

Image Stitching

Shree K. Nayar

Lecture: FPCV-2-4

Module: Features

Series: First Principles of Computer Vision

Computer Science, Columbia University

January, 2025

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Image Stitching

FPCV-2-4 1

In this lecture, we describe image stitching. A series of images of a 3D scene are obtained by rotating a
camera. As the images are taken, it must be ensured that the fields of view of consecutive images
overlap. We can then automatically stitch these images to create a wide-angle panorama. This is a
technology that is now available on most smartphones. Image stitching is also popular in other domains,
including medical imaging and remote sensing.

Let us begin by describing the steps involve in image stitching. Given the three images shown on the
right, we need to first align them with respect to each other.

For alignment, a feature detector, such as the SIFT
detector, is applied to the images to extract
features, which are shown as dots on the images.
Based on the resulting SIFT descriptors, we can
then match features between the images to obtain
the pairs of matching features shown by the lines
overlaid on the images. The next step is to
determine the geometric relationship between the
images. In other words, we seek to find the
transformation that takes one image and warps it
to the coordinate frame of the other image. Later
in the lecture, we are going to describe what that
transformation is and how one computes it.

1

Image Stitching

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Image Stitching

Image 1 Image 2 Image 3

How would you align these images?

3

Image Stitching

Image 1 Image 2 Image 3

Find geometric relationship between the images

Find corresponding points (using SIFT, etc.)

First Principles of Computer Vision Image Stitching

FPCV-2-4 2

Once the transformations between the images has
been computed, one of the images can be
designated as the reference images, and all the
other images can be mapped to the coordinate
frame of the reference image. The result is a stack
of overlapping images, as shown at the bottom.
We are not quite done with image stitching yet, as
we have one last problem to solve—removing the
seams.

A scene point will likely produce slightly different
brightnesses in the different images it appears in.
This is due to various effects, including, exposure
variations between the images, change of lighting
between the capture of the images, and spatial
camera response variations due to effects such as
vignetting. Thus, we are almost always guaranteed
to end up with visible seams between overlapping
images, like 1 and 2 . Our goal is to remove these
seams to obtain a single, clean image. That brings
us to the topic of blending images. We will develop
a simple blending algorithm that helps remove
seams to create a single smooth panorama like the one shown at the bottom.

4

Image Stitching

Image 1 Image 2 Image 3

Warp images so that corresponding points align

5

Image Stitching

Blend images to remove hard seams

Overlaid Aligned Images

Blended Images

1 2

First Principles of Computer Vision Image Stitching

FPCV-2-4 3

We will begin this lecture by discussing image
transformations. In particular, we will identify the
image transformation needed to warp an image
and align it with another image. We begin with
simple 2x2 image transformation matrices, and
describe the different transformations possible
with just four parameters. We will argue that a 2x2
matrix cannot achieve the type of transformation
needed to align perspective images of a 3D scene.
To this end, we explore 3x3 image
transformations. In particular, we describe the
projective transformation which is given by a 3x3
matrix called the homography. We develop an algorithm for computing the homography between two
images, given pairs of matching points in the images.

When we take two images and apply the SIFT detector to find matching features, we will end up with
some invalid matches. We can have two features that match because they have very similar local
appearances, but they do not actually correspond to the same point in the scene. In other words, our
set of matching features is going to have inliers, which are valid pairs, as well as outliers, which are invalid
pairs. We need to come up with an approach for dealing with the outliers. That brings us to a clever and
useful algorithm called RANSAC. We will show that if the outliers don't dominate the inliers in a set of
matching pairs of points, we can compute a valid homography that is unaffected by the outliers.

Finally, when we warp the images to a single coordinate frame, we will invariably end up with differences
in brightness between the images. We will present a simple blending algorithm for removing these
differences and creating a seamless panorama.

6

Combine multiple photos to create a larger photo

Topics:

(1) 2x2 Image Transformations

(2) 3x3 Image Transformations

(3) Computing Homography

(4) Dealing with Outliers: RANSAC

(5) Warping and Blending Images

Image Stitching

First Principles of Computer Vision Image Stitching

FPCV-2-4 4

There are two general classes of image transformations. The first is image filtering, which we discussed
during our lectures on image processing. In this case, the transformation acts on the range of brightness
values in the image and does not change the shape of the image. Techniques such as pixel processing
and convolution lie within this class of transformations. The second class of image transformations is
what we will call warping. In this case, the transformation acts on the domain of the image, that is, the
x and y coordinates of the image, to change the “shape” of the image. We use Tr to denote a range
transformation and Td to denote a domain transformation. In the context of image stitching, we are only
interested in domain transformations.

Shown here are some geometric transformations
that can be applied to an image. Each of these is a
domain transformation, or a warp, and is made
possible using a very small number of parameters.

7

2x2 Image Transformations

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

8

Image Manipulation

!(#, %) = (!() #, %)

!(#, %) =) (" #, %

Image Filtering: Change range (brightness)

Image Warping: Change domain (location)

(!

