

Neural Networks

Shree K. Nayar

Monograph: FPCV-5-4

Module: Perception

Series: First Principles of Computer Vision

Computer Science, Columbia University

June, 2025

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Perception

FPCV-5-4 1

In this lecture we will describe what a neural
network is, how such a network can be
constructed, and how it can be used to solve a
wide range of detection and recognition problems.

First, let us look at a few common visual
recognition problems. Say that our goal is to
develop a system for detecting and recognizing
faces. We have already seen a few approaches to
this problem. One is the use of Haar features and
support vector machines (SVM) to classify images
as either face images or non-face images. We have
also discussed the use of principal component
analysis (PCA) to compute eigenfaces, which can
be used to both detect and recognize faces. In
short, we know how to develop fairly robust
systems for detecting and recognizing faces.

Here is a more challenging problem: recognizing
handwritten text. Shown here are various samples
of handwritten text, and we can see tremendous
variability between them. If we look at a single
letter, we can see that it appears very differently
from one person’s writing to the next. Clearly, this
is a hard recognition problem, but one that is
critical in the context of optical character
recognition.

1

Neural Networks

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Detecting Faces

Support Vector Machine, Principal Component Analysis, etc.

I.1
I.2

I.3

3

Recognizing Handwritten Text

High Variability in Characters

I.4

I.6

I.8

I.5

I.7

First Principles of Computer Vision Perception

FPCV-5-4 2

Here is a recognition problem that on first glance
appears simple. We want to develop a system with
a very specific purpose—to recognize chairs. All of
these chairs have the same function but are very
different in appearance as they differ dramatically
in terms of their 3D geometry and their material
properties. How do we humans recognize chairs
with ease, and how do we build a system that can
do the same?

That brings us to the human brain. While we are
not good at making precise quantitative
measurements, we are great at making qualitative
judgements such as recognizing all the objects in
slide 4 as chairs.

The brain has an average weight of about 3.3
pounds and an average volume of about 1200
cubic centimeters. Although the brain only
accounts for about 2% of a person’s body weight,
it consumes about 20% of the energy owing to all
the processing it does. As shown on the right, the
brain is nothing but a network of neurons. There are approximately 100 billion neurons and roughly 100
trillion connections between the neurons. This complex network enables us to seamlessly perform the
wide range of perception tasks we rely on to function in the world.

4

Recognizing Chairs

Difficult to define Characteristic Features

I.9 I.10 I.12 I.13

I.14 I.15 I.16

I.11

5

Our Neural Network

Average Weight: 3.3 lbs

Average Size: 1260 cubic cm

Human Brain

100 Billion Neurons

100 Trillion Connections

Neural Network

First Principles of Computer Vision Perception

FPCV-5-4 3

The basic building block of the human brain is the
neuron. It is a single nerve cell with a nucleus that
receives signals from other neurons via branches
called dendrites. It takes all the inputs from its
dendrites and performs a simple computation to
produce an output, which it transmits as electrical
impulses, or action potentials, via a thin fiber
called the axon. The axon can vary in length from
one millimeter to one meter. The other end of the
axon has synaptic terminals which are used to
make connections with dendrites of other
neurons. The synaptic terminals transfer the
electrical impulses that they receive via the axon, to dendrites of other neurons that are connected to
them, using a process that is both electrical and chemical that involves potassium and sodium ions. From
a computational perspective, the neuron is simple in terms of the operation it performs. However, when
very large numbers of neurons come together to create a network, they can achieve complex mappings
from inputs to outputs.

In this lecture, we will start by discussing a simple
type of neuron, called a perceptron. We will show
that a perceptron behaves like a linear classifier,
and that a network of perceptrons functions like a
complex linear classifier.

We know that linear classifiers are very useful, but
they are limited in the class of problems they can
solve. To make the network more powerful, we
need to modify the perceptron, in particular the
function that maps its inputs to its output, which is
called the activation function. By changing the
activation function of the perceptron from a step function to a sigmoid function, we get a neuron that
has attractive mathematical properties. We present the architecture of a typical neural network and
describe how the network can be trained using gradient descent to perform a task.

For even a relatively small network, the use of gradient descent for training can prove computationally
prohibitive. We present the backpropagation algorithm, which uses the chain rule of derivatives, to
dramatically reduce (by orders of magnitude) the computations needed to train a network. Finally, we
conclude with a few examples of the use of neural networks to solve vision problems.

6

A Neuron

Axon

Dendrites

Nucleus

Dendritic
Branches

Synaptic
Terminals

7

Constructing an artificial neural network and a method
for training it.

Neural Networks

Topics:

(1) Perceptron

(2) Perceptron Networks

(3) Activation Function

(4) Neural Network

(5) Backpropagation Algorithm

(6) Example Applications

First Principles of Computer Vision Perception

FPCV-5-4 4

A perceptron takes in several inputs, shown as 𝑥! through 𝑥" here, and produces a binary output, 𝑓. It
does this by multiplying the inputs with weights, 𝑤! through 𝑤", finding the sum, and comparing it with
a threshold 𝑏 , which is also called a bias. If the sum is greater than the bias, the output 𝑓 of the
perceptron is 1, and if the sum is less than the bias, it is 0. Given a perceptron with weights 𝑤# and bias
𝑏, we can write all the weights as a vector	𝒘 and all the inputs as a vector 𝒙 to get the expression 1 .

We denote 𝒘.	𝒙 + 𝑏 in expression 1 in slide 9 as
𝑧. The perceptron essentially applies a function,
called an activation function, to 𝑧 to produce its
output. This activation function is the step
function, or the heavy side function.

10

Activation Function of a Perceptron

Let:

Activation Function for a Perceptron is a Step Function.

1

0

Activation, 0

< = 7. 9 + $

< = 7. 9 + $

1 if < > 0

0 if < ≤ 0
0 = # < =Activation:

9

Takes several inputs and gives a single binary output (Decision)

Perceptron

!!

!"

!#

"!

""

"#

Output#Input $

=
1 if ∑$"$!$ > −$

0 if ∑$"$!$ ≤ −$

where, "$ = "*+,ℎ./
$ = $+0/ (.ℎ2*/ℎ345)

[Rosenblatt 1958]

=
1 if 7. 9 + $ > 0

0 if 7. 9 + $ ≤ 0

8

Perceptron

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

1

First Principles of Computer Vision Perception

FPCV-5-4 5

Let us look at what we can do with a single
perceptron. Here is a simple example. Say, we
wanted to decide whether to go to the movies. We
want to make this decision based on three factors:
whether the weather is good, whether we have
company or not, and whether we are close to the
theater or not. Let us assume that the weather is
the most important factor. That is, if the weather is
bad, we are not going to the movies, irrespective of
the other two factors. We can assign a relatively
large weight (say, 4) for the weather and lower
weights (say, 2 and 2) for the other two factors. Let
us say that we are willing to go to the movies only if the weather is good and at least one of the other
two factors is favorable. To achieve that, we can choose a bias of -5.

Let us see how this perceptron functions. If the
weather is bad but we have company and the
theater is close by, we have 1 times 2 plus 1 times
2, which is 4. 4 minus 5 (the bias) is −1, which is
less than zero. Therefore, the output is zero, which
means we will not go to the movies.

Now, if the weather is good and we happen to
have company, then we have 1 times 4 plus 1
times 2, which is 6. 6 minus 5 (the bias) is 1, which
is greater than zero. Therefore, the output is one.
In this case, the decision is to go to the movies.

11

Assume that weather is the most important factor:
"! = 4, ""= 2, "#= 2

Will you go to the movies?

Perceptron: Example

!!

!"

!#

0

Weather

Company

Proximity

@

4

2

2

Activation

Go to the movies only if the weather is good and if one
of the other factors is in favor: $ = −5

−B

12

Will you go to the movies?

