using a process that is both electrical and chemical that involves potassium and sodium ions. From 
a computational perspective, the neuron is simple in terms of the operation it performs. However, when 
very large numbers of neurons come together to create a network, they can achieve complex mappings 
from inputs to outputs.   
 
 
In this lecture, we will start by discussing a simple 
type of neuron, called a perceptron. We will show 
that a perceptron behaves like a linear classifier, 
and that a network of perceptrons functions like a 
complex linear classifier.  
 
We know that linear classifiers are very useful, but 
they are limited in the class of problems they can 
solve. To make the network more powerful, we 
need to modify the perceptron, in particular the 
function that maps its inputs to its output, which is 
called the activation function. By changing the 
activation function of the perceptron from a step function to a sigmoid function, we get a neuron that 
has attractive mathematical properties. We present the architecture of a typical neural network and 
describe how the network can be trained using gradient descent to perform a task.  
 
For even a relatively small network, the use of gradient descent for training can prove computationally 
prohibitive. We present the backpropagation algorithm, which uses the chain rule of derivatives, to 
dramatically reduce (by orders of magnitude) the computations needed to train a network. Finally, we 
conclude with a few examples of the use of neural networks to solve vision problems.  
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A perceptron takes in several inputs, shown as 𝑥! through 𝑥" here, and produces a binary output, 𝑓. It 
does this by multiplying the inputs with weights, 𝑤! through 𝑤", finding the sum, and comparing it with 
a threshold 𝑏 , which is also called a bias. If the sum is greater than the bias, the output 𝑓  of the 
perceptron is 1, and if the sum is less than the bias, it is 0. Given a perceptron with weights 𝑤#  and bias 
𝑏, we can write all the weights as a vector	𝒘 and all the inputs as a vector 𝒙 to get the expression 1 .  
 
 
We denote 𝒘.	𝒙 + 𝑏 in expression 1  in slide 9 as  
𝑧. The perceptron essentially applies a function, 
called an activation function, to 𝑧 to produce its 
output. This activation function is the step 
function, or the heavy side function.  
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Let us look at what we can do with a single 
perceptron. Here is a simple example. Say, we 
wanted to decide whether to go to the movies. We 
want to make this decision based on three factors: 
whether the weather is good, whether we have 
company or not, and whether we are close to the 
theater or not. Let us assume that the weather is 
the most important factor. That is, if the weather is 
bad, we are not going to the movies, irrespective of 
the other two factors. We can assign a relatively 
large weight (say, 4) for the weather and lower 
weights (say, 2 and 2) for the other two factors. Let 
us say that we are willing to go to the movies only if the weather is good and at least one of the other 
two factors is favorable. To achieve that, we can choose a bias of -5.  
 
Let us see how this perceptron functions.  If the 
weather is bad but we have company and the 
theater is close by, we have 1 times 2 plus 1 times 
2, which is 4. 4 minus 5 (the bias) is −1, which is 
less than zero. Therefore, the output is zero, which 
means we will not go to the movies. 
 
 
 
 
 
 
Now, if the weather is good and we happen to 
have company, then we have 1 times 4 plus 1 
times 2, which is 6. 6 minus 5 (the bias) is 1, which 
is greater than zero. Therefore, the output is one. 
In this case, the decision is to go to the movies. 
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Now, let us take a closer look at what a single 
perceptron does. Here is a perceptron with two 
inputs, 𝑥! and 𝑥$, with equal weights of -2, and a 
bias of 3. In this case, 𝑧 is given by expression 1 . 
The output 𝑎 of the perceptron is the step function 
applied to 𝑧.  
 
Let us look at the space of inputs (𝑥!, 𝑥$),	which is 
shown at the bottom 2 . Note that the right-hand 
side of equation 1  is a straight line in the input 
space. If (𝑥! , 𝑥$)	 lies on, or to the right of, the 
straight line, 𝑧 will be less than or equal to zero, 
and therefore the output 𝑎 will be zero. On the other hand, if the input (𝑥!, 𝑥$) lies on the left side of 
the line, then 𝑧 is greater than zero and the output 𝑎 will be one. Therefore, the perceptron behaves like 
a linear classifier as it uses a straight line to split the two-dimensional input space. 
 
 
Now let us assume that the inputs to the above 
perceptron are binary: 0 or 1. Then, there are only 
four possible inputs: (0,0)  , (1,0) , (0,1) , and 
(1,1). From slide 14, we know what the output is 
going to be for each of these inputs. As shown in 
the table, the output will be 1 for the input (0, 0),	1 
for (0, 1),  1 for (1, 0), and 0 for  (1, 1). Therefore, 
this perceptron behaves exactly like a NAND logic 
gate, which is shown on the right.  
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This is interesting because we know that a NAND 
gate is a universal logic gate. This means that all 
the other logic gates that are familiar to us (NOT, 
AND, OR, and NOR) can be constructed using one 
or more NAND gates. Therefore, since a NAND gate 
can be implemented using a perceptron, 
perceptrons are universal for computation. 
 
  
 
 
 
 
What this really means is that, given any digital 
logic circuit, i.e., a circuit that can be constructed 
using the above gates, it can be modeled as a 
network of perceptrons, regardless of its 
complexity.  
 