("

Transformation !! is a coordinate changing operator

I.1

9

Global Warping/Transformation

Transformation ! is the same over entire domain

Often can be described by just a few parameters

Translation Rotation
Scaling and Aspect

Affine
Projective

!(#, %) =) (#, %

Barrel

First Principles of Computer Vision Image Stitching

FPCV-2-4 5

First, let us start with the simple class of 2x2 linear
transformations. On the left, we have our input
image. After we apply a transformation, we end up
with the output image on the right. Each point p1
(given by x1, y1) in the input image is mapped to p2
(given by x2, y2) in the output image. These kinds of
transformations can often be described using the
2x2 matrix, T. That is, p1 multiplied by T gives us p2.

One type of image warping is scaling—stretching
or squishing an image. A 2x2 transformation
matrix, S, can be formed using the scale factors, a
and b, and then applied to each image point. Given
that S is invertible, the output image can be
warped back to the input image by applying the
inverse of S.

Now, for a more complex form of warping, let us
consider rotation. For a given point P1, its
coordinates, x1 and y1, can be represented using
the polar coordinates r and 𝜑. When this point is
rotated by an angle 𝜃, we get P2 with coordinates
x2 and y2. Using trigonometric identities, we can
expand the expressions for x2 and y2 and substitute
x1 and y1 in them.

10

2x2 Linear Transformations

#! = (&!, (!)

(

#" = (&", (")

(can be represented by a matrix.

"!
#! = ! ""

#"%! = !%"
"!
#! = &"" &"!

&!" &!!
""
#"

11

Scaling (Stretching or Squishing)

&

""
#" = %

"#
= & 0

0 (
"#
##

*

"" = &"# #" = (##

Inverse:

"#
= %$#

""
#" = 1/& 0

0 1/(
""
#"

Forward:

"# =
1
&
"" ## =

1
(
#"

(

&

(

**+

12

&

(

2D Rotation

,"

-

.

&"

("

,!

/
.

&!

(!

"" = + cos / cos 0 − + sin / sin 0
"" = + cos / + 0

"" = "# cos 0 − ## sin 0
#" = + cos / sin 0 + + sin / cos 0
#" = + sin / + 0

#" = "# sin 0 + ## cos 0

"# = + cos /

= + sin /

MATH PRIMER

First Principles of Computer Vision Image Stitching

FPCV-2-4 6

The above equations for x2 and y2 can be expressed
using a 2x2 matrix denoted by R 1 . To undo the
effect of this rotation, we can simply apply the
inverse of R to x2 and y2.

2x2 transformation matrices can also be used to
skew an image, turning it from a rectangular image
into a parallelogram. Skews can be applied in any
direction, but let us first focus on horizontal
skewing, where the amount the x-coordinate is
modified by is determined by multiplying the y-
coordinate with a constant. This effectively “pulls”
the image into a parallelogram. For skewing in the
vertical direction, it is y2 that is modified by
multiplying the x-coordinate with a constant, while
x2 remains unchanged.

An image can also be mirrored, or flipped. To flip
an image about the y-axis, the transformation
matrix My can be applied to make all the x-values
negative. To flip across the line y = x, we use a
matrix Mxy that swaps x and y.

13

Rotation

+

&

(

- &

(

&

(

Inverse:Forward:

+*+

"" = "#5670 − ##7890

#" = "#7890 + ##5670

"# = ""5670 + #"7890

= −""7890 + #"5670

""
#" = :

"#
= 5670 −7890

7890 5670
"#
##

"#
= :$#

""
#" = 5670 7890

−7890 5670
""
#"

14

Skew

&

(

Horizontal Skew:

"" = "# + ;%##
#" = ##

""
#" = %%

"#
= 1 ;%

0 1
"#
##

Vertical Skew:

"" = "#
#" = ;&"# + ##

""
#" = %%

"#
=

1 0
;& 1

"#
##

&

(

15

Mirror

&

(

&

(

Mirror about Y-axis: Mirror about line # = ":

<& =
−1 0
0 1 <%& =

0 1
1 0

"" = −"#
#" = ##

"" = ##
#" = "#

1

First Principles of Computer Vision Image Stitching

FPCV-2-4 7

2x2 transformation matrices have some important
properties. First, the origin always maps to the
origin, meaning that an input of (0,0) will always
produce an output of (0,0). Second, lines always
map to lines, meaning that if our input is a line, the
output due to the transformation will also be a
line. Furthermore, parallel lines will remain
parallel. Finally, it is important to note that these
transformations are closed under composition.
This means that if p1 is transformed to p2 with
transformation T21, and p2 is transformed to p3 with
transformation T32, it is possible to compose these
transformations to obtain a transformation that maps p1 to p3. This transformation T31 is equal to the
matrix product of the transformations T32 and T21.

Now, consider the seemingly simple problem of translating (shifting) an image. Given the image on the
left, we want to translate it by tx in the x-direction and ty in the y-direction. This can be represented by
the two simple expressions shown here. However, there is no way to represent these expressions as a
2x2 transformation matrix. We will address this problem by using homogeneous coordinates.