Perceptron: Example

−B

0

1

1

4

2

2

0

Weather

Company

Proximity

Activation

No

13

Perceptron: Example

Company −B

1

1

0

4

2

2

1

Weather

Proximity

Activation

Will you go to the movies? Yes

First Principles of Computer Vision Perception

FPCV-5-4 6

Now, let us take a closer look at what a single
perceptron does. Here is a perceptron with two
inputs, 𝑥! and 𝑥$, with equal weights of -2, and a
bias of 3. In this case, 𝑧 is given by expression 1 .
The output 𝑎 of the perceptron is the step function
applied to 𝑧.

Let us look at the space of inputs (𝑥!, 𝑥$),	which is
shown at the bottom 2 . Note that the right-hand
side of equation 1 is a straight line in the input
space. If (𝑥! , 𝑥$)	 lies on, or to the right of, the
straight line, 𝑧 will be less than or equal to zero,
and therefore the output 𝑎 will be zero. On the other hand, if the input (𝑥!, 𝑥$) lies on the left side of
the line, then 𝑧 is greater than zero and the output 𝑎 will be one. Therefore, the perceptron behaves like
a linear classifier as it uses a straight line to split the two-dimensional input space.

Now let us assume that the inputs to the above
perceptron are binary: 0 or 1. Then, there are only
four possible inputs: (0,0) , (1,0) , (0,1) , and
(1,1). From slide 14, we know what the output is
going to be for each of these inputs. As shown in
the table, the output will be 1 for the input (0, 0),	1
for (0, 1), 1 for (1, 0), and 0 for (1, 1). Therefore,
this perceptron behaves exactly like a NAND logic
gate, which is shown on the right.

15

Perceptron as a NAND Gate

!! !" 0

0 0 1

0 1 1

1 0 1

1 1 0

03

!!

!"

-2

-2

!!
!"

0≡

14

Perceptron as a Linear Classifier

1

10 !!

!"

!!

!"

-2

-2

E
1 if < > 0

0 if < ≤ 0
0 = # < =

< ≤ 0
0 = 0

< > 0
0 = 1

z = −2!! − 2!" + 3

−2!! − 2!" + 3 = 0

1

2

First Principles of Computer Vision Perception

FPCV-5-4 7

This is interesting because we know that a NAND
gate is a universal logic gate. This means that all
the other logic gates that are familiar to us (NOT,
AND, OR, and NOR) can be constructed using one
or more NAND gates. Therefore, since a NAND gate
can be implemented using a perceptron,
perceptrons are universal for computation.

What this really means is that, given any digital
logic circuit, i.e., a circuit that can be constructed
using the above gates, it can be modeled as a
network of perceptrons, regardless of its
complexity.

As an example, let us look at a simple digital logic
circuit, namely, a 1-bit adder. The circuit for the
adder has two inputs,	𝑥! and 𝑥$, a series of NAND
gates, and two outputs. One output is the sum, or
the exclusive OR, of 	𝑥! and 𝑥$, and the second
output is the carry bit, which is the AND of 𝑥! and
𝑥$. Since each one of these NAND gates can be
represented using the perceptron in slide 15, we
can create a perceptron network that is exactly
equivalent to the 1-bit adder.

16

NAND: Universal Logic Gate

Thus, Perceptrons are Universal for Computation.

NOT Gate

AND Gate

OR Gate

NOR Gate

!! !!

!!
!"

!! . !"

!!

!"

!! + !"

!!

!"
!! + !"

17

Perceptrons: Computational Universality

Any Digital Logic Circuit can be implemented using Perceptrons

I.25

18

Perceptrons: 1-bit Adder

sum: !!⨁!"

carry bit: !!!"

!!

!"

Equivalent Perceptron Network

Digital Logic Circuit

-2

#!

3
3

3
3

3

sum: !!⨁!"

carry bit: !!!"

-2

-2

#"

-2

-2
-2 -2

-2

-4

First Principles of Computer Vision Perception

FPCV-5-4 8

Once again, consider the single perceptron shown on the right. We know that its decision boundary is a
straight line and the position and orientation of this line can be varied using the weights and biases of
the perceptron. Let us now explore what we can do with a network of perceptrons.

Now consider the following problem. We are
given a set of points that belong to two classes
(triangles and dots) in a two-dimensional input
space (𝑥!, 𝑥$).	We wish to build a classifier that
can distinguish between the triangles and the
dots. That is, given a novel input, we wish to
determine whether it lies in shaded region or not.

Consider the perceptron network shown on the
right. Let us look at the perceptron labeled 1 .
We can choose its weights and bias such that it
serves as a linear classifier corresponding to the
line 6 . The perceptron’s output will be one only when the input lies below line 6 . Similarly, the weights
and biases of perceptrons 	 2 , 3 , and 4 are chosen to create classifiers 7 , 8 , and 9 , respectively.

We know that when an input lies in the shaded region, all four perceptrons would produce an output of
1. To produce the final output, we use perceptron 5 whose inputs are the outputs of perceptrons 1 ,
2 , 3 , and 4 . If we set the four weights of perceptron 5 to 2, and its bias to -7, it will produce an

output of 1 only when all the four perceptrons behind it produce an output of 1. We therefore have
constructed a perceptron network that serves as a linear classifier for a complex region. While our input
space is two-dimensional in this example, such a classifier can be created for an input space of any
dimensionality.

19

Perceptron Network

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

20

Perceptron as a Linear Classifier

1

10 !!

!"

!!

!"

-2

-2

E
1 if < > 0

0 if < ≤ 0
0 = # < =

< ≤ 0
0 = 0

< > 0
0 = 1

z = −2!! − 2!" + 3

−2!! − 2!" + 3 = 0

21

Linear Classifier for Complex Regions

0
!!

!"

< > 0
0 = 1

< ≤ 0
0 = 0

!!

!"

−#" − #! + 7 = 0 !!

!"

!!

!"

2#"
− 2
!+

6 =
0

!!

!"

5#
"
−
2#
!
−
20
=
0

2#" + 2#! − 6 = 0

!!

!"

2
2

2
2

-7
!!

!"

A Multi-Layer Perceptron Network can be a Complex Classifier

6

1

2

7

3

4

9
8

5

First Principles of Computer Vision Perception

FPCV-5-4 9

We can also construct a perceptron network that
has multiple layers. The first layer in a multi-layer
network is referred to as the input layer 1 , which
are not perceptrons but rather just the inputs to
the network. In the example shown here, we have
two layers of perceptrons, 2 and 3 , called the
hidden layers. This network happens to be a fully
connected one, meaning that each perceptron in it
takes as input the output of every perceptron in
the preceding layer. The final output layer has a
single perceptron, the output of which is the final
output of the classifier. If an application requires
multiple outputs, the output layer would have multiple perceptrons.

As discussed before, the activation function of a perceptron is the step function (also called the heavy
side function). We will first discuss some fundamental challenges posed by the use of the step function,
and then show how these challenges can be addressed by modifying the step function.

On the right is the perceptron network we described earlier. Ultimately, we want to find the weights and
biases (the parameters) of this network to solve a given vision task. In other words, we want to adjust
the parameters of the network so that we eventually end up with a network that produces a desired
output for any given input. To find the optimal parameters of the network, we need the network to
satisfy the property that a small change in any given parameter produces a small change in the output
of the network.

22

A Multi-Layer Perceptron Network

Perceptron

-"
(!)

-!
(!)

-%
(!)

-"
(%)

-!
(%)

-%
(%)

-&
(%)

-'
(%)

-"
(&)

"!!
(") "!!

(#)

"!!
(')

"#(
(")

0

"!(
(')

#"

#!

#%

#&

#'

Layer (1) Layer (2) Layer (3) Layer (4)
Hidden LayersInput Layer Output Layer

"(#
(#)

1
2

3

23

Activation Function

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

24

Adjusting a Perceptron Network

-"
(!)