 
  
 
 
 
 
 
As an example, let us look at a simple digital logic 
circuit, namely, a 1-bit adder. The circuit for the 
adder has two inputs,	𝑥! and 𝑥$, a series of NAND 
gates, and two outputs. One output is the sum, or 
the exclusive OR, of 	𝑥!  and 𝑥$ , and the second 
output is the carry bit, which is the AND of 𝑥! and 
𝑥$ . Since each one of these NAND gates can be 
represented using the perceptron in slide 15, we 
can create a perceptron network that is exactly 
equivalent to the 1-bit adder. 
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Once again, consider the single perceptron shown on the right. We know that its decision boundary is a 
straight line and the position and orientation of this line can be varied using the weights and biases of 
the perceptron.  Let us now explore what we can do with a network of perceptrons.  
 
Now consider the following problem. We are 
given a set of points that belong to two classes 
(triangles and dots) in a two-dimensional input 
space (𝑥!, 𝑥$).	We wish to build a classifier that 
can distinguish between the triangles and the 
dots. That is, given a novel input, we wish to 
determine whether it lies in shaded region or not.  
 
Consider the perceptron network shown on the 
right. Let us look at the perceptron labeled 1 . 
We can choose its weights and bias such that it 
serves as a linear classifier corresponding to the 
line 6 . The perceptron’s output will be one only when the input lies below line 6 . Similarly, the weights 
and biases of perceptrons 	 2 , 3 , and 4  are chosen to create classifiers  7 , 8 , and 9 , respectively.  
 
We know that when an input lies in the shaded region, all four perceptrons would produce an output of 
1. To produce the final output, we use perceptron 5  whose inputs are the outputs of perceptrons 1 ,  
2 , 3 , and 4 .  If we set the four weights of perceptron 5  to 2, and its bias to -7, it will produce an 

output of 1 only when all the four perceptrons behind it produce an output of 1. We therefore have 
constructed a perceptron network that serves as a linear classifier for a complex region. While our input 
space is two-dimensional in this example, such a classifier can be created for an input space of any 
dimensionality. 
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We can also construct a perceptron network that 
has multiple layers. The first layer in a multi-layer 
network is referred to as the input layer 1 , which 
are not perceptrons but rather just the inputs to 
the network. In the example shown here, we have 
two layers of perceptrons, 2   and 3 , called the 
hidden layers. This network happens to be a fully 
connected one, meaning that each perceptron in it 
takes as input the output of every perceptron in 
the preceding layer. The final output layer has a 
single perceptron, the output of which is the final 
output of the classifier. If an application requires 
multiple outputs, the output layer would have multiple perceptrons.  

 
As discussed before, the activation function of a perceptron is the step function (also called the heavy 
side function). We will first discuss some fundamental challenges posed by the use of the step function, 
and then show how these challenges can be addressed by modifying the step function.  
 
On the right is the perceptron network we described earlier. Ultimately, we want to find the weights and 
biases (the parameters) of this network to solve a given vision task. In other words, we want to adjust 
the parameters of the network so that we eventually end up with a network that produces a desired 
output for any given input. To find the optimal parameters of the network, we need the network to 
satisfy the property that a small change in any given parameter produces a small change in the output 
of the network. 
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Consider the perceptron in slide 25. Let us see what 
happens to the output	𝑎 when we make a change 
to the weight 𝑤!.  We have 𝑧 which is 𝒘. 𝒙	plus 𝑏. 
The output 𝑎  is the result of the step function 
applied to 𝑧. We begin with 𝑧 less than zero, which 
makes 𝑎 equal to 0. When we change 𝑤! by adding 
∆𝑤!,	 assume that 𝑧  drops further in value and 
hence 𝑎  remains 0. If we instead subtract  ∆𝑤! 
from 𝑤! as shown in slide 26, 𝑧 increases in value 
but remains negative and hence 𝑎 remains zero. In 
short, neither increasing nor decreasing 𝑤! by ∆𝑤! 
changes the output of the perceptron. Now, as shown in slide 27, if we further reduce 𝑤!  by ∆𝑤!, 𝑧 
becomes positive and suddenly 𝑎 jumps to 1.   
 
Therefore, in the case of a perceptron, a small change in a weight or a bias can either result in no change 
in the output or a sudden change in it. This consequence of using a step function as the activation 
function makes a network of perceptrons difficult to work with. Therefore, we would like to use a 
smoother activation function that makes it easier to interpret the effects of changing the parameters of 
a network.  
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That brings us to the sigmoid neuron. In this case, the activation function is a sigmoid function. As shown 
in slide 28, the sigmoid is a slightly blurred version of the step function, and can be written as 1 over 1 
plus 𝑒 to the power of -𝑧.  
 