16

2x2 Matrix Transformations

Any transformation of the form:

• Origin maps to the origin

• Lines map to lines

• Parallel lines remain parallel

• Closed under composition

"!
#! = &"" &"!

&!" &!!
""
#"

%! = !!"%"
%# = !#!%!
%# = !#"%"

!#" = !#!!!"%# = !#!%! = !#!!!"%"

17

3x3 Image Transformations

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

18

Translation

&

(

Can translation be expressed as a 2x2 matrix?

&

(

(

!$
!%

"" = "# + =% #" = ## + =&

No.

First Principles of Computer Vision Image Stitching

FPCV-2-4 8

Homogenous coordinates are a very important
concept that is widely used in science and
engineering to represent various kinds of
transformations as matrices. In the example
shown here, the homogeneous representation of
the 2D point p = (x,y) is a 3D point 𝐩& = (𝑥*, 𝑦*, 𝑧̃).
The third coordinate, 𝑧̃, is often called a fictitious
coordinate and is used to normalize the first two
coordinates. To go from 𝐩& to p, we simply divide
both 𝑥* and 𝑦* by 𝑧̃.

Let’s examine this concept from a geometric
perspective. Note that p(x,y) is a point in the x-y plane. To examine what homogeneous representation
means, we are going to erect a coordinate frame, (𝑥*, 𝑦*, 𝑧̃), such that the x-y plane lies at 𝑧̃ = 1. Now, if
we consider all the points on the line L that goes from the origin through the point p, we can say that all
these points, except for the origin, are equivalent to one another, and they are equivalent to the point
p. In other words, every point on line L, except the origin, represents the homogeneous coordinates of
p. That is, if we take any point on L, its 𝑥* and 𝑦* coordinates can be divided by its 𝑧̃	coordinate to get (x,y).

Returning to the problem of translation, we can
see how homogenous coordinates prove useful.
Using homogenous coordinates for (x1, y1) and (x2,
y2), we can express translation as a 3x3
transformation matrix 1 , which includes the
translation parameters tx and ty.

19

Homogenous Coordinates
The homogenous representation of a 2D point % = (", #) is a 3D point
*% = +", +#, -̃ . The third coordinate -̃ ≠ 0 is fictitious such that:

= ,#
.̃ % = ,%

.̃

/ ≡
#
%
1
≡

.̃#
.̃%
.̃

≡
,#
,%
.̃
= 2/ >#

>"

@̃

1̃ = 1
#

"

1

#
"

A(", #)

EA(>", >#, @̃)

Every point on line 3 (except origin) represents
the homogenous coordinate of A(", #)

3

MATH PRIMER

20

Translation

&

(

&

(

(

!$
!%

"!
#!
1

≡
+"!
+#!
-̃!

=
1 0 2$
0
0

1
0

2%
1

""
#"
1

"" = "# + =% #" = ## + =&

1

First Principles of Computer Vision Image Stitching

FPCV-2-4 9

Any of the 2x2 transformations we discussed
earlier can also be done using a 3x3 matrix.
Furthermore, imagine that we wanted to first skew
an image, then translate it, then scale it, and finally
rotate it. These transformations do not need to be
applied in sequence. Instead, the corresponding
transformation matrices can be multiplied, in that
sequence, to yield a composition. This composition
is a single 3x3 matrix that can be applied to an
image to achieve the same result as the sequence
of transformations.

The above class of transformations are categorized
as affine transformations, for which the general
form is shown here 1 . In all cases of the affine
transformation, the bottom-most row is always
[0 0 1]. The affine transformation therefore
has 6 free parameters, since the 3 values of the
bottom-most row are fixed.

In the case of affine transformations, the origin
does not necessarily map to the origin, since
translation might be involved and would shift the
origin. However, lines still map to lines, parallel
lines remain parallel, and transformations are still
closed under composition.

21

Scaling, Rotation, Skew, Translation

+"!
+#!
-̃!

=
1 0 2$
0 1 2%
0 0 1

""
#"
1

Translation

+"!
+#!
-̃!

=
3$ 0 0
0 3% 0
0 0 1

""
#"
1

Scaling

+"!
+#!
-̃!

=
1 4$ 0
0 1 0
0 0 1

""
#"
1

Skew

+"!
+#!
-̃!

=
5637 −39:7 0
39:7 5637 0
0 0 1

""
#"
1

Rotation

Composition of these transformations?

22

Affine Transformation

Any transformation of the form:

"!
#!
1

≡
+"!
+#!
-̃!

=
&"" &"! &"#
&!" &!! &!#
0 0 1

+""
+#"
-̃"

23

Affine Transformation

Any transformation of the form:

• Origin does not necessarily map to the origin

• Lines map to lines

• Parallel lines remain parallel

• Closed under composition

"!
#!
1

≡
+"!
+#!
-̃!