-!
(!)

-%
(!)

-"
(%)

-!
(%)

-%
(%)

-&
(%)

-'
(%)

-"
(&)

" + ∆"

0 + ∆0

#"

#!

#%

#&

#'

We want a small change in a Weight (or Bias) to lead to a small
change in the Activation towards the Desired Activation

First Principles of Computer Vision Perception

FPCV-5-4 10

Consider the perceptron in slide 25. Let us see what
happens to the output	𝑎 when we make a change
to the weight 𝑤!. We have 𝑧 which is 𝒘. 𝒙	plus 𝑏.
The output 𝑎 is the result of the step function
applied to 𝑧. We begin with 𝑧 less than zero, which
makes 𝑎 equal to 0. When we change 𝑤! by adding
∆𝑤!,	 assume that 𝑧 drops further in value and
hence 𝑎 remains 0. If we instead subtract ∆𝑤!
from 𝑤! as shown in slide 26, 𝑧 increases in value
but remains negative and hence 𝑎 remains zero. In
short, neither increasing nor decreasing 𝑤! by ∆𝑤!
changes the output of the perceptron. Now, as shown in slide 27, if we further reduce 𝑤! by ∆𝑤!, 𝑧
becomes positive and suddenly 𝑎 jumps to 1.

Therefore, in the case of a perceptron, a small change in a weight or a bias can either result in no change
in the output or a sudden change in it. This consequence of using a step function as the activation
function makes a network of perceptrons difficult to work with. Therefore, we would like to use a
smoother activation function that makes it easier to interpret the effects of changing the parameters of
a network.

25

Adjusting a Single Perceptron

0

1

Activation, 0

< = 7. 9 + $

1 if < > 0
0 if < ≤ 0where, # < =

∆< = ∆"! . !!

0 = 0
∆0 = 0

$

"! + ∆"!
""

"#

0 + ∆0 = # < + ∆<

#"

#!

#%

Step

26

0

1

Activation, 0

< = 7. 9 + $

Adjusting a Single Perceptron

1 if < > 0
0 if < ≤ 0where, # < =

∆< = ∆"! . !!

0 = 0
∆0 = 0

Changing the Weight in either direction gives the same Activation

$

"! + ∆"!
""

"#

0 + ∆0 = # < + ∆<

#"

#!

#%

Step

27

0

1

Activation, 0

< = 7. 9 + $

Adjusting a Single Perceptron

1 if < > 0
0 if < ≤ 0where, # < =

∆< = ∆"! . !!

0 = 0
∆0 = 1

Small change in Weight can also completely flip the Activation

$

"! + ∆"!
""

"#

0 + ∆0 = # < + ∆<

#"

#!

#%

Step

First Principles of Computer Vision Perception

FPCV-5-4 11

That brings us to the sigmoid neuron. In this case, the activation function is a sigmoid function. As shown
in slide 28, the sigmoid is a slightly blurred version of the step function, and can be written as 1 over 1
plus 𝑒 to the power of -𝑧.

In comparison to a perceptron, the behavior of a sigmoid neuron is more predictable. As before, if we
change the parameter 𝑤! by adding ∆𝑤! to it (slide 29), we see that the output 𝑎 reduces. We therefore
know that if we want to increase 𝑎 we need to subtract ∆𝑤! from 𝑤! (slides 30 and 31). In other words,
in the case of a network made of sigmoid neurons, the output varies smoothly with respect to changes
in the weights and biases of the network. This makes the network easier to work with compared to a
network of perceptrons with the step activation function.

28

Sigmoid Neuron

0 = J < =
1

1 + *)*$

"!

""

"#

#"

#!

#%

0

Activation, 0

< = 7. 9 + $

0 = 0.25 1 Sigmoid

(Sigmoid)

29

Sigmoid Neuron

0

Activation, 0

1

< = 7. 9 + $

∆< = ∆"! . !!

$

"! + ∆"!

""

"#

#"

#!

#%

0 + ∆0 = J < + ∆<

0 = 0.12
∆0 = −0.13

Sigmoid

30

Sigmoid Neuron

0

Activation, 0

1

< = 7. 9 + $
∆< = ∆"! . !!

$

"! + ∆"!

""

"#

#"

#!

#%

0 + ∆0 = J < + ∆<

0 = 0.41
∆0 = +0.16

Sigmoid

31

Sigmoid Neuron

0

Activation, 0

1

< = 7. 9 + $
∆< = ∆"! . !!

0 = 0.51
∆0 = +0.10

Output transitions smoothly with change in Weights and Biases

$

"! + ∆"!

""

"#

#"

#!

#%

0 + ∆0 = J < + ∆<

Sigmoid

First Principles of Computer Vision Perception

FPCV-5-4 12

Now let us take a look at how we can construct a neural network and train it to solve a specific vision
problem. Shown here is a simple neural network. We have replaced the perceptrons here with sigmoid
neurons. As in slide 24, we have an input layer and two hidden layers (Layer (2) and Layer (3)), each with
a set of neurons. In practice, we can use a deeper network with more hidden layers. As mentioned
before, while we have a single output neuron here, we could have several output neurons if required by
the task. Additionally, we have a fully connected network here, where each neuron takes as input the
outputs of all the neurons in the previous layer. It could instead take as input only a subset of the outputs
from the previous layer.

Now let us construct a neural network to solve a
specific problem, namely, recognizing handwritten
digits. To train our network we will use the MNIST
database which has a large collection of segmented
and binarized handwritten digits. Each digit sits in
a bounding box that is 20 x 20 pixels in size. This
image is centered in a larger image, which is 28 x
28 pixels in size.

From the examples shown here, we can see that
this seemingly simple recognition problem is in fact
challenging. For example, the three samples of the
digit 3 are written in very different styles.

33

A Neural Network

Sigmoid Neuron

-"
(!)

-!
(!)

-%
(!)

-"
(%)

-!
(%)

$#
(#)

-&
(%)

-'
(%)

-"
(&)

"!!
(") "!!

(#)

"!!
(')

"(#
(#)"#(

(")

0

"!(
(')

#"

#!

#%

#&

#'

Layer (1) Layer (2) Layer (3) Layer (4)
Hidden LayersInput Layer Output Layer

34

Recognizing Characters

Recognize segmented images of handwritten decimal digits

[MNIST 1998]

32

Neural Network

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

First Principles of Computer Vision Perception

FPCV-5-4 13

We want to configure this neural network such that
it takes as input a handwritten digit and produce 10
outputs, one for each of the digits. In the example
shown here, we would like the output to be high
(1) for the digit 6, and low (0) for all the other digits.
The digit in an input image must be represented
the same way as the digits in the training images
discussed in slide 34. That is, each input digit
should be rescaled and centered within an image
of size 28 x 28 pixels. The input image should also
be binarized like the training images.

The network shown here was developed by Nielsen. It has an input layer with 784 (28 x 28 pixels) inputs,
a single hidden layer with 30 neurons, and an output layer with 10 neurons, one for each of the 10 digits.
This network has been shown to perform with an accuracy of about 95%, which is impressive given the
difficulty of the problem and small size of the network.

Next, we describe the important process of
training the above network. Our training data is
the MNIST dataset discussed in slide 34, which has
a total of roughly 60,000 images. Human experts
were used to determine the digit in each training
image. Each image 𝒙 therefore is given a label that
is represented as a desired activation vector 𝒂	<(𝒙)
that has 10 elements, with a 1 for the element that
corresponds to the digit, and 0 elsewhere.

38

Training Data

Sample Training Data - MNIST Dataset (60,000 images)

Use training data with known desired activations.