In comparison to a perceptron, the behavior of a sigmoid neuron is more predictable. As before, if we 
change the parameter 𝑤! by adding ∆𝑤! to it (slide 29), we see that the output 𝑎 reduces. We therefore 
know that if we want to increase 𝑎 we need to subtract ∆𝑤! from 𝑤! (slides 30 and 31). In other words, 
in the case of a network made of sigmoid neurons, the output varies smoothly with respect to changes 
in the weights and biases of the network. This makes the network easier to work with compared to a 
network of perceptrons with the step activation function. 
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Now let us take a look at how we can construct a neural network and train it to solve a specific vision 
problem.  Shown here is a simple neural network. We have replaced the perceptrons here with sigmoid 
neurons. As in slide 24, we have an input layer and two hidden layers (Layer (2) and Layer (3)), each with 
a set of neurons. In practice, we can use a deeper network with more hidden layers.  As mentioned 
before, while we have a single output neuron here, we could have several output neurons if required by 
the task. Additionally, we have a fully connected network here, where each neuron takes as input the 
outputs of all the neurons in the previous layer. It could instead take as input only a subset of the outputs 
from the previous layer.  
 
 
Now let us construct a neural network to solve a 
specific problem, namely, recognizing handwritten 
digits. To train our network we will use the MNIST 
database which has a large collection of segmented 
and binarized handwritten digits. Each digit sits in 
a bounding box that is 20 x 20 pixels in size. This 
image is centered in a larger image, which is 28 x 
28 pixels in size.  
 
From the examples shown here, we can see that 
this seemingly simple recognition problem is in fact 
challenging. For example, the three samples of the 
digit 3 are written in very different styles. 
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[MNIST 1998]
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We want to configure this neural network such that 
it takes as input a handwritten digit and produce 10 
outputs, one for each of the digits. In the example 
shown here, we would like the output to be high 
(1) for the digit 6, and low (0) for all the other digits. 
The digit in an input image must be represented 
the same way as the digits in the training images 
discussed in slide 34. That is, each input digit 
should be rescaled and centered within an image 
of size 28 x 28 pixels. The input image should also 
be binarized like the training images.  
 
The network shown here was developed by Nielsen. It has an input layer with 784 (28 x 28 pixels) inputs, 
a single hidden layer with 30 neurons, and an output layer with 10 neurons, one for each of the 10 digits. 
This network has been shown to perform with an accuracy of about 95%, which is impressive given the 
difficulty of the problem and small size of the network.  
 
 
 
Next, we describe the important process of 
training the above network. Our training data is 
the MNIST dataset discussed in slide 34, which has 
a total of roughly 60,000 images. Human experts 
were used to determine the digit in each training 
image. Each image 𝒙 therefore is given a label that 
is represented as a desired activation vector 𝒂	<(𝒙) 
that has 10 elements, with a 1 for the element that 
corresponds to the digit, and 0 elsewhere.  
 
 
 

38

Training Data

Sample Training Data - MNIST Dataset (60,000 images)

Use training data with known desired activations.

[MNIST 1998]
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Now let us look at how the training process works. We begin by initializing the network with random 
weights and biases. Then, for each training image, we calculate the network activations (10 outputs). 
This is referred to as the feedforward process where, for each image, the input layer is computed and 
fed into the hidden layer. The outputs of the hidden layer are computed and fed into the output layer.  
Finally, the outputs (activations) of the output layer are computed.  
 
 
We now have an activation 𝒂  for each of the 
training images. Since the parameters of the 
network were initialized with random values, the 
computed activations are not going to match the 
desired activations. By using all the computed 
activations, we are going to compute the cost for 
the entire training data. Our goal then is to 
iteratively adjust the parameters of the network to 
arrive at a minimum cost.  
 
 

39

Training Process

Network
Activations

Training
Images Neural 

Network

Training Data

1. Initialize Weights and Biases of Network with Random Values
2. Compute Network Activation for each Training Image

41

Training Process

Cost
Network

Activations
Training
Images Neural 

Network
Compute

Cost

Desired Activations

Training Data

1. Initialize Weights and Biases of Network with Random Values

2. Compute Network Activation for each Training Image

3. Compute Cost for the Entire Training Data

1  
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Compute Activations: Feedforward
Input Layer
784 neurons
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30 neurons

Output Layer
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Let us take a look at how we compute the above 
cost. For any given training image 𝒙, we have our 
desired activation vector 𝒂	<  1 , which has 0s for 
everything except the digit that 𝒙 represents. Let 
us say that our random network provides us the 
activation vector 𝒂  2 . We take the Euclidean 
distance between the two vectors and square it to 
get the cost 𝐶%  for the image 𝒙	 3 . Next, we 
compute the average cost 𝐶 over the entire set of 
training images 4 . Note that the lower this cost is, 
the better the performance of the network.  
 
Now that we have the average cost 𝐶, we want to 
adjust the weights 𝒘 and biases 𝒃 of the network 
so as to lower the average cost. The method we 
use for doing this is gradient descent, which we will 
describe shortly. It is a well-known iterative 
method for optimization, and it can be used to find 
the local minimum of any differentiable function. 
We repeat steps 2 through 4, until the cost 𝐶 goes 
below some acceptable level, at which point the 
network is trained.  
 
 

 
 

Updating Weights and Biases

Update Weight and Bias to Minimize the Cost

!!
""

#

Initial Cost

Minimum Cost

45

42

For     

P- =

0.3
0.5
0.0
0.1
0.8
0.3
0.5
0.2
0.7
0.1

!