=
&"" &"! &"#
&!" &!! &!#
0 0 1

+""
+#"
-̃"

1

First Principles of Computer Vision Image Stitching

FPCV-2-4 10

When the last row is not restricted to be [0 0 1], the transformation matrix is called a projective
matrix, also called a homography matrix. A projective matrix maps one plane Π! to another plane Π"
through a point. This is relevant in the context of computer vision because that is exactly how a camera
images a plane in the scene—it maps the scene plane to the image plane through an effective center of
projection, or pinhole. As we will show, this is important to our application of image stitching because
when we take a set of images of a scene by simply rotating the camera about its center of projection,
any two images in the set are related via a homography.

An interesting fact about the homography matrix is that it has a scale ambiguity. Since the input and
output image coordinates are represented using homogeneous coordinates, you can multiply the
homography matrix by any scalar k and the output image coordinates x2 and y2 will be unaffected.
Therefore, the homography matrix is only defined up to an unknown scale. In other words, we can
arbitrarily fix the scale of the homography matrix. This can be done in several ways. For instance, we can

24

Projective Transformation

Any transformation of the form:

Also called Homography

+"!
+#!
-̃!

=
ℎ"" ℎ"! ℎ"#
ℎ!" ℎ!! ℎ!#
ℎ#" ℎ#! ℎ##

+""
+#"
-̃"

%! = <%"

25

Projective Transformation

Point

Plane Π#

Plane Π"
EA"

EA#

Mapping of one plane to another through a point

%! = <%"

+"!
+#!
-̃!

=
ℎ"" ℎ"! ℎ"#
ℎ!" ℎ!! ℎ!#
ℎ#" ℎ#! ℎ##

+""
+#"
-̃"

Same as imaging a plane through a pinhole

26

Projective Transformation

Homography can only be defined up to a scale.

ℎ"" ℎ"! ℎ"#
ℎ!" ℎ!! ℎ!#
ℎ#" ℎ#! ℎ##

+""
+#"
-̃"

≡
+"!
+#!
-̃!

≡ =
ℎ"" ℎ"! ℎ"#
ℎ!" ℎ!! ℎ!#
ℎ#" ℎ#! ℎ##

+""
+#"
-̃"

If we fix scale such that Σ ℎ'(
"
= 1

• Origin does not necessarily map to the origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Closed under composition

then 8 free parameters

27

Remember Vanishing Points?

I.1

First Principles of Computer Vision Image Stitching

FPCV-2-4 11

set the magnitude of the matrix equal to 1. Irrespective of how the scale is fixed, the end effect is that,
although the matrix has 9 elements, it has only 8 free parameters.

In the case of the homography, the origin does not necessarily map to the origin. Lines still map to lines,
which we can show by plugging in an equation of a line for the input and see that the output is a line
equation. Transformations are still closed under composition. However, parallel lines do not necessarily
remain parallel. Imagine we have a plane in 3D with parallel lines on it, like the railway tracks on the
right. We know that in the image of this scene plane, the lines are not necessarily going to remain
parallel. It is this effect that results in vanishing points, which we discussed in the lecture on image
formation.

As discussed above, the homography is a transformation matrix that maps a point from one plane to
another plane through a point of projection. Before we discuss how to compute the homography, let us
first examine why this is relevant to the problem of image stitching. In the setting shown here, we have
our 3D scene (world) on top and we take a first image in which the camera maps the scene onto plane
Π!. Then, we rotate the camera about its center of projection to take another image that falls on plane
Π", and then rotate the camera again to take a third image that falls on plane Π#. If we define another
plane, Π$, we know that there is a homography HP1 that relates plane Π! to plane Π$, as they share the
same center of projection. So, we can map our image on plane Π! to plane Π$ using homography HP1.
We can then map our second image, which lies on plane Π", to the same plane by mapping plane Π" to
Π! with homography H12 and then multiplying H12 with HP1. We can do the same thing to the third image
as well, which lies on plane Π#. Therefore, if we have multiple images that share the same center of
projection, we can map all the images to a single plane by simply using homographies. The mapped
images will appear geometrically consistent with each other (their overlapping fields of view will
perfectly align), irrespective of the complexity of the 3D structure of the scene.

28

Computing Homography

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

29

Plane Π)

Pinhole

Homography Composition

Π"Π*

Π#

I)# I)#I#"I)#I#*

Camera

Useful in stitching planar panoramas

World

First Principles of Computer Vision Image Stitching

FPCV-2-4 12

Let us now describe the process of computing the
homography between two images. We start by
applying the SIFT feature detector to the two
images and match features. Given a set of
matching features (matching points) between the
two images, we want to find the homography that
best agrees with the coordinates of the matching
points. Once this homography is computed, we can
warp one image to the coordinate frame of the
other.

It is important to consider when a computed
homography is actually valid and hence useful. First, it is always valid if we are capturing images of a 3D
scene from the same viewpoint, irrespective of the complexity of the scene. Second, a computed
homography is always valid if we are imaging just a plane in the 3D scene, even when the images are
taken from different viewpoints. This is because each of the images is related to the plane in the scene
via a homography, and hence they are related to each other via a homography (by composition).

