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In this lecture, we describe image stitching. A series of images of a 3D scene are obtained by rotating a 
camera. As the images are taken, it must be ensured that the fields of view of consecutive images 
overlap. We can then automatically stitch these images to create a wide-angle panorama. This is a 
technology that is now available on most smartphones. Image stitching is also popular in other domains, 
including medical imaging and remote sensing.  
 
Let us begin by describing the steps involve in image stitching. Given the three images shown on the 
right, we need to first align them with respect to each other.  
 
 
For alignment, a feature detector, such as the SIFT 
detector, is applied to the images to extract 
features, which are shown as dots on the images. 
Based on the resulting SIFT descriptors, we can 
then match features between the images to obtain 
the pairs of matching features shown by the lines 
overlaid on the images. The next step is to 
determine the geometric relationship between the 
images. In other words, we seek to find the 
transformation that takes one image and warps it 
to the coordinate frame of the other image. Later 
in the lecture, we are going to describe what that 
transformation is and how one computes it. 
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Once the transformations between the images has 
been computed, one of the images can be 
designated as the reference images, and all the 
other images can be mapped to the coordinate 
frame of the reference image. The result is a stack 
of overlapping images, as shown at the bottom. 
We are not quite done with image stitching yet, as 
we have one last problem to solve—removing the 
seams.  
 
 
 
 
 
 
A scene point will likely produce slightly different 
brightnesses in the different images it appears in. 
This is due to various effects, including, exposure 
variations between the images, change of lighting 
between the capture of the images, and spatial 
camera response variations due to effects such as 
vignetting. Thus, we are almost always guaranteed 
to end up with visible seams between overlapping 
images, like 1  and 2 . Our goal is to remove these 
seams to obtain a single, clean image. That brings 
us to the topic of blending images. We will develop 
a simple blending algorithm that helps remove 
seams to create a single smooth panorama like the one shown at the bottom. 
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We will begin this lecture by discussing image 
transformations. In particular, we will identify the 
image transformation needed to warp an image 
and align it with another image. We begin with 
simple 2x2 image transformation matrices, and 
describe the different transformations possible 
with just four parameters. We will argue that a 2x2 
matrix cannot achieve the type of transformation 
needed to align perspective images of a 3D scene. 
To this end, we explore 3x3 image 
transformations. In particular, we describe the 
projective transformation which is given by a 3x3 
matrix called the homography. We develop an algorithm for computing the homography between two 
images, given pairs of matching points in the images.  
 
When we take two images and apply the SIFT detector to find matching features, we will end up with 
some invalid matches. We can have two features that match because they have very similar local 
appearances, but they do not actually correspond to the same point in the scene. In other words, our 
set of matching features is going to have inliers, which are valid pairs, as well as outliers, which are invalid 
pairs. We need to come up with an approach for dealing with the outliers. That brings us to a clever and 
useful algorithm called RANSAC. We will show that if the outliers don't dominate the inliers in a set of 
matching pairs of points, we can compute a valid homography that is unaffected by the outliers.  
 
Finally, when we warp the images to a single coordinate frame, we will invariably end up with differences 
in brightness between the images.  We will present a simple blending algorithm for removing these 
differences and creating a seamless panorama.  
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There are two general classes of image transformations. The first is image filtering, which we discussed 
during our lectures on image processing. In this case, the transformation acts on the range of brightness 
values in the image and does not change the shape of the image. Techniques such as pixel processing 
and convolution lie within this class of transformations. The second class of image transformations is 
what we will call warping. In this case, the transformation acts on the domain of the image, that is, the 
x and y coordinates of the image, to change the “shape” of the image. We use Tr to denote a range 
transformation and Td to denote a domain transformation. In the context of image stitching, we are only 
interested in domain transformations.  
 