[MNIST 1998]

36

Character Recognition Network
Input Layer
784 neurons

Hidden Layer
30 neurons

Output Layer
10 neurons

⋮ ⋮

0

1

4

2

3

8

5

6

9

7
Input

784 pixels

!!
!"

!+,' Activation

An example network with 95% accuracy

0

0

0

0

0

0

1

0

0

0

M=

0
0
0
0
0
0
1
0
0
0

[Nielsen 2015]

First Principles of Computer Vision Perception

FPCV-5-4 14

Now let us look at how the training process works. We begin by initializing the network with random
weights and biases. Then, for each training image, we calculate the network activations (10 outputs).
This is referred to as the feedforward process where, for each image, the input layer is computed and
fed into the hidden layer. The outputs of the hidden layer are computed and fed into the output layer.
Finally, the outputs (activations) of the output layer are computed.

We now have an activation 𝒂 for each of the
training images. Since the parameters of the
network were initialized with random values, the
computed activations are not going to match the
desired activations. By using all the computed
activations, we are going to compute the cost for
the entire training data. Our goal then is to
iteratively adjust the parameters of the network to
arrive at a minimum cost.

39

Training Process

Network
Activations

Training
Images Neural

Network

Training Data

1. Initialize Weights and Biases of Network with Random Values
2. Compute Network Activation for each Training Image

41

Training Process

Cost
Network

Activations
Training
Images Neural

Network
Compute

Cost

Desired Activations

Training Data

1. Initialize Weights and Biases of Network with Random Values

2. Compute Network Activation for each Training Image

3. Compute Cost for the Entire Training Data

1

40

Compute Activations: Feedforward
Input Layer
784 neurons

Hidden Layer
30 neurons

Output Layer
10 neurons

⋮ ⋮

0

1

4

2

3

8

5

6

9

7

0.5

0.8

0.3

0.3

0.0

0.1

0.5

0.2

0.7

0.1

M=

0.3
0.5
0.0
0.1
0.8
0.3
0.5
0.2
0.7
0.1

Network
Activation

Training
Images

⋯

First Principles of Computer Vision Perception

FPCV-5-4 15

Let us take a look at how we compute the above
cost. For any given training image 𝒙, we have our
desired activation vector 𝒂	< 1 , which has 0s for
everything except the digit that 𝒙 represents. Let
us say that our random network provides us the
activation vector 𝒂 2 . We take the Euclidean
distance between the two vectors and square it to
get the cost 𝐶% for the image 𝒙	 3 . Next, we
compute the average cost 𝐶 over the entire set of
training images 4 . Note that the lower this cost is,
the better the performance of the network.

Now that we have the average cost 𝐶, we want to
adjust the weights 𝒘 and biases 𝒃 of the network
so as to lower the average cost. The method we
use for doing this is gradient descent, which we will
describe shortly. It is a well-known iterative
method for optimization, and it can be used to find
the local minimum of any differentiable function.
We repeat steps 2 through 4, until the cost 𝐶 goes
below some acceptable level, at which point the
network is trained.

Updating Weights and Biases

Update Weight and Bias to Minimize the Cost

!!
""

#

Initial Cost

Minimum Cost

45

42

For

P- =

0.3
0.5
0.0
0.1
0.8
0.3
0.5
0.2
0.7
0.1

!

= 2.27

Cost Computation

For a Single Training Image:

Lower the Cost, Better the Classification

P-(7, @) = QM 9 − M 9|7, @ "

Desired Activation Network Activation

For Entire Training Data:

P(7, @) =
1
S
T
-
P- 7, @

Number of Training Images

43

Training Process

Cost
Network

Activations
Training
Images Neural

Network
Compute

Cost

Desired Activations

Update Weights & Biases

Gradient
Descent

Training Data

1. Initialize Weights and Biases of Network with Random Values

2. Compute Network Activation for each Training Image

3. Compute Cost for the Entire Training Data

4. Update Weights and Biases using Gradient Descent

5. Repeat Steps 2-4 until Cost reduces to an Acceptable Level

44

Gradient Descent

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

1 2

3

4

First Principles of Computer Vision Perception

FPCV-5-4 16

We are going to train our neural network by adjusting the weights and biases of the network using an
optimization method known as gradient descent. As discussed in slide 43, our goal is to find the weights
𝒘 and biases 𝒃 of the network that minimize the average cost 𝐶. Let us first take the example of a
network with two parameters, one weight 𝑤& and one bias 𝑏# . Let us assume that the function that
relates 𝐶 to 𝑤& and 𝑏# is the one shown in slide 45. We know the cost for specific values of 𝑤& and 𝑏# (red
dot) and we wish to find the values of 𝑤& and 𝑏# that correspond to the minimum cost, i.e., the lowest
point of the cost function. Since we don’t know the cost function a-priori, our goal is to iteratively update
𝑤& and 𝑏# so that we eventually arrive at the minimum cost. We do this by moving 𝑤& and 𝑏# in the
direction that is opposite to the gradient of 𝐶.

We can use Taylor series to estimate the gradient
of the cost 𝐶 at the current parameter values 𝑤&
and 𝑏# . Let us say we have a two-dimensional
function 𝑓(𝑥, 𝑦). If we want to find the value of 𝑓
at 𝑥 plus ∆𝑥 and 𝑦 plus ∆𝑦, the Taylor series tells
us that it is approximately equal to the sum of
𝑓(𝑥, 𝑦), the derivative of 𝑓 with respect to 𝑥 times
∆𝑥, and the derivative of 𝑓 with respect to 𝑦 times
∆𝑦. Therefore, the change ∆𝐶 in the cost due to
the change (∆𝑤&,∆𝑏#) in the parameters is given by

equation 1 . This can be written in vector form as
in equation 2 . This, in turn, can be written as 𝛻𝐶
times ∆𝐯, where 𝛻𝐶 is the gradient of 𝐶 and ∆𝐯 includes the parameter changes (∆𝑤&,∆𝑏#) 3 .

!!
""

#

Gradient Descent

Let ∆" = −% &'

&(=)(
)*!

)(
)+" , ∆" = ∆*!

∆+"
∆(= &' . ∆"

∆(= −% &' #

where % is the Learning Rate

*! → *!$ = *! − %
)(
)*!

+" → +"$ = +" − %)()+"

For Each Step:

48

!!
""

#
!"

!#

Gradient Descent

Let ∆% = −("

() = *)
*+!

*)
*," , ∆% = ∆+!

∆,"
∆) = (" . ∆%

∆) = − (" #

47

46

Change in Cost

From Taylor Series:

! + ∆!, U + ∆U ≈ # !, U +
W#
W!

∆! +
W#
WU

∆U

∆# !, U ≈
W#
W!

∆! +
W#
WU

∆U

Applying to Cost Function:

∆P ≈
WP
W"6

∆"6 +
WP
W$$

∆$$

In Vector Form:

∆P =
WP
W"6

WP
W$$

.
∆"6
∆$$

Change in Cost: ∆P = XY . ∆Z

Gradient Change in Weight and Bias

1

2

1

3

3

2

First Principles of Computer Vision Perception

FPCV-5-4 17

We know that 𝛻𝐶, that is, the gradient of 𝐶, is the direction in which the cost function 𝐶 is steepest.
Since we wish to get to the minimum of the 𝐶, this suggests that we want to change our parameters in
the direction opposite to 𝛻𝐶. Therefore, we can set ∆𝐯 equal to the negative of 𝛻𝐶, as in equation 1 .
Then, the change in cost, ∆𝐶, would the negative of the square of the magnitude of 𝛻𝐶, as in equation
2 . In summary, in each iteration of our gradient descend, we compute 𝛻𝐶 and then simply add -𝛻𝐶 to

the current parameter values 𝐯.