In practice, however, images are typically taken from camera viewpoints that are close but not exactly
the same, and the scene is not a plane but rather has a complex 3D structure. Even so, if the scene is
distant from the camera compared to the distance between camera viewpoints used to capture the
images, the scene can be assumed to be a plane at infinity. So, once again, the homography is valid. The
case where the homography is not valid is when the scene is close to the camera, has significant depth
variations, and the images are taken from different viewpoints.

Now we will show how to compute the
homography between two images. We refer to
one image as the source and the other as the
destination, such that once the homography is
computed the source image is warped to the
coordinate frame of the destination image. Here, a
point [𝑥% 𝑦% 1]& in the source image is mapped
to a point [𝑥' 𝑦' 1]&in the destination image
by the homography matrix that we are trying to
compute. Again, while there are 9 unknowns in the
matrix, we know that the homography can only be
computed up to a scale factor and hence we only
have 8 degrees of freedom. From the expression shown here we see that each pair of matching points

30

Computing Homography

Given a set of matching features/points between
images 1 and 2, find the homography 3 that best

“agrees” with the matches.

Image 1 Image 2

The scene points should lie on a plane, or be distant
(plane at infinity), or imaged from the same point.

31

Computing Homography

How many unknowns?

How many minimum pairs of matching points?

Source Image Destination Image

"&
#&
1

≡
+"&
+#&
-̃&

=
ℎ"" ℎ"! ℎ"#
ℎ!" ℎ!! ℎ!#
ℎ#" ℎ#! ℎ##

"'
#'
1

9 …But degrees of freedom8
4

First Principles of Computer Vision Image Stitching

FPCV-2-4 13

gives us two equations (one each for 𝑥' and 𝑦'). Therefore, to solve for the 8 degrees of freedom of the
homography, we need a minimum of 4 pairs of matching points. In practice, however, we want to use
all the matching pairs we have, because that is going to make our estimate of the homography more
robust.

By expanding the expression in the previous slide, we get the expressions for xd and yd, given by 1 and
2 . We have introduced the superscript i here, which corresponds to the index of the matching pair of

points. i ranges from 1 to N, where N is the total number of detected matching pair. If we multiply
through by the denominators in 1 and 2 , we get the two equations shown at the bottom. We can
rewrite these two equations in matrix notation, as shown in 3 . The matrix on the left has two rows
because there are two equations, but it includes only x terms and y terms, which are all known. The
vector h has all the unknowns, which are the elements of the homography matrix.

We now simply stack up the rows corresponding to
the different pairs of matching points to get a large
matrix A. The result is an overdetermined linear
system of equations, A h = 0. To solve for h we
invoke the freedom we have to arbitrarily fix the
scale of h, by requiring the square of the
magnitude of h to equal 1.

34

Computing Homography

Combining the equations for all corresponding points:

&#! (#! 1 0 0 0 −&%! &#! −&%! (#! −&%!

0 0 0 &#! (#! 1 −(%! &#! −(%! (#! −(%!
⋮

&#$ (#$ 1 0 0 0 −&%$ &#$ −&%$ (#$ −&%$

0 0 0 &#$ (#$ 1 −(%$ &#$ −(%$ (#$ −(%$
⋮

&#' (#' 1 0 0 0 −&%' &#' −&%' (#' −&%'

0 0 0 &#' (#' 1 −(%' &#' −(%' (#' −(%'

ℎ!!
ℎ!"
ℎ!&
ℎ"!
ℎ""
ℎ"&
ℎ&!
ℎ&"
ℎ&&

=

0
0
⋮
0
0
⋮
0
0

J
(Unknown)4

(Known)

4 5 = 6Solve for J: such that 5 8 = 1

32

Computing Homography

"!(') =
>"!(')

@̃!(')
=
ℎ##"-

(') + ℎ#"#-
(') + ℎ#*

ℎ*#"-
(') + ℎ*"#-

(') + ℎ**

#!(') =
>#!(')

@̃!(')
=
ℎ"#"-

(') + ℎ""#-
(') + ℎ"*

ℎ*#"-
(') + ℎ*"#-

(') + ℎ**

"! ' ℎ*#"-
(') + ℎ*"#-

(') + ℎ** = ℎ##"-
(') + ℎ#"#-

(') + ℎ#*

#! ' ℎ*#"-
(') + ℎ*"#-

(') + ℎ** = ℎ"#"-
(') + ℎ""#-

(') + ℎ"*

For a given pair 8 of corresponding points:

Rearranging the terms:

33

Computing Homography

"! ' ℎ*#"-
(') + ℎ*"#-

(') + ℎ** = ℎ##"-
(') + ℎ#"#-

(') + ℎ#*

#! ' ℎ*#"-
(') + ℎ*"#-

(') + ℎ** = ℎ"#"-
(') + ℎ""#-

(') + ℎ"*

Rearranging the terms and writing as linear equation:

&#$ (#$ 1 0 0 0 −&%$ &#$ −&%$ (#$ −&%$

0 0 0 &#$ (#$ 1 −(%$ &#$ −(%$ (#$ −(%$

ℎ!!
ℎ!"
ℎ!&
ℎ"!
ℎ""
ℎ"&
ℎ&!
ℎ&"
ℎ&&

= 0
0

J
(Unknown)

(Known)

1

2

3

First Principles of Computer Vision Image Stitching

FPCV-2-4 14

The computation of the homography can
therefore be posed as the well-known constrained
least squares problem. Our goal is to find h that
minimizes the squared magnitude of the product
of A and h, such that the squared magnitude of h
is equal to one. With some simplifications, we see
that our goal is to find the h that minimizes hTATAh,
such that hT h = 1.

To solve this, we will define a loss function L that
combines the constraints from before. We want to
find the h that minimizes the loss, L. To do that, we
find the derivative of L with respect to h and set it
equal to zero. This results in a simple expression,
which turns out to be the classical eigenvalue
problem. If we find the eigenvalues and
eigenvectors of ATA, the h we are looking for is the
eigenvector that corresponds to the smallest
eigenvalue. After we find h, we take its elements
and rearrange them into the 3x3 homography
matrix.

In summary, we apply SIFT to find matching points in the two images, take all the matching points and
construct the matrix A, find the eigenvector corresponding to the smallest eigenvalue of ATA, and then
rearrange this eigenvector to form the homography matrix.

35

Constrained Least Squares

4 5 = 6Solve for J:

Define least squares problem:

such that J " = 1

min9 45 8 such that 5 8 = 1

We know that:

>? ! = >? (>? = ?(>(>? ? ! = ?(? = 1and

min9 5:4:45 such that 5:5 = 1

MATH PRIMER

36

Constrained Least Squares

Define Loss function @(?, A):

Eigenvalue Problem

@ ?, A = ?(>(>? − A(?(? − 1)

Taking derivatives of : J, K w.r.t 5:

4:45 = ;5

Eigenvector 5 with smallest eigenvalue ; of matrix 4:4
minimizes the loss function :(5).

min9 5:4:45 such that 5:5 = 1

24:45 −2;5 = 6

Matlab: eig(A’*A) returns eigenvalues and vectors of L.L

MATH PRIMER

First Principles of Computer Vision Image Stitching

FPCV-2-4 15

When computing the homography between two
images, all the pairs of matching features were
used. However, not all these pairs necessarily
correspond to valid matches. For instance, two
points in two different images that have the exact
same local appearance would be deemed to be a
perfect match by the SIFT detector. However,
despite their identical appearances, they may not
come from the same physical point in the 3D
scene. In short, they do not represent a valid
match. Unfortunately, there is no way of
differentiating between a valid match and an
invalid match before computing the homography. We need to therefore make our homography
computation resilient to the invalid matches, or outliers.

Consider these two images where we have several
matches, some valid (green) and others invalid
(red). We would like to compute a homography that
is still valid in the presence of these outliers. This
brings us to a technique called RANSAC, which was
developed in the early 1980s for computer vision
but can be applied to a large class of inlier-outlier
problems. Remarkably, RANSAC can work well even
when 50% of the data are outliers!

To start with, we are given both a model we wish
to fit and data points which include inliers and
outliers. Assume that to fit this particular model,
we need a minimum of s data points. We will
randomly choose s samples (the minimum
number) from our data and then use them to fit
the model. We then count the number of points in
all our data that fit the model within a certain
measure of error, ε. The number of points that fits
the model (inliers) is denoted as M. We repeat the
above process N times. The model that yields the
largest M (inliers) is chosen as the final model. As

What Could Go Wrong?

We need to robustly compute transformation in the
presence of wrong matches.

If number of outliers < 50%, then RANSAC to the rescue!

Image 1 Image 2

Outliers!

38

37

Dealing with Outliers: RANSAC

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

39

RANdom SAmple Consensus

1. Randomly choose 3 samples. Typically 3 is the
minimum samples to fit a model.

2. Fit the model to the randomly chosen samples.

3. Count the number B of data points (inliers) that fit
the model within a measure of error C.

4. Repeat Steps 1-3 D times

5. Choose the model that has the largest number B
of inliers.

General RANSAC Algorithm:

7 = 4 points.
For homography:

N is acceptable alignment error in pixels.
[Fischler 1981]MATH PRIMER

First Principles of Computer Vision Image Stitching

FPCV-2-4 16

a final step, since we know the inliers that correspond to the chosen model, we recompute the model
using all the inliers so that it is a more refined model than the one computed using just the minimum
number of random samples.

In our case, the model we are trying to fit is the homography matrix and we need a minimum of 4 pairs
of matching points to compute the matrix (s =4). Once we have found the homography that maximizes
the number M of inliers, we recompute the homography using all M inliers.