= 2.27

Cost Computation

For a Single Training Image:

Lower the Cost, Better the Classification

P-(7, @) = QM 9 − M 9|7, @ "

Desired Activation Network Activation

For Entire Training Data:

P(7, @) =
1
S
T
-
P- 7, @

Number of Training Images
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Training Process

Cost
Network

Activations
Training
Images Neural 

Network
Compute

Cost

Desired Activations

Update Weights & Biases

Gradient
Descent

Training Data

1. Initialize Weights and Biases of Network with Random Values

2. Compute Network Activation for each Training Image

3. Compute Cost for the Entire Training Data

4. Update Weights and Biases using Gradient Descent

5. Repeat Steps 2-4 until Cost reduces to an Acceptable Level

44

Gradient Descent

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University
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We are going to train our neural network by adjusting the weights and biases of the network using an 
optimization method known as gradient descent. As discussed in slide 43, our goal is to find the weights 
𝒘 and biases 𝒃 of the network that minimize the average cost 𝐶.  Let us first take the example of a 
network with two parameters, one weight 𝑤&  and one bias 𝑏# . Let us assume that the function that 
relates 𝐶 to 𝑤&  and 𝑏#  is the one shown in slide 45. We know the cost for specific values of 𝑤&  and 𝑏#  (red 
dot) and we wish to find the values of 𝑤&  and 𝑏#  that correspond to the minimum cost, i.e., the lowest 
point of the cost function. Since we don’t know the cost function a-priori, our goal is to iteratively update 
𝑤&  and 𝑏#  so that we eventually arrive at the minimum cost. We do this by moving 𝑤&  and 𝑏#  in the 
direction that is opposite to the gradient of 𝐶.  
  
 
We can use Taylor series to estimate the gradient 
of the cost 𝐶  at the current parameter values 𝑤&  
and 𝑏# . Let us say we have a two-dimensional 
function 𝑓(𝑥, 𝑦). If we want to find the value of 𝑓 
at 𝑥 plus ∆𝑥 and 𝑦 plus ∆𝑦, the Taylor series tells 
us that it is approximately equal to the sum of 
𝑓(𝑥, 𝑦), the derivative of 𝑓 with respect to 𝑥 times 
∆𝑥, and the derivative of 𝑓 with respect to 𝑦 times 
∆𝑦. Therefore, the change ∆𝐶  in the cost due to 
the change (∆𝑤&,∆𝑏#) in the parameters is given by 

equation 1 . This can be written in vector form as 
in equation 2 . This, in turn, can be written as 𝛻𝐶 
times ∆𝐯, where 𝛻𝐶 is the gradient of 𝐶 and ∆𝐯 includes the parameter changes (∆𝑤&,∆𝑏#) 3 .   
 
 

!!
""

#

Gradient Descent

Let   ∆" = −% &'

&( = )(
)*!

)(
)+" , ∆" = ∆*!

∆+"
∆( = &' . ∆"

∆( = −% &' #

where % is the Learning Rate

*! → *!$ = *! − %
)(
)*!

+" → +"$ = +" − % )()+"

For Each Step:
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Gradient Descent

Let   ∆% = −("

() = *)
*+!

*)
*," , ∆% = ∆+!

∆,"
∆) = (" . ∆%

∆) = − (" #
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Change in Cost

From Taylor Series:

# ! + ∆!, U + ∆U ≈ # !, U +
W#
W!

∆! +
W#
WU

∆U

∆# !, U ≈
W#
W!

∆! +
W#
WU

∆U

Applying to Cost Function:

∆P ≈
WP
W"6

∆"6 +
WP
W$$

∆$$

In Vector Form:

∆P =
WP
W"6
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W$$

.
∆"6
∆$$

Change in Cost:     ∆P = XY . ∆Z

Gradient Change in Weight and Bias
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We know that 𝛻𝐶, that is, the gradient of 𝐶, is the direction in which the cost function 𝐶 is steepest. 
Since we wish to get to the minimum of the 𝐶, this suggests that we want to change our parameters in 
the direction opposite to 𝛻𝐶. Therefore, we can set ∆𝐯 equal to the negative of 𝛻𝐶, as in equation 1 .  
Then, the change in cost, ∆𝐶, would the negative of the square of the magnitude of 𝛻𝐶, as in equation  
2 . In summary, in each iteration of our gradient descend, we compute 𝛻𝐶 and then simply add -𝛻𝐶 to 

the current parameter values 𝐯. 
 
As shown in slide 48, we can control the rate at which we change the parameters 𝐯 by introducing a 
parameter 𝜂, which is called the learning rate. The learning rate determines how fast we are going to 
descend the cost function 𝐶. With this modification, the update rule 3  involves finding the derivatives 
of 𝐶 with respect to 𝑤&  and 𝑏#, multiplying the derivatives with 𝜂, and subtracting the results from the 
current parameter values 𝑤&  and 𝑏# , respectively. This gives us our new parameter values, 𝑤&′ and 𝑏#′. 
This process is repeated until we arrive at the minimum of 𝐶, at which point, the derivatives 𝐶 with 
respect to 𝑤&  and 𝑏#  will equal zero.  
 