As shown in slide 48, we can control the rate at which we change the parameters 𝐯 by introducing a
parameter 𝜂, which is called the learning rate. The learning rate determines how fast we are going to
descend the cost function 𝐶. With this modification, the update rule 3 involves finding the derivatives
of 𝐶 with respect to 𝑤& and 𝑏#, multiplying the derivatives with 𝜂, and subtracting the results from the
current parameter values 𝑤& and 𝑏# , respectively. This gives us our new parameter values, 𝑤&′ and 𝑏#′.
This process is repeated until we arrive at the minimum of 𝐶, at which point, the derivatives 𝐶 with
respect to 𝑤& and 𝑏# will equal zero.

Let us examine the effect of the learning rate 𝜂. If we use a very small value for 𝜂, we are going to move
slowly towards the minimum of 𝐶. If we use a moderate value for 𝜂, we are going to move faster and
converge quicker. If we use a large value for 𝜂, we may overshoot the minimum of the cost function and
bounce around a bit before finding it. Even worse, we stand the risk of jumping over the minimum to an
entirely different part of the cost function, thereby converging at a local minimum that is not the global
minimum. In short, the learning rate must be chosen with care.

To gain a bit more intuition for how gradient
descent works, let us look at this illustration.
Assume you are at the top of the hill, as shown.
Your goal is to get to the lowest point on the
terrain. All you need to do is to find the gradient
of the terrain right under your foot. This gradient
will point in the direction of steepest climb, and so
you take a step in the opposite direction. If you
simply repeat this process, you will end up at the
lowest point of the terrain.

Gradient Descent: The Intuition

50

First Principles of Computer Vision Perception

FPCV-5-4 18

In slide 46, we considered a network with just two
parameters, 𝑤& and 𝑏#. In a real network, we could
have millions of parameters. It turns out that the
approach described above works just the same for
any number of parameters. For a general
multilayered neural network, the change in
parameters ∆𝐯 and the gradient 𝛻𝐶 are both
vectors with as many elements as there are
weights and biases in the network. Here, 𝑤#'()) is
the 𝑘+, weight of the 𝑗+,neuron in the 𝑙+, layer,
and 𝑏#

()) is the bias of the 𝑗+,neuron in the 𝑙+,
layer. Once we have computed the gradient of 𝐶
by computing the derivatives of 𝐶 with respect to all the weights and biases, we can use the same update
rule as in slide 48 to adjust all the weights and biases 1 .

The one thing we have not discussed is how to
compute the gradient 𝐶 . For this, we use finite
differences. We represent all the weights of the
network as vector 𝒘, and all the biases as a vector
𝒃. Suppose we want to find the derivative of 𝐶
with respect to the weight 𝑤#'()). We construct a
parameter change vector ∆𝒘 which is zero
everywhere, except for the element
corresponding to 𝑤#'()). Next, we compute the
cost 𝐶(𝒘,𝒃) and the cost 𝐶(𝒘 + ∆𝒘,𝒃) using the
feedforward computation described in slide 40.
Then, we can find the derivative of 𝐶 with respect
𝑤#'()) using equation 1 . Similarly, we can find the derivative of 𝐶 with respect to a bias 𝑏#

()) using

equation 2 . Once the derivatives with respect to all the parameters of the network have been
computed, we can use the update rule in slide 51 to adjust the parameters.

Note that in each iteration of gradient descent, 𝐶(𝒘,𝒃) needs to be computed only once. However,
𝐶(𝒘 + ∆𝒘,𝒃) needs to be computed as many times as there are weights, and 𝐶(𝒘,𝒃 + ∆𝒃) needs to be
computed as many times as there are biases. Clearly, this makes gradient descent extremely inefficient
for any reasonably sized network.

51

Gradient Descent for the Entire Network
For a general multi-layer neural network:

∆_ =

∆"$8
(9)

⋮
∆$$

(9)

⋮

, XP =

WP

W"$8
(9)

⋮
WP

W$$
(9)

⋮

∆_ = −]XP

1 : layer

… is still valid

2 : neuron
3 : input

We can therefore update weights at every iteration using:

"$8
(9) → "$8

(9) = "$8
(9) −]

WP

W"$8
(9)

$$
(9) → $$

(9) = $$
(9) −]

WP

W$$
(9)

52

Gradient Computation

Gradients using Finite Difference:

WP

W"$8
(9) ≈

P 7 + ∆7, @ − P 7, @

∆"$8
(9) , ∆7 =

0
⋮

∆":;
(<)

⋮
0

WP

W$$
(9) ≈

P 7, @ + ∆@ − P 7, @

∆$$
(9) , ∆@ =

0
⋮

∆$:
(<)

⋮
0

The Initial Cost P 7, @ is shared by all Weights and Biases

Hence, Gradient Computation requires one Cost Computation
for Each Weight and Bias

1

1

2

First Principles of Computer Vision Perception

FPCV-5-4 19

Let us revisit Nielsen's network for the recognition
of handwritten digits. In this case, since there are
23,820 weights and 40 biases, for each gradient
computation, we need 23,861 cost computations.
With that in mind, we can do a rough calculation
of the number of computations involved in a
single iteration of gradient descent while training
this network. By computations, we mean
multiplications, as additions are relatively
inexpensive.

The number of multiplications needed to
compute the cost for a single training image (using
feedforward) equals the number of weights,
which is 23,820. Since the number of training
images in the MNIST dataset is 60,000, the
number of multiplications required to compute
the average cost is 1.4	x	10-. The number of
average cost computations needed to find the
derivatives of the cost with respect to all the
weights and biases is 23,861 (slide 53). Therefore,
the total number of multiplications required for
one iteration of gradient descent is 3.4	x	10!" ,
clearly a very big number! Can we do better?

A major breakthrough in the realm of neural
networks was the invention of the
backpropagation algorithm, which dramatically
reduces the complexity of gradient descent. This
invention has been critical to the success that
neural networks is having today. We will now
describe backpropagation in detail.

53

Gradient Computation Complexity

#Weights : 784 x 30 + 30 x 10 = 23820
#Biases : 30 +10 = 40

Input layer
784 neurons

Hidden layer
30 neurons

Output layer
10 neurons

⋮ ⋮

0

1

4

2

3

8

5

6

9

7

For Each Gradient Computation, we need
23861 Cost Computations

54

Gradient Computation Complexity

of Multiplications req. to : 23,820
Compute Cost for Single Image (P-)

of Training Images used : 60,000
to Compute the Average Cost (P)

# of Multiplications req. to : 23,820	x	60,000
compute Average Cost (P) 1.4	x	109

of Average Cost (P) Computations : 23,861
req. to Compute Gradient (XP)w.r.t
all Weights and Biases

Total # of Multiplications req. for : 23,861	x	1.4	x	109
One Iteration of Gradient Descent 3.4	x	1013

Can we do better?

55

Backpropagation Algorithm

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

First Principles of Computer Vision Perception

FPCV-5-4 20

Let us see how backpropagation works. In this very simple network, we have two inputs (Layer 1): 𝑥!,
and 𝑥$. We also have two hidden layers (Layers 2 and 3), with two neurons in each of them. Finally, we
have an output layer (Layer 4) with two neurons. First, we are going to focus on one neuron in the output
layer, marked as 1 . Let us look at the cost of this network for an image 𝒙. That cost, 𝐶%, is the desired
activation 𝒂< 	minus the actual activation 𝒂(𝟒) (see 2).

Now consider a single element of 𝒂(𝟒) , namely, 𝑎!
(/) . We know that 𝑎!

(/) depends on 𝑧!
(/) via the

activation function, which is the sigmoid function, i.e., sigma of 𝑧!
(/). Now, 𝑧!

(/), in turn, depends on the

activations of the previous layer, through the weights 𝑤!!
(/) and 𝑤!$

(/) and the bias 𝑏!
(/)of the neuron

marked as 3 .

Let us pick one parameter 𝑤!!
(/). We want to find the derivative of the cost 𝐶% with respect to 𝑤!!