To demonstrate how RANSAC works, let us
consider the case of line fitting. Shown here is a set
of points on a plane. The line we wish to find is
seen on the right in slide 42. If we simply fit a line
to all the points using the least squares method,
we get the line in the left image in slide 40, which
is not the line we are looking for. Now, let us take
a look at what RANSAC does. Remember that to fit
a line we need a minimum of two points. So, we
randomly choose two points from the entire set
and find the line that passes through them. In the
first iteration (the right image in slide 40), we
happen to have two more points that lie close to this line, so we have four inliers. In our second iteration
(the right image in slide 41), we get a total of three inliers, including the two randomly chosen ones. We
keep repeating this process and, sooner or later, we are going to pick two points that lie within the set
of points we are looking for. When that happens (right image in slide 42), we get a total of 20 inliers. As
a final step, once we have found the line with maximum inliers, we refit the line using just the inliers to
get a better estimate of the line.

40

RANSAC Example: Line Fitting

Robust line fitting:

RANSAC Iteration 1

Inliers: 4

Least Squares Fitting

Inliers: 2

MATH PRIMER 41

RANSAC Example: Line Fitting

Robust line fitting:

Inliers: 3

RANSAC Iteration 2

MATH PRIMER

Least Squares Fitting

42

RANSAC Example: Line Fitting

Robust line fitting:

Inliers: 20

RANSAC Iteration i

MATH PRIMER

Least Squares Fitting

First Principles of Computer Vision Image Stitching

FPCV-2-4 17

At this point, we have most of the tools needed to
stitch images together to create a panorama.
Given a set of images, we begin by selecting a
reference image and computing the homography
between that image and each of the other images
in the set. These homographies can be used to
warp all the images into the coordinate frame of
the reference image. The images are now aligned
and can be merged to create a panorama.
However, there are still a few technical issues that
need to be addressed to ensure that the final
output is of high quality. The first issue is related
to warping the images.

Suppose we have an image f and we want to apply a geometric transformation T to it, to get a
transformed image g. A naive implementation would be to visit each pixel in the input image f, apply the
transformation T to it, and obtain the corresponding pixel coordinates in output image g. Consider how
this might is implemented. We have a grid of pixels for f and another for g. Looking at these two grids,
we can see that a transformed pixel may not land exactly at the center of a pixel in g. Furthermore, there
could be pixels in g that do not end up getting filled. That is, this method of warping could result in holes
in g.

43

Warping and Blending Images

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

44

;(&, ()

Warping Images

Given a transformation ! and a image E ", # , compute
the transformed image F ", #

!(#, %) =) (#, %

&

(

&

(

<(&, () =(&, ()

45

&

(

Forward Warping

Send each pixel ", # in E ", # to its corresponding
location ! ", # in F ", #

&

(

!(#, %) =) (#, %

<(&, () =(&, ()

What if pixel lands in between pixels?
What if not all pixels in F ", # are filled?

Can result in holes!

(

First Principles of Computer Vision Image Stitching

FPCV-2-4 18

The above issues can be resolved by using
backward warping. Forward warping is first
applied to the four corners of the input image f to
get the four corners of the output image g. This
gives us the bounding box for g. Then, we create a
grid of pixels for g within its bounding box. Our
goal is to fill all the pixels in this grid. To do so, we
take the coordinates of each pixel in g and apply
the inverse of the transformation T to it. The result
is a point that may not lie at the center of a pixel in
f, in which case, we can use the brightness value of
the nearest neighbor. Alternatively, we could use
interpolation—take a window of pixels in f around the pixel in which the backward warped point lies,
and then use all the brightness values within that window to compute the brightness of the pixel. Note
that, by using backward warping, we are guaranteed that there will be no holes in g.

With the backward warping process in place, we
are now ready to do image alignment. Let us
consider a simple scenario with three input
images. Let image two be our reference image,
meaning it is the image to which we are going to
map the other two images. Since we know the
homography H21 that relates image one to image
two, we take the corners of image one and forward
map them to get the bounding box for image one
in the reference frame of image two. We do the
same for image three. Now, we want to fill in each

Image Alignment Process

Image 1 Image 2 Image 3!!"

Compute the bounds of Image 1 and Image 3 in reference image space

!!#

Reference Image (2)

48

46

&

(

Backward Warping

&

(

!(#, %) =) (#, %

<(&, () =(&, ()

(*+

What if pixel lands between pixels?
Use Nearest Neighbor or Interpolate

Get each pixel ", # in F ", # from its corresponding
location !)" ", # in E ", #

47

Image Alignment Process

Image 1 Image 2 Image 3

Reference Image
(Image 2)

49

Image Alignment Process

Image 1 Image 2 Image 3>"!

Fill each pixel within bounds, by computing its location in captured image

>"&

Reference Image

>!" >&"

First Principles of Computer Vision Image Stitching

FPCV-2-4 19

of these bounding boxes. Starting with the bounding box for image one, we take each pixel within it,
apply the backward map H12, and pick the brightness value from image one using either the nearest
neighbor or interpolation, and write it into the pixel in the bounding box. Once this process is done for
all the pixels within the bounding box, image one is warped into the reference frame for image two. The
same is done for image three using the backward map H32. The final result is the stack of aligned images
shown at the bottom of slide 49.