 
Shown here are some geometric transformations 
that can be applied to an image. Each of these is a 
domain transformation, or a warp, and is made 
possible using a very small number of parameters. 
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First, let us start with the simple class of 2x2 linear 
transformations. On the left, we have our input 
image. After we apply a transformation, we end up 
with the output image on the right. Each point p1 
(given by x1, y1) in the input image is mapped to p2 
(given by x2, y2) in the output image. These kinds of 
transformations can often be described using the 
2x2 matrix, T. That is, p1 multiplied by T gives us p2.  
 
 
 
 
 
One type of image warping is scaling—stretching 
or squishing an image. A 2x2 transformation 
matrix, S, can be formed using the scale factors, a 
and b, and then applied to each image point. Given 
that S is invertible, the output image can be 
warped back to the input image by applying the 
inverse of S.  
 
 
 
 
 
 
 
Now, for a more complex form of warping, let us 
consider rotation. For a given point P1, its 
coordinates, x1 and y1, can be represented using 
the polar coordinates r and 𝜑. When this point is 
rotated by an angle 𝜃, we get P2 with coordinates 
x2 and y2. Using trigonometric identities, we can 
expand the expressions for x2 and y2 and substitute 
x1 and y1 in them. 
 
 
 

10

2x2 Linear Transformations

#! = (&!, (!)

(

#" = (&", (")

( can be represented by a matrix.

"!
#! = ! ""

#"%! = !%"
"!
#! = &"" &"!

&!" &!!
""
#"

11

Scaling (Stretching or Squishing)

&

""
#" = %

"#
## = & 0

0 (
"#
##

*

"" = &"# #" = (##

Inverse:

"#
## = %$#

""
#" = 1/& 0

0 1/(
""
#"

Forward:

"# =
1
&
"" ## =

1
(
#"

(

&

(

**+

12

&

(

2D Rotation

,"

-

.

&"

("

,!

/
.

&!

(!

"" = + cos / cos 0 − + sin / sin 0
"" = + cos / + 0

"" = "# cos 0 − ## sin 0
#" = + cos / sin 0 + + sin / cos 0
#" = + sin / + 0

#" = "# sin 0 + ## cos 0

"# = + cos /

## = + sin /

MATH PRIMER



First Principles of Computer Vision                                                                                                                          Image Stitching 
 

FPCV-2-4 6 

The above equations for x2 and y2 can be expressed 
using a 2x2 matrix denoted by R 1 . To undo the 
effect of this rotation, we can simply apply the 
inverse of R to x2 and y2.  
 
 
 
 
 
 
 
 
 
 
2x2 transformation matrices can also be used to 
skew an image, turning it from a rectangular image 
into a parallelogram. Skews can be applied in any 
direction, but let us first focus on horizontal 
skewing, where the amount the x-coordinate is 
modified by is determined by multiplying the y-
coordinate with a constant. This effectively “pulls” 
the image into a parallelogram. For skewing in the 
vertical direction, it is y2 that is modified by 
multiplying the x-coordinate with a constant, while 
x2 remains unchanged.  
 
 
An image can also be mirrored, or flipped. To flip 
an image about the y-axis, the transformation 
matrix My can be applied to make all the x-values 
negative. To flip across the line y = x, we use a 
matrix Mxy that swaps x and y. 
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2x2 transformation matrices have some important 
properties. First, the origin always maps to the 
origin, meaning that an input of (0,0) will always 
produce an output of (0,0). Second, lines always 
map to lines, meaning that if our input is a line, the 
output due to the transformation will also be a 
line. Furthermore, parallel lines will remain 
parallel. Finally, it is important to note that these 
transformations are closed under composition. 
This means that if p1 is transformed to p2 with 
transformation T21, and p2 is transformed to p3 with 
transformation T32, it is possible to compose these 
transformations to obtain a transformation that maps p1 to p3. This transformation T31 is equal to the 
matrix product of the transformations T32 and T21. 
 