Let us examine the effect of the learning rate 𝜂. If we use a very small value for 𝜂, we are going to move 
slowly towards the minimum of 𝐶. If we use a moderate value for 𝜂, we are going to move faster and 
converge quicker. If we use a large value for 𝜂, we may overshoot the minimum of the cost function and 
bounce around a bit before finding it. Even worse, we stand the risk of jumping over the minimum to an 
entirely different part of the cost function, thereby converging at a local minimum that is not the global 
minimum. In short, the learning rate must be chosen with care.  
 
 
To gain a bit more intuition for how gradient 
descent works, let us look at this illustration. 
Assume you are at the top of the hill, as shown. 
Your goal is to get to the lowest point on the 
terrain. All you need to do is to find the gradient 
of the terrain right under your foot. This gradient 
will point in the direction of steepest climb, and so 
you take a step in the opposite direction. If you 
simply repeat this process, you will end up at the 
lowest point of the terrain.  

 
 

Gradient Descent: The Intuition

50
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In slide 46, we considered a network with just two 
parameters, 𝑤&  and 𝑏#. In a real network, we could 
have millions of parameters. It turns out that the 
approach described above works just the same for 
any number of parameters.  For a general 
multilayered neural network, the change in 
parameters ∆𝐯  and the gradient 𝛻𝐶  are both 
vectors with as many elements as there are 
weights and biases in the network. Here, 𝑤#'()) is 
the 𝑘+,  weight of the 𝑗+,neuron in the 𝑙+,  layer, 
and 𝑏#

())  is the bias of the 𝑗+,neuron in the 𝑙+, 
layer.  Once we have computed the gradient of 𝐶 
by computing the derivatives of 𝐶 with respect to all the weights and biases, we can use the same update 
rule as in slide 48 to adjust all the weights and biases 1 .  

 
The one thing we have not discussed is how to 
compute the gradient 𝐶 . For this, we use finite 
differences. We represent all the weights of the 
network as vector 𝒘, and all the biases as a vector 
𝒃.  Suppose we want to find the derivative of 𝐶 
with respect to the weight 𝑤#'()). We construct a 
parameter change vector ∆𝒘  which is zero 
everywhere, except for the element 
corresponding to 𝑤#'()).  Next, we compute the 
cost 𝐶(𝒘,𝒃) and the cost 𝐶(𝒘 + ∆𝒘,𝒃) using the 
feedforward computation described in slide 40. 
Then, we can find the derivative of 𝐶 with respect 
𝑤#'())  using equation 1 . Similarly, we can find the derivative of 𝐶  with respect to a bias 𝑏#

())  using 

equation 2 . Once the derivatives with respect to all the parameters of the network have been 
computed, we can use the update rule in slide 51 to adjust the parameters.  

 

Note that in each iteration of gradient descent, 𝐶(𝒘,𝒃) needs to be computed only once. However, 
𝐶(𝒘 + ∆𝒘,𝒃) needs to be computed as many times as there are weights, and 𝐶(𝒘,𝒃 + ∆𝒃) needs to be 
computed as many times as there are biases. Clearly, this makes gradient descent extremely inefficient 
for any reasonably sized network.  

51

Gradient Descent for the Entire Network
For a general multi-layer neural network:
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Gradient Computation

Gradients using Finite Difference:
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Let us revisit Nielsen's network for the recognition 
of handwritten digits. In this case, since there are 
23,820 weights and 40 biases, for each gradient 
computation, we need 23,861 cost computations. 
With that in mind, we can do a rough calculation 
of the number of computations involved in a 
single iteration of gradient descent while training 
this network. By computations, we mean 
multiplications, as additions are relatively 
inexpensive.  

 

 

The number of multiplications needed to 
compute the cost for a single training image (using 
feedforward) equals the number of weights, 
which is 23,820. Since the number of training 
images in the MNIST dataset is 60,000, the 
number of multiplications required to compute 
the average cost is 1.4	x	10-.  The number of 
average cost computations needed to find the 
derivatives of the cost with respect to all the 
weights and biases is 23,861 (slide 53). Therefore, 
the total number of multiplications required for 
one iteration of gradient descent is 3.4	x	10!" , 
clearly a very big number! Can we do better?   

 
A major breakthrough in the realm of neural 
networks was the invention of the 
backpropagation algorithm, which dramatically 
reduces the complexity of gradient descent. This 
invention has been critical to the success that 
neural networks is having today. We will now 
describe backpropagation in detail.   

53

Gradient Computation Complexity

#Weights : 784 x 30 + 30 x 10 = 23820
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Gradient Computation Complexity

# of Multiplications req. to : 23,820
Compute Cost for Single Image (P-)

# of Training Images used : 60,000
to Compute the Average Cost (P)

# of Multiplications req. to : 23,820	x	60,000
compute Average Cost (P) 1.4	x	109

# of Average Cost (P) Computations : 23,861
req. to Compute Gradient (XP)w.r.t
all Weights and Biases

Total # of Multiplications req. for : 23,861	x	1.4	x	109
One Iteration of Gradient Descent 3.4	x	1013

Can we do better?
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Backpropagation Algorithm
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First Principles of Computer Vision
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Let us see how backpropagation works. In this very simple network, we have two inputs (Layer 1): 𝑥!, 
and 𝑥$. We also have two hidden layers (Layers 2 and 3), with two neurons in each of them. Finally, we 
have an output layer (Layer 4) with two neurons. First, we are going to focus on one neuron in the output 
layer, marked as  1 . Let us look at the cost of this network for an image 𝒙. That cost, 𝐶%, is the desired 
activation 𝒂< 	minus the actual activation 𝒂(𝟒) (see 2 ).  