(/), which
can be expressed using the chain rule for derivates (see 4). It equals the derivative of 𝐶% with respect

to 𝑎!
(/) times the derivative of 𝑎!

(/) with respect to 𝑧!
(/), times the derivative of 𝑧!

(/) with respect to 𝑤!!
(/).

We would like to find the right substitutions for the three derivatives in 4 . We can write out the

expression for the first derivative 5 and show that it equals 2 times 𝑎I! minus 𝑎!
(/) . The second

derivative in 4 is the derivative of the sigmoid function with respect to 𝑧!
(/), which is given by 6 .

If we plug 5 and 6 into 4 	, we are left with one derivative, namely, the derivative of 𝑧!
(/) with respect

to 𝑤!!
(/), which is 𝑎!

("). The final expression for the derivative of the cost 𝐶% with respect to 𝑤!!
(/) is given

by 7 . Note that most of the terms involve activations, except one, which is the derivative of the sigmoid.
This brings us to an important property of the sigmoid.

56

P-

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

<!
(')

P- 0!
(') <!

(')J(<!
('))QM − M(')

"

WP-
W"!!

(') =
WP-
W0!

(')
W0!

(')

W<!
(')

W<!
(')

W"!!
(')

"!!
(')

"!"
(')

-"
(&)

"!"
' 0"

(#)

"!!
' 0!

(#)

$!
'

Computing Gradient using Chain Rule

= QM − M = "

WP-
W0!

(') = 2(b0! − 0!
(')) W0!

'

W<!
(') = J′(<!

('))

By Chain Rule:

J7(.) is the Derivative of the Sigmoid Function 57

WP-
W"!!

(') = 2 b0! − 0!
' J′(<!

(')) 0!
(#)

P-

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

<!
(')

P- 0!
(') <!

(')J(<!
('))QM − M(')

"

WP-
W"!!

(') = 2 b0! − 0!
' J′(<!

(')) 0!
(#)

"!!
(')

"!"
' 0"

(#)

"!!
' 0!

(#)

$!
'

Computing Gradient using Chain Rule

= QM − M = "

WP-
W0!

(') = 2(b0! − 0!
(')) W0!

'

W<!
(') = J′(<!

('))

By Chain Rule:

J7(.) is the Derivative of the Sigmoid Function

1
2

3

4

5 6
7

First Principles of Computer Vision Perception

FPCV-5-4 21

Here is our sigmoid function 1 . Its derivative,
which we will call 𝜎′ of z, is given by 2 . This can
be further simplified as the sigmoid of z multiplied
by 1 minus the sigmoid of z. We know that the
sigmoid of z is the activation 𝑎 of the neuron. So,
𝜎′ , the derivative of the sigmoid, is 𝑎 times 1
minus 𝑎 , or, in other words, the output of the
neuron times 1 minus the output (see 3).

Now, in slide 57, we can replace 𝜎′ with 𝑎!
(/) times 1 minus 𝑎!

(/)to get 1 . We have therefore found the

derivative of the cost with respect to parameter 𝑤!!
(/) without using any finite differences, but instead

by computing the product of activations from Layer (4) and Layer (3).

58

Derivative of Sigmoid Function

MATH PRIMER

The Sigmoid Function is:

J < =
1

1 + *)*

Its Derivative is:

J7 < = >!"
!?>!" #

J7 < = J < 1 − J <

For a Sigmoid Neuron:
0 = J(<)

Thus: J7 < = 0(1 − 0)

5 #1 − 5 #

5+ #

!
0-10 +10

0.5

0

1

59

P-

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

<!
(')

P- 0!
(') <!

(')J(<!
('))QM − M(')

"

"!!
(')

"!"
' 0"

(#)

"!!
' 0!

(#)

$!
'

Computing Gradient using Chain Rule

= QM − M = "

WP-
W"!!

(') = 2 b0! − 0!
' 0!

(') 1 − 0!
(') 0!

(#)

WP-
W0!

(') = 2(b0! − 0!
(')) W0!

'

W<!
(') = 0!

(') 1 − 0!
(')

Known
Can be Computed using the Network Activations

1

2

60

P-

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

<!
(')

P- <!
(')

"!!
(')

"!"
' 0"

(#)

"!!
' 0!

(#)

$!
'

Computing Gradient using Chain Rule

= QM − M = "

WP-
W"!!

(') = 2 b0! − 0!
' 0!

(') 1 − 0!
(') 0!

(#)

WP-
W<!

(') = 2 b0! − 0!
' 0!

(') 1 − 0!
(')d!

(') =

1

3

First Principles of Computer Vision Perception

FPCV-5-4 22

In slide 60, all the terms (boxed) that include the activation 𝑎!
(/)in Layer 4 are denoted as 𝛿!

(/)in slide 61

(see 1). We see that 𝛿!
(/)can be used to compute the derivative of the cost 𝐶% with respect to 𝑤!!

(/) 2 ,

𝑤!$
(/) 3 and 𝑏!

(/) 4 . We have therefore found the derivatives of the cost with respect to all the
parameters of the first neuron in the output layer. We can do the same for the parameters of the second
neuron of the output layer as well. Note that all of these derivatives are computed without doing any
finite differences!

More generally, as shown in slide 62, as long as we know the 𝛿′𝑠	for any layer, we can find the derivatives
of the cost with respect to the parameters of the neurons for that layer. What is left is to determine the
𝛿′𝑠 for the layers that come before the output layer. Once again, by using the chain rule we can show
that, if we know the 𝛿′𝑠 for any layer, we can find the 𝛿′𝑠 of the previous layer using the 𝛿′𝑠 of the
current layer, the weights of the current later, and the activations of the previous layer (see 5). This
process of computing all the derivatives of the cost function is called backpropagation.

61

P-

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

<!
(')

P- <!
(')

"!!
(')

"!"
(')

-"
(&)

"!"
' 0"

(#)

"!!
' 0!

(#)

$!
'

Computing Gradient using Chain Rule

= QM − M = "

WP-
W<!

(') = 2 b0! − 0!
' 0!

(') 1 − 0!
(')d!

(') =

WP-
W"!"

(') = d!
(')0"

(#) WP-
W$!

(') = d!
('). 1

WP-
W"!!

(') = d!
(')0!

(#)

62

Thus, for any Weight or Bias in the Network:

WP@
W"$8

(9) = d$
(9)08

(9)!) WP@
W$$

(9) = d$
(9)

7,
(-) : 7 of 2./ Neuron in Layer 1
80
(-1") : Activation of 3./ Neuron in Layer 1 − 1
9,0
(-) : Weight from 3./ Neuron in Layer 1 − 1 to 2./ Neuron in Layer 1

-,
(-) : Bias of 2./ Neuron in Layer 1

P- = QM − M = "

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

d!
(')

d"
(')

d!
(#)

d"
(#)

d!
(")

d"
(")

Computing Gradient using Chain Rule

2 3 4

63

For any Neuron in the Network:

d$
(9) =T

8
d8
9?! "8$

9?! 0$
9 (1 − 0$

(9))

7,
(-) : 7 of 2./ Neuron in Layer 1
70
(-2") : 7 of 3./ Neuron in Layer 1 + 1
8,
(-) : Activation of 2./ Neuron in Layer 1
90,
(-2"): Weight from 2./ Neuron in Layer 1 to 3./ Neuron in Layer 1 + 1

P- = QM − M = "

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

d!
(')

d"
(')

d!
(#)

d"
(#)

d!
(")

d"
(")

Backpropagation of !

[Williams et al. 1986]

5

64

Backpropagation Algorithm

Compute Gradient w.r.t all Weights and Biases using:
WP@
W"$8

(9) = d$
(9)08

(9)!) WP@
W$$

(9) = d$
(9)

Where, d for a Layer is derived from the d of the Next Layer:

d$
(9) =T

8
d8
9?! "8$

9?! 0$
9 (1 − 0$

(9))

P- = QM − M = "

Layer (4)Layer (3)Layer (2)Layer (1)

#!