Now, consider the seemingly simple problem of translating (shifting) an image. Given the image on the 
left, we want to translate it by tx in the x-direction and ty in the y-direction. This can be represented by 
the two simple expressions shown here. However, there is no way to represent these expressions as a 
2x2 transformation matrix. We will address this problem by using homogeneous coordinates.  
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Homogenous coordinates are a very important 
concept that is widely used in science and 
engineering to represent various kinds of 
transformations as matrices. In the example 
shown here, the homogeneous representation of 
the 2D point p = (x,y) is a 3D point 𝐩& = (𝑥*, 𝑦*, �̃�). 
The third coordinate, �̃�, is often called a fictitious 
coordinate and is used to normalize the first two 
coordinates. To go from 𝐩& to p, we simply divide 
both 𝑥* and 𝑦* by �̃�.  
 
Let’s examine this concept from a geometric 
perspective.  Note that p(x,y) is a point in the x-y plane. To examine what homogeneous representation 
means, we are going to erect a coordinate frame, (𝑥*, 𝑦*, �̃�), such that the x-y plane lies at �̃� = 1. Now, if 
we consider all the points on the line L that goes from the origin through the point p, we can say that all 
these points, except for the origin, are equivalent to one another, and they are equivalent to the point 
p. In other words, every point on line L, except the origin, represents the homogeneous coordinates of 
p. That is, if we take any point on L, its 𝑥* and 𝑦* coordinates can be divided by its �̃�	coordinate to get (x,y).  
 
 
Returning to the problem of translation, we can 
see how homogenous coordinates prove useful. 
Using homogenous coordinates for (x1, y1) and (x2, 
y2), we can express translation as a 3x3 
transformation matrix 1 ,  which includes the 
translation parameters tx and ty. 
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Any of the 2x2 transformations we discussed 
earlier can also be done using a 3x3 matrix. 
Furthermore, imagine that we wanted to first skew 
an image, then translate it, then scale it, and finally 
rotate it. These transformations do not need to be 
applied in sequence. Instead, the corresponding 
transformation matrices can be multiplied, in that 
sequence, to yield a composition. This composition 
is a single 3x3 matrix that can be applied to an 
image to achieve the same result as the sequence 
of transformations. 
 
 
The above class of transformations are categorized 
as affine transformations, for which the general 
form is shown here 1 . In all cases of the affine 
transformation, the bottom-most row is always 
[0 0 1]. The affine transformation therefore 
has 6 free parameters, since the 3 values of the 
bottom-most row are fixed. 
 
 
 
 
 
 
 
In the case of affine transformations, the origin 
does not necessarily map to the origin, since 
translation might be involved and would shift the 
origin. However, lines still map to lines, parallel 
lines remain parallel, and transformations are still 
closed under composition. 
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When the last row is not restricted to be [0 0 1], the transformation matrix is called a projective 
matrix, also called a homography matrix. A projective matrix maps one plane  Π! to another plane Π" 
through a point. This is relevant in the context of computer vision because that is exactly how a camera 
images a plane in the scene—it maps the scene plane to the image plane through an effective center of 
projection, or pinhole. As we will show, this is important to our application of image stitching because 
when we take a set of images of a scene by simply rotating the camera about its center of projection, 
any two images in the set  are related via a homography. 
 

An interesting fact about the homography matrix is that it has a scale ambiguity. Since the input and 
output image coordinates are represented using homogeneous coordinates, you can multiply the 
homography matrix by any scalar k and the output image coordinates x2 and y2 will be unaffected. 
Therefore, the homography matrix is only defined up to an unknown scale. In other words, we can 
arbitrarily fix the scale of the homography matrix. This can be done in several ways. For instance, we can 
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set the magnitude of the matrix equal to 1. Irrespective of how the scale is fixed, the end effect is that, 
although the matrix has 9 elements, it has only 8 free parameters.  
 
In the case of the homography, the origin does not necessarily map to the origin. Lines still map to lines, 
which we can show by plugging in an equation of a line for the input and see that the output is a line 
equation. Transformations are still closed under composition. However, parallel lines do not necessarily 
remain parallel. Imagine we have a plane in 3D with parallel lines on it, like the railway tracks on the 
right. We know that in the image of this scene plane, the lines are not necessarily going to remain 
parallel. It is this effect that results in vanishing points, which we discussed in the lecture on image 
formation.   
 