 

Now consider a single element of 𝒂(𝟒) , namely, 𝑎!
(/) . We know that 𝑎!

(/) depends on 𝑧!
(/)  via the 

activation function, which is the sigmoid function, i.e., sigma of 𝑧!
(/). Now, 𝑧!

(/), in turn, depends on the 

activations of the previous layer, through the weights 𝑤!!
(/)  and 𝑤!$

(/)  and the bias 𝑏!
(/)of the neuron 

marked as 3 .    

 

Let us pick one parameter 𝑤!!
(/). We want to find the derivative of the cost 𝐶% with respect to 𝑤!!

(/), which 
can be expressed using the chain rule for derivates (see 4 ). It equals the derivative of 𝐶% with respect 

to 𝑎!
(/) times the derivative of 𝑎!

(/) with respect to 𝑧!
(/), times the derivative of 𝑧!

(/) with respect to 𝑤!!
(/).  

 
We would like to find the right substitutions for the three derivatives in 4 . We can write out the 

expression for the first derivative 5  and show that it equals 2 times 𝑎I!  minus 𝑎!
(/) . The second 

derivative in 4  is the derivative of the sigmoid function with respect to 𝑧!
(/), which is given by 6 .  

 

If we plug 5  and 6  into 4 	, we are left with one derivative, namely, the derivative of 𝑧!
(/) with respect 

to 𝑤!!
(/), which is 𝑎!

("). The final expression for the derivative of the cost 𝐶% with respect to 𝑤!!
(/) is given 

by 7 . Note that most of the terms involve activations, except one, which is the derivative of the sigmoid. 
This brings us to an important property of the sigmoid. 
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Here is our sigmoid function 1 . Its derivative, 
which we will call 𝜎′  of z, is given by 2 . This can 
be further simplified as the sigmoid of z multiplied 
by 1 minus the sigmoid of z. We know that the 
sigmoid of z is the activation 𝑎 of the neuron. So, 
𝜎′ , the derivative of the sigmoid, is 𝑎  times 1 
minus 𝑎 , or, in other words, the output of the 
neuron times 1 minus the output (see 3 ).  

Now, in slide 57, we can replace 𝜎′ with 𝑎!
(/) times 1 minus 𝑎!

(/)to get 1 . We have therefore found the 

derivative of the cost with respect to parameter 𝑤!!
(/) without using any finite differences, but instead

by computing the product of activations from Layer (4) and Layer (3). 
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Derivative of Sigmoid Function

MATH PRIMER

The Sigmoid Function is:

J < =
1

1 + *)*

Its Derivative is:

J7 < = >!"
!?>!" #

J7 < = J < 1 − J <

For a Sigmoid Neuron:
0 = J(<)

Thus:  J7 < = 0(1 − 0)
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5+ #

!
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In slide 60, all the terms (boxed) that include the activation 𝑎!
(/)in Layer 4 are denoted as 𝛿!

(/)in slide 61 

(see 1 ). We see that 𝛿!
(/)can be used to compute the derivative of the cost 𝐶% with respect to 𝑤!!

(/) 2 , 

𝑤!$
(/)  3  and 𝑏!

(/)  4 . We have therefore found the derivatives of the cost with respect to all the 
parameters of the first neuron in the output layer. We can do the same for the parameters of the second 
neuron of the output layer as well. Note that all of these derivatives are computed without doing any 
finite differences! 
 
More generally, as shown in slide 62, as long as we know the 𝛿′𝑠	for any layer, we can find the derivatives 
of the cost with respect to the parameters of the neurons for that layer. What is left is to determine the 
𝛿′𝑠 for the layers that come before the output layer. Once again, by using the chain rule we can show 
that, if we know the 𝛿′𝑠 for any layer, we can find the 𝛿′𝑠 of the previous layer using the 𝛿′𝑠 of the 
current layer, the weights of the current later, and the activations of the previous layer (see 5 ). This 
process of computing all the derivatives of the cost function is called backpropagation.  
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Thus, for any Weight or Bias in the Network:

WP@
W"$8

(9) = d$
(9)08

(9)!) WP@
W$$

(9) = d$
(9)

7,
(-) : 7 of 2./ Neuron in Layer 1
80
(-1") : Activation of 3./ Neuron in Layer 1 − 1
9,0
(-) : Weight from 3./ Neuron in Layer 1 − 1 to 2./ Neuron in Layer 1

-,
(-) : Bias of 2./ Neuron in Layer 1

P- = QM − M = "

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

d!
(')

d"
(')

d!
(#)

d"
(#)

d!
(")

d"
(")

Computing Gradient using Chain Rule

2  3  4  
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For any Neuron in the Network:

d$
(9) =T

8
d8
9?! "8$

9?! 0$
9 (1 − 0$

(9))

7,
(-) : 7 of 2./ Neuron in Layer 1
70
(-2") : 7 of 3./ Neuron in Layer 1 + 1
8,
(-) : Activation of 2./ Neuron in Layer 1
90,
(-2"): Weight from 2./ Neuron in Layer 1 to 3./ Neuron in Layer 1 + 1

P- = QM − M = "

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

d!
(')

d"
(')

d!
(#)

d"
(#)

d!
(")

d"
(")

Backpropagation of !