#" 0!
(')

0"
(')

d!
(')

d"
(')

d!
(#)

d"
(#)

d!
(")

d"
(")

We can, therefore, Compute the Gradient w.r.t
Every Weight and Bias using just the Network Activations

[Williams et al. 1986]

6

7

1

First Principles of Computer Vision Perception

FPCV-5-4 23

Slide 64, summarizes the backpropagation algorithm. First, the 𝛿′𝑠	for all the layers are computed using
expression 6 . These 𝛿′𝑠 are then used to compute the cost derivatives respect to all the weights and
biases of the network using the expressions in 7 .

We can now discuss how gradient descent works
with backpropagation. As before, we first initialize
the network with random weights and biases.
Then, for each training image, we compute the
activations using feedforward (slide 40). Next, we
compute all the 𝛿′𝑠 for the neurons in the output
layer. Using them, we compute the 𝛿′𝑠 for all the
previous layers (slide 63). Once we have all the 𝛿′𝑠,
we know how to compute the derivatives of the
cost with respect to all the weights and biases of
the network (slide 63).

After repeating the above process for all the
training images, we compute the average of each
cost derivative over all the training images. These
average derivatives are used to perform gradient
descent, i.e., adjust all the weights and biases of the
network. All of the above steps correspond to a
single iteration of gradient descent. These steps are
repeated until the cost of the network is below an
acceptable level.

66

3. Average the Gradient w.r.t. each Weight and Bias over the
Entire Training Set:

WP

W"$8
(9) =

1
S
T

WP-
W"$8

(9)
WP

W$$
(9) =

1
S
T

WP-
W$$

(9)

4. Update the Weights and Biases using Gradient Descent

"$8
(9) → "$8

(9) = "$8
(9) −]

WP

W"$8
(9) $$

(9) → $$
(9) = $$

(9) −]
WP

W$$
(9)

5. Repeat Steps 2-4 till Cost reduces below an acceptable level

Gradient Descent with Backpropagation

65

1. Initialize Network with Random Weights and Biases

2. For each Training Image:

a. Compute Activations for the Entire Network

b. Compute d for Neurons in the Output Layer using
Network Activation and Desired Activation:

d$
(A) = 2 b0$

A − 0$
A 0$

A (1 − 0$
A)

c. Compute d for all Neurons in the previous Layers:

d$
(9) =T

8
d8
9?! "8$

9?! 0$
9 (1 − 0$

9)

d. Compute Gradient of Cost w.r.t each Weight and Bias for
the Training Image using d:

WP@
W"$8

(9) = d$
(9)08

(9)!) WP@
W$$

(9) = d$
(9)

Gradient Descent with Backpropagation

First Principles of Computer Vision Perception

FPCV-5-4 24

Let us now look at the computational complexity
of training with backpropagation. Remember that
without backpropagation we needed 3.4	x	10!"
multiplications to train Nielsen’s network using the
MNIST dataset (slides 53 and 54). The number of
multiplications required to compute the cost for a
single image using feedforward is 23,820. The
number of multiplications required to apply
backpropagation for a single image is 24,210. The
sum of these two (48,030) is the number of
multiplications needed to compute the derivatives
with respect to all the weights and biases for a
single image. Since we have 60,000 training images, the total number of multiplications needed for a
single iteration of gradient descent is 2.8 x 10-, which is a significant improvement of 10/.

Today, neural networks are used to solve a wide range of computer vision problems. Let us look at a few
examples. We’ll start with the one we have been talking about, which is recognizing handwritten digits
using Nielsen's network. On the top of slide 69 are a few inputs and on the bottom are the activations
produced by the network. In the first example (the digit 7), we get a high activation for 7 and zero, or
close to it, for all the others. This is true for the second example as well, where we get a high activation
only for 2. In the third case, which we assume is a 5, we get high activations for both 2 and 5, and
activation for 5 is larger than that for 2. The last one is more interesting. We don't really know what the
input is in this case; it could be a 3 or an 8. In this case, we get large values for 2, 3, and 8, but 8 has the
highest activation.

67

Gradient Computation Complexity

of Multiplications req. to : 23,820
Compute Cost for a Single Image (P-)

of Multiplications req. to apply : 24,210
Backpropagation for a Single Image

# of Multiplications req. to : 24,210	+	23,820
Compute the Gradient of Cost 48,030
for a Single Image (XP-)

of Training Images : 60,000

Total # of Multiplications req. for : 48,030	x	60,000
One Iteration of Gradient Descent 2.8	x	109

An improvement over brute force by a factor of 104

68

Example Applications

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

69

Recognizing Characters: Results

M=

0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.97
0.00
0.00

M=

0.00
0.01
0.69
0.01
0.00
0.02
0.01
0.00
0.00
0.00

M=

0.00
0.00
0.64
0.00
0.00
0.82
0.03
0.00
0.02
0.00

M=

0.00
0.02
0.10
0.09
0.00
0.00
0.03
0.00
0.18
0.00

7 2 5 8

Input
Image

Network
Activations

Output
Labels

First Principles of Computer Vision Perception

FPCV-5-4 25

Here is a real-time implementation of the above
digit recognition system running as an app on a
phone. When the camera of the phone is pointed
at a digit, the digit is immediately recognized.
Please view the online lecture video to see the app
in action.

One of the major innovations in the context of
neural networks is the idea of a convolutional
neural network (CNN). It was proposed by Yann
LeCun and has proved to be highly effective in
wide range of vision applications. In vision, we
often take an input image and first process it using
various filters to extract information that is most
relevant to the task. Often, the filters we use are
linear filters which we know from our lecture on
image processing can be implemented as
convolutions. It turns out that the application of
filters to an image can be incorporated into a
neural network. In fact, during the training process, the network can learn the best filters to use for the
task. Shown here is a CNN that has learned the kernels 𝑘! through 𝑘0. During inference, these kernels
are applied to the input image and the results and passed on to subsequent layers of the network.

70

Character Recognition Video

I.18

71

Convolutional Neural Network (CNN)

⋮ ⋮

f"

f!

f#

f'

f(

!

!

!

!

!

Convolutional Layer Fully Connected
Network

Input
Image

Kernels Convolution
Activations [LeCun et al. 1998]

Subsampling

First Principles of Computer Vision Perception

FPCV-5-4 26

In this example, a network developed by ClarifAI
was training on millions of images to generate
keywords (tags) that reveal what is in the image. In
this example, the system produces several tags,
including, “food,” “dinner,” and “chicken.” This
type of a system can be used to automatically
generate tags for images, making it easy to search
for images with specific items that are of interest
to the user.

For this image, the ClarifAI network produces the
tags “city skyline,” “skyscraper,” “office,”
“harbor,” “water,” “waterfront,” etc.

This convolutional neural network developed by
Karpathy has been trained to recognize the activity
in a video. It outputs three of the highest ranked
activities (top-left corner), giving each one a
confidence score. The three highest ranked
activities for this video are “mountain unicycling,”
“canyoning,” and “base jumping.” Please view the
online lecture video to see how the system
correctly recognizes other activities, such as
kayaking, basketball, wheelchair basketball, mixed
martial arts, etc.

72

Autotagging Photos

[Clarifai.com]

74

Video Classification using CNN

[Karpathy 2014]

I.21

73

Autotagging Photos

[Clarifai.com]

First Principles of Computer Vision Perception

FPCV-5-4 27

In this lecture series, we have focused on the first
principles of computer vision. Since deep learning
is extremely popular today, is it worth knowing
the first principles of vision, or for that matter, the
first principles of any field? Given a task, why not
just train a neural network with tons of data to
solve the task? Unfortunately, such an approach
can prove to be both inadequate and unsatisfying.
Given any mapping problem and enough data to
train a network, it is likely we will very quickly get
to a level of performance that is impressive,
although not quite the performance we would
like. Therein lies the problem. The last mile of getting a purely learning-based system to achieve the
performance an application requires can prove to be a very long mile. It can also be a cumbersome one.