 

As discussed above, the homography is a transformation matrix that maps a point from one plane to 
another plane through a point of projection. Before we discuss how to compute the homography, let us 
first examine why this is relevant to the problem of image stitching. In the setting shown here, we have 
our 3D scene (world) on top and we take a first image in which the camera maps the scene onto plane 
Π!. Then, we rotate the camera about its center of projection to take another image that falls on plane 
Π", and then rotate the camera again to take a third image that falls on plane Π#. If we define another 
plane, Π$, we know that there is a homography HP1 that relates plane Π! to plane Π$ , as they share the 
same center of projection. So, we can map our image on plane Π! to plane Π$ using homography HP1. 
We can then map our second image, which lies on plane Π", to the same plane by mapping plane Π" to 
Π! with homography H12 and then multiplying H12 with HP1. We can do the same thing to the third image 
as well, which lies on plane Π#. Therefore, if we have multiple images that share the same center of 
projection, we can map all the images to a single plane by simply using homographies. The mapped 
images will appear geometrically consistent with each other (their overlapping fields of view will 
perfectly align), irrespective of the complexity of the 3D structure of the scene.   
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Let us now describe the process of computing the 
homography between two images. We start by 
applying the SIFT feature detector to the two 
images and match features. Given a set of 
matching features (matching points) between the 
two images, we want to find the homography that 
best agrees with the coordinates of the matching 
points. Once this homography is computed, we can 
warp one image to the coordinate frame of the 
other.  
 
It is important to consider when a computed 
homography is actually valid and hence useful. First, it is always valid if we are capturing images of a 3D 
scene from the same viewpoint, irrespective of the complexity of the scene. Second, a computed 
homography is always valid if we are imaging just a plane in the 3D scene, even when the images are 
taken from different viewpoints. This is because each of the images is related to the plane in the scene 
via a homography, and hence they are related to each other via a homography (by composition).   
 
In practice, however, images are typically taken from camera viewpoints that are close but not exactly 
the same, and the scene is not a plane but rather has a complex 3D structure. Even so, if the scene is 
distant from the camera compared to the distance between camera viewpoints used to capture the 
images, the scene can be assumed to be a plane at infinity. So, once again, the homography is valid. The 
case where the homography is not valid is when the scene is close to the camera, has significant depth 
variations, and the images are taken from different viewpoints. 
 
 
Now we will show how to compute the 
homography between two images. We refer to 
one image as the source and the other as the 
destination, such that once the homography is 
computed the source image is warped to the 
coordinate frame of the destination image. Here, a 
point [𝑥% 𝑦% 1]&  in the source image is mapped 
to a point [𝑥' 𝑦' 1]&in the destination image 
by the homography matrix that we are trying to 
compute. Again, while there are 9 unknowns in the 
matrix, we know that the homography can only be 
computed up to a scale factor and hence we only 
have 8 degrees of freedom. From the expression shown here we see that each pair of matching points 
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Computing Homography

Given a set of matching features/points between 
images 1 and 2, find the homography 3 that best 

“agrees” with the matches.

Image 1 Image 2

The scene points should lie on a plane, or be distant 
(plane at infinity), or imaged from the same point.
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gives us two equations (one each for 𝑥'  and 𝑦'). Therefore, to solve for the 8 degrees of freedom of the 
homography, we need a minimum of 4 pairs of matching points.  In practice, however, we want to use 
all the matching pairs we have, because that is going to make our estimate of the homography more 
robust.  
 

By expanding the expression in the previous slide, we get the expressions for xd and yd, given by 1  and 
2 . We have introduced the superscript i here, which corresponds to the index of the matching pair of 

points. i ranges from 1 to N, where N is the total number of detected matching pair. If we multiply 
through by the denominators in 1  and 2 , we get the two equations shown at the bottom. We can 
rewrite these two equations in matrix notation, as shown in 3 . The matrix on the left has two rows 
because there are two equations, but it includes only x terms and y terms, which are all known. The 
vector h has all the unknowns, which are the elements of the homography matrix.  
 