[Williams et al. 1986]

5  
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Backpropagation Algorithm

Compute Gradient w.r.t all Weights and Biases using:
WP@
W"$8

(9) = d$
(9)08

(9)!) WP@
W$$

(9) = d$
(9)

Where, d for a Layer is derived from the d of the Next Layer:

d$
(9) =T

8
d8
9?! "8$

9?! 0$
9 (1 − 0$

(9))

P- = QM − M = "

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

d!
(')

d"
(')

d!
(#)

d"
(#)

d!
(")

d"
(")

We can, therefore, Compute the Gradient w.r.t
Every Weight and Bias using just the Network Activations

[Williams et al. 1986]

6  

7  

1  
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Slide 64, summarizes the backpropagation algorithm. First, the 𝛿′𝑠	for all the layers are computed using 
expression 6 . These 𝛿′𝑠 are then used to compute the cost derivatives respect to all the weights and 
biases of the network using the expressions in 7 . 
 
 
We can now discuss how gradient descent works 
with backpropagation. As before, we first initialize 
the network with random weights and biases. 
Then, for each training image, we compute the 
activations using feedforward (slide 40). Next, we 
compute all the 𝛿′𝑠 for the neurons in the output 
layer. Using them, we compute the 𝛿′𝑠 for all the 
previous layers (slide 63). Once we have all the 𝛿′𝑠, 
we know how to compute the derivatives of the 
cost with respect to all the weights and biases of 
the network (slide 63).  
 

 
After repeating the above process for all the 
training images, we compute the average of each 
cost derivative over all the training images. These 
average derivatives are used to perform gradient 
descent, i.e., adjust all the weights and biases of the 
network. All of the above steps correspond to a 
single iteration of gradient descent. These steps are 
repeated until the cost of the network is below an 
acceptable level.  
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3. Average the Gradient w.r.t. each Weight and Bias over the 
Entire Training Set:

WP

W"$8
(9) =

1
S
T

WP-
W"$8

(9)
WP

W$$
(9) =

1
S
T

WP-
W$$

(9)

4. Update the Weights and Biases using Gradient Descent

"$8
(9) → "$8

(9) = "$8
(9) − ]

WP

W"$8
(9) $$

(9) → $$
(9) = $$

(9) − ]
WP

W$$
(9)

5. Repeat Steps 2-4 till Cost reduces below an acceptable level

Gradient Descent with Backpropagation
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1. Initialize Network with Random Weights and Biases

2. For each Training Image:

a. Compute Activations for the Entire Network

b. Compute d for Neurons in the Output Layer using 
Network Activation and Desired Activation:

d$
(A) = 2 b0$

A − 0$
A 0$

A (1 − 0$
A )

c. Compute d for all Neurons in the previous Layers:

d$
(9) =T

8
d8
9?! "8$

9?! 0$
9 (1 − 0$

9 )

d. Compute Gradient of Cost w.r.t each Weight and Bias for 
the Training Image using d:

WP@
W"$8

(9) = d$
(9)08

(9)!) WP@
W$$

(9) = d$
(9)

Gradient Descent with Backpropagation
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Let us now look at the computational complexity 
of training with backpropagation. Remember that 
without backpropagation we needed 3.4	x	10!" 
multiplications to train Nielsen’s network using the 
MNIST dataset (slides 53 and 54). The number of 
multiplications required to compute the cost for a 
single image using feedforward is 23,820. The 
number of multiplications required to apply 
backpropagation for a single image is 24,210. The 
sum of these two (48,030) is the number of 
multiplications needed to compute the derivatives 
with respect to all the weights and biases for a 
single image. Since we have 60,000 training images, the total number of multiplications needed for a 
single iteration of gradient descent is 2.8 x 10-, which is a significant improvement of 10/. 

 

Today, neural networks are used to solve a wide range of computer vision problems. Let us look at a few 
examples. We’ll start with the one we have been talking about, which is recognizing handwritten digits 
using Nielsen's network. On the top of slide 69 are a few inputs and on the bottom are the activations 
produced by the network. In the first example (the digit 7), we get a high activation for 7 and zero, or 
close to it, for all the others.  This is true for the second example as well, where we get a high activation 
only for 2. In the third case, which we assume is a 5, we get high activations for both 2 and 5, and 
activation for 5 is larger than that for 2. The last one is more interesting. We don't really know what the 
input is in this case; it could be a 3 or an 8. In this case, we get large values for 2, 3, and 8, but 8 has the 
highest activation.  
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Gradient Computation Complexity

# of Multiplications req. to : 23,820
Compute Cost for a Single Image (P-)

# of Multiplications req. to  apply : 24,210
Backpropagation for a Single Image

# of Multiplications req. to : 24,210	+	23,820
Compute the Gradient of Cost 48,030
for a Single Image (XP-)

# of Training Images : 60,000

Total # of Multiplications req. for : 48,030	x	60,000
One Iteration of Gradient Descent  2.8	x	109

An improvement over brute force by a factor of 104

68

Example Applications

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision
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Recognizing Characters: Results

M=

0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.97
0.00
0.00

M=

0.00
0.01
0.69
0.01
0.00
0.02
0.01
0.00
0.00
0.00

M=

0.00
0.00
0.64
0.00
0.00
0.82
0.03
0.00
0.02
0.00

M=

0.00
0.02
0.10
0.09
0.00
0.00
0.03
0.00
0.18
0.00

7 2 5 8

Input 
Image

Network
Activations

Output
Labels
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Here is a real-time implementation of the above 
digit recognition system running as an app on a 
phone. When the camera of the phone is pointed 
at a digit, the digit is immediately recognized. 
Please view the online lecture video to see the app 
in action. 
 