Consider dropping a ball from a height, as shown in the slide. Say we want to know the distance 𝑠 the

ball travels as a function of time 𝑡. Thanks to Newton and first principles, we know that 𝑠 = 𝑢𝑡 + !
$
𝑎𝑡$,

where 𝑢 is the initial velocity of the ball and 𝑎 is the acceleration due to gravity. Today, we could use a
machine to learn the relationship between 𝑠 and 𝑡. We could gather a bunch of our friends and have
them drop objects from various heights, and measure using a stopwatch when each object hits the
ground. Then, we could train a network to learn the relationship between 𝑠 and 𝑡. Imagine the process
of collecting this data. Think about how much data we would need to get a result that is really close to
Newton's equation. Perhaps most importantly, consider the fact that we have not gained any deep
insights about the world we live in.

So, if you are a student who is keen on building a career in a field like computer vision, my advice would
be to always think about a problem using first principles. Use this approach to make as much progress
as you can. You will not only find it satisfying, but you may also gain knowledge and insights along the
way that change the way you pose problems in the future. If you arrive at a stage where first principles
cannot get you to an elegant solution, but first principles seem to hint that the problem probably can be
posed as a complex mapping problem that has a solution, it would make complete sense for you to use
your favorite machine learning algorithm to perform the mapping.

In short, first principles and machine learning can not only coexist, but, in fact, be symbiotic.

When Should We Use Learning?

s = #$ + !
" &$

"

s($)

Newton’s Equation of Motion:

Would require lots of precise
measurements (data) to learn!

Use Learning when a Process or Phenomenon is too
Complex to Understand/Model 75

First Principles of Computer Vision Perception

FPCV-5-4 28

Acknowledgements: Thanks to Pranav Sukumar, Joel Salzman, Tracy Cui and Jenna Everard for their help
with transcription, editing and proofreading.

77

References and Credits

Topic: Neural Networks, Module: Perception

First Principles of Computer Vision

Shree K. Nayar

Columbia University

78

References: Papers

[Rosenblatt 1958] Rosenblatt, Frank. "The perceptron: a probabilistic model
for information storage and organization in the brain." Psychological
review 65.6 (1958): 386.

[MNIST 1998] LeCun, Yann, Corinna Cortes, and Christopher JC Burges. "The
MNIST database of handwritten digits." URL http://yann. lecun.
com/exdb/mnist (1998).

[Williams et al. 1986] Williams, D. R. G. H. R., and G. E. Hinton. "Learning
representations by back-propagating errors." Nature 323 (1986): 533-536.

[LeCun et al. 1998] LeCun, Yann, et al. "Gradient-based learning applied to
document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

[Karpathy 2014] Karpathy, Andrej, et al. "Large-scale video classification with
convolutional neural networks." Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 2014.

79

References: Books

[Nielsen 2015] Michael A. Nielsen , "Neural Networks and Deep Learning",
Determination Press, 2015

[Rumelhart et al. 1988] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J.
Williams. "Learning representations by back-propagating errors." Cognitive
modeling 5.3 (1988): 1.

80

Image Credits
I.1 http://www.dvidshub.net/image/1890918/faces-okinawa-jungle/ DoD Disclaimer:

The appearance of U.S. Department of Defense (DoD) visual information does not

imply or constitute DoD endorsement. Public Domain.

I.2 https://www.flickr.com/photos/tataimitra/9434857938/ Rajashri Mitra. Licensed

under CC BY 2.0.

I.3 https://pixabay.com/en/faces-children-eyes-look-portrait-767358/ Public Domain.

I.4 https://www.flickr.com/photos/dan4th/3266978771 Dan4th Nicholas. Licensed

under CC BY 2.0.

I.5 https://en.wikipedia.org/wiki/To_Autumn Public Domain.

I.6 https://www.flickr.com/photos/romitagirl67/15982674248 RomitaGirl67. Licensed

under CC BY 2.0.

I.7

I.8 https://www.flickr.com/photos/peagreenchick/384744354 Peagreengirl.

Licensed under CC BY 2.0.

I.9 https://www.flickr.com/photos/michiganmoves/3765498811 Debra Drummond.

Licensed under CC BY-SA 2.0.

https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_44/November_18

93/An_Argument_for_Vertical_Handwriting#/media/File:PSM_v44_D097_Results_o

f_improved_handwriting_after_four_weeks_of_practice.jpg/ Public Domain.

81

Image Credits

I.10 https://commons.wikimedia.org/wiki/File:Streit_Shakespeare_chair_side_view.jpg

David R.J. Stiennon. Licensed under CC BY-SA 3.0.

I.11 https://commons.wikimedia.org/wiki/File:Aeron_chair_JN.jpg/ Public Domain.

I.12 https://pixabay.com/en/chair-butterfly-chair-sit-chairs-1355327/ Public Domain.

I.13 https://commons.wikimedia.org/wiki/File:Sitamun_chair_replica_1.jpg Alensha.

Licensed under CC BY-SA 3.0.

I.14 https://www.geograph.org.uk/photo/2463536 William. Licensed under CC BY-SA

2.0.

I.15 https://commons.wikimedia.org/wiki/File:Moravsk%C3%A1_galerie_02_-_Thonet-

Mundus_k%C5%99eslo.jpg Dominik Matus. Licensed under CC BY-SA 3.0.

I.16 https://commons.wikimedia.org/wiki/File:Art_deco_club_chair.jpg Didouner.

Licensed under CC BY-SA 3.0.

I.18 https://www.youtube.com/watch?v=lkuucfUW36k Jimmy Ren. Used with

permission.

I.19 https://clarifai.com

I.21 A. Karpathy.

First Principles of Computer Vision Neural Networks

FPCV-5-4

References

[Nielsen 2015] Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015.

[Rumelhart et al. 1988] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning

representations by back-propagating errors." Cognitive modeling 5.3 (1988): 1.

[Rosenblatt 1958] Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and

organization in the brain." Psychological review 65.6 (1958): 386.

[MNIST 1998] LeCun, Yann, Corinna Cortes, and Christopher JC Burges. "The MNIST database of

handwritten digits." URL http://yann.lecun.com/exdb/mnist (1998).

[Williams et al. 1986] Williams, D. R. G. H. R., and G. E. Hinton. "Learning representations by back-

propagating errors." Nature 323 (1986): 533-536.

[LeCun et al. 1998] LeCun, Yann, et al. "Gradient-based learning applied to document

recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

[Karpathy 2014] Karpathy, Andrej, et al. "Large-scale video classification with convolutional neural

networks." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014.

[Szeliski 2022] Computer Vision: Algorithms and Applications, Szeliski, R., Springer, 2022.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2025B] Face Detection, Nayar, S. K., Monograph FPCV-2-5, First Principles of Computer Vision,

Columbia University, New York, February 2025.

[Nayar 2025L] Object Tracking, Nayar, S. K., Monograph FPCV-5-1, First Principles of Computer Vision,
Columbia University, New York, May 2025.

[Nayar 2025M] Image Segmentation, Nayar, S. K., Monograph FPCV-5-2, First Principles of Computer
Vision, Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

First Principles of Computer Vision Neural Networks

FPCV-5-4

[Nayar 2025N] Appearance Matching, Nayar, S. K., Monograph FPCV-5-3, First Principles of Computer
Vision, Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs

	Neural Networks SN 05-11-2025 COVER
	Neural Networks SN 05-11-2025
	References Networks