Overlaying the stack of images does produce an
image that looks like a panorama, but with clearly
visible seams. When capturing the individual
images, it is expected that there will be differences
in the brightness of the same scene point in the
different images. This could be due to differences
in the exposures of the images, changes in the
scene’s lighting while the images are taken, or a
spatially varying brightness response of the
camera due to effects such as vignetting.

To mitigate these seams, we could try taking the
average of all the brightness values (from different
images) at each pixel. This does a bit better, but
the seams are still visible. The human visual system
is extremely sensitive to brightness changes,
especially when they lie on smooth contours such
as lines.

50

Blending Images

Overlaid Aligned Images

Hard seams due to vignetting, exposure differences, etc.

51

Blending Images: Averaging

Averaged Images

Seams still visible

First Principles of Computer Vision Image Stitching

FPCV-2-4 20

To remove the above seams, we use a method
called blending. Let’s say that we want to blend the
two images I1 and I2 shown here, exactly at the
center, such that the left half of the output is from
I1 and the right half is from I2. We can either just cut
and paste these halves, or, equivalently, we can
use a weighting function that goes from 1 to 0 at
the center for I1 and 0 to 1 at the center for I2. If
you multiply w1 with I1 and w2 with I2 and sum them
together, the result is the image on the right, which
has a clearly visible seam.

To soften the seam, we can alter the weighting
function. For instance, by using a smoother
weighting function that gradually goes from a 1 to
0 in the case of I1 and from 0 to 1 in the case of I2,
we obtain an image like the one shown on the
right. The seam is not visible in this case and the
image could be perceived as one of a real scene.

Blending Images

Image !! Image !"

=

Hard overlay

I.3

+

1
0

1
0

Weight !! Weight !"

Say we want to blend images !! and !" at the center

I.2

52

53

Blending Images

+

Image O# Image O"

=

Blended Image O/012!

Weight ?!

1
0

1
0

Weight ?"
?@ABC" =

@+?+ +@8?8
@+ +@8

Say we want to blend images G" and G! at the center

First Principles of Computer Vision Image Stitching

FPCV-2-4 21

Applying this idea to our stitching problem, we will compute a weighting function for each image, in
which the weight of a pixel is a function of the distance of that pixel from the closest boundary point.
One way to compute this weighting function is by using the distance transform. Since the weight
increases as the distance from the edge increases, the further a pixel is inside an image, the more
confidence we have in its brightness during the process of blending. As seen on the right, the result of
this simple blending method is a panorama that is seamless.

As a final example, here we have pictures taken of Notre-Dame in Paris. After computing all the
homographies, we see the images warped and aligned in slide 56. After blending them, we get the wide-
angle image in slide 57.

Image Stitching Example

Source Images Blended Image

57

Image Stitching Example

Source Images Aligned Images

I.4

56

54

Computing Weighting Functions

Pixels closer to the edge get a lower weight.

Ex: Distance Transform (bwdist in MATLAB).

Weight ?! Weight ?" Weight ?&

Image 1 Image 2 Image 3

55

Weighted Blending

Overlaid Aligned Images

Blended Image

First Principles of Computer Vision Image Stitching

FPCV-2-4 22

Acknowledgements: Thanks to Pranav Sukumar and Jenna Everard for their help with transcription,
editing and proofreading.

58

References and Credits

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

59

References: Textbooks

Computer Vision: Algorithms and Applications (Chapter 2, 9)
Szeliski, R., Springer

60

References: Papers

[Fischler 1981] Fischler M. A. and Bolles R. C. “Random Sample
Consensus: A Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography”, 1981.

Image Credits
I.1 Vanishing Points. Diesel Demon. Licensed under CC BY 2.0.

I.2 https://www.wikiart.org/en/m-c-escher/horseman-1 .“Horseman, 1946”. � M.C. Escher. Reproduced under

WikiArt Fair Use.

I.3 https://www.wikiart.org/en/m-c-escher/fish-boat . “Fish and Boat, 1948”. � M.C. Escher. Reproduced under

WikiArt Fair Use.

I.4 PTGui. Used with permission.

First Principles of Computer Vision Image Stitching

FPCV-2-4

References

[Szeliski 2022] Computer Vision: Algorithms and Applications, Szeliski, R., Springer, 2022.

[Fischler 1981] Fischler M. A. and Bolles R. C. “Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography”, 1981.

[Autopano] Software to make panaromas using SIFT. http://user.cs.tu-berlin.de/~nowozin/autopano-

sift/

[Nomura 2007] Y. Nomura, L. Zhang and S.K. Nayar. “Scene Collages and Flexible Camera Arrays.” EGSR,

2007.

	Image Stitching SN 02-12-25 COVER
	Image Stitching SN 02-12-25
	References Stitch