 

 
 
 
 
 
One of the major innovations in the context of 
neural networks is the idea of a convolutional 
neural network (CNN). It was proposed by Yann 
LeCun and has proved to be highly effective in 
wide range of vision applications. In vision, we 
often take an input image and first process it using 
various filters to extract information that is most 
relevant to the task. Often, the filters we use are 
linear filters which we know from our lecture on 
image processing can be implemented as 
convolutions. It turns out that the application of 
filters to an image can be incorporated into a 
neural network. In fact, during the training process, the network can learn the best filters to use for the 
task. Shown here is a CNN that has learned the kernels 𝑘! through 𝑘0. During inference, these kernels 
are applied to the input image and the results and passed on to subsequent layers of the network.  

70

Character Recognition Video

I.18

71

Convolutional Neural Network (CNN)

⋮ ⋮

f"

f!

f#

f'

f(

!

!

!

!

!

Convolutional Layer Fully Connected 
Network

Input 
Image

Kernels Convolution 
Activations [LeCun et al. 1998]

Subsampling
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In this example, a network developed by ClarifAI 
was training on millions of images to generate 
keywords (tags) that reveal what is in the image. In 
this example, the system produces several tags, 
including, “food,” “dinner,” and “chicken.” This 
type of a system can be used to automatically 
generate tags for images, making it easy to search 
for images with specific items that are of interest 
to the user.  

 

 

 
For this image, the ClarifAI network produces the 
tags “city skyline,” “skyscraper,” “office,” 
“harbor,” “water,” “waterfront,” etc. 

 
 
 
 
 
 
 
 
 
This convolutional neural network developed by 
Karpathy has been trained to recognize the activity 
in a video. It outputs three of the highest ranked 
activities (top-left corner), giving each one a 
confidence score. The three highest ranked 
activities for this video are “mountain unicycling,” 
“canyoning,” and “base jumping.” Please view the 
online lecture video to see how the system 
correctly recognizes other activities, such as 
kayaking, basketball, wheelchair basketball, mixed 
martial arts, etc.  
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Autotagging Photos

[Clarifai.com]

74

Video Classification using CNN

[Karpathy 2014] 

I.21

73

Autotagging Photos

[Clarifai.com]
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In this lecture series, we have focused on the first 
principles of computer vision. Since deep learning 
is extremely popular today, is it worth knowing 
the first principles of vision, or for that matter, the 
first principles of any field? Given a task, why not 
just train a neural network with tons of data to 
solve the task? Unfortunately, such an approach 
can prove to be both inadequate and unsatisfying. 
Given any mapping problem and enough data to 
train a network, it is likely we will very quickly get 
to a level of performance that is impressive, 
although not quite the performance we would 
like. Therein lies the problem. The last mile of getting a purely learning-based system to achieve the 
performance an application requires can prove to be a very long mile. It can also be a cumbersome one.  
 
Consider dropping a ball from a height, as shown in the slide. Say we want to know the distance 𝑠 the 

ball travels as a function of time 𝑡. Thanks to Newton and first principles, we know that 𝑠 = 𝑢𝑡 + !
$
𝑎𝑡$, 

where 𝑢 is the initial velocity of the ball and 𝑎 is the acceleration due to gravity. Today, we could use a 
machine to learn the relationship between 𝑠 and 𝑡. We could gather a bunch of our friends and have 
them drop objects from various heights, and measure using a stopwatch when each object hits the 
ground. Then, we could train a network to learn the relationship between 𝑠 and 𝑡. Imagine the process 
of collecting this data. Think about how much data we would need to get a result that is really close to 
Newton's equation. Perhaps most importantly, consider the fact that we have not gained any deep 
insights about the world we live in. 
 
So, if you are a student who is keen on building a career in a field like computer vision, my advice would 
be to always think about a problem using first principles. Use this approach to make as much progress 
as you can. You will not only find it satisfying, but you may also gain knowledge and insights along the 
way that change the way you pose problems in the future. If you arrive at a stage where first principles 
cannot get you to an elegant solution, but first principles seem to hint that the problem probably can be 
posed as a complex mapping problem that has a solution, it would make complete sense for you to use 
your favorite machine learning algorithm to perform the mapping. 
 
In short, first principles and machine learning can not only coexist, but, in fact, be symbiotic. 

When Should We Use Learning?

s = #$ + !
" &$

"

s($)

Newton’s Equation of Motion: 

Would require lots of precise 
measurements (data) to learn! 

Use Learning when a Process or Phenomenon is too 
Complex to Understand/Model 75
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