 
We now simply stack up the rows corresponding to 
the different pairs of matching points to get a large 
matrix A. The result is an overdetermined linear 
system of equations, A h = 0. To solve for h we 
invoke the freedom we have to arbitrarily fix the 
scale of h, by requiring the square of the 
magnitude of h to equal 1.  
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Computing Homography
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For a given pair 8 of corresponding points:

Rearranging the terms:
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Computing Homography
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Rearranging the terms and writing as linear equation:
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The computation of the homography can 
therefore be posed as the well-known constrained 
least squares problem. Our goal is to find h that 
minimizes the squared magnitude of the product 
of A and h, such that the squared magnitude of h 
is equal to one. With some simplifications, we see 
that our goal is to find the h that minimizes hTATAh, 
such that hT h = 1. 
 
 
 
 
 
To solve this, we will define a loss function L that 
combines the constraints from before. We want to 
find the h that minimizes the loss, L. To do that, we 
find the derivative of L with respect to h and set it 
equal to zero. This results in a simple expression, 
which turns out to be the classical eigenvalue 
problem. If we find the eigenvalues and 
eigenvectors of ATA, the h we are looking for is the 
eigenvector that corresponds to the smallest 
eigenvalue.  After we find h, we take its elements 
and rearrange them into the 3x3 homography 
matrix.  
 
In summary, we apply SIFT to find matching points in the two images, take all the matching points and 
construct the matrix A, find the eigenvector corresponding to the smallest eigenvalue of ATA, and then 
rearrange this eigenvector to form the homography matrix. 
 
 

35

Constrained Least Squares

4 5 = 6Solve for J:

Define least squares problem: 

such that J " = 1

min9 45 8 such that 5 8 = 1

We know that:

>? ! = >? ( >? = ?(>(>? ? ! = ?(? = 1and

min9 5:4:45 such that  5:5 = 1

MATH PRIMER
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Constrained Least Squares

Define Loss function @(?, A):

Eigenvalue Problem

@ ?, A = ?(>(>? − A(?(? − 1)

Taking derivatives of : J, K w.r.t 5: 

4:45 = ;5

Eigenvector 5 with smallest eigenvalue ; of matrix 4:4
minimizes the loss function :(5).

min9 5:4:45 such that  5:5 = 1

24:45 −2;5 = 6

Matlab: eig(A’*A) returns eigenvalues and vectors of L.L

MATH PRIMER
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When computing the homography between two 
images, all the pairs of matching features were 
used. However, not all these pairs necessarily 
correspond to valid matches. For instance, two 
points in two different images that have the exact 
same local appearance would be deemed to be a 
perfect match by the SIFT detector. However, 
despite their identical appearances, they may not 
come from the same physical point in the 3D 
scene. In short, they do not represent a valid 
match. Unfortunately, there is no way of 
differentiating between a valid match and an 
invalid match before computing the homography. We need to therefore make our homography 
computation resilient to the invalid matches, or outliers. 
 
Consider these two images where we have several 
matches, some valid (green) and others invalid 
(red). We would like to compute a homography that 
is still valid in the presence of these outliers. This 
brings us to a technique called RANSAC, which was 
developed in the early 1980s for computer vision 
but can be applied to a large class of inlier-outlier 
problems. Remarkably, RANSAC can work well even 
when 50% of the data are outliers!  
 
 
 
To start with, we are given both a model we wish 
to fit and data points which include inliers and 
outliers. Assume that to fit this particular model, 
we need a minimum of s data points. We will 
randomly choose s samples (the minimum 
number) from our data and then use them to fit 
the model. We then count the number of points in 
all our data that fit the model within a certain 
measure of error, ε. The number of points that fits 
the model (inliers) is denoted as M. We repeat the 
above process N times. The model that yields the 
largest M (inliers) is chosen as the final model. As 

What Could Go Wrong?

We need to robustly compute transformation in the 
presence of wrong matches.

If number of outliers < 50%, then RANSAC to the rescue!

Image 1 Image 2

Outliers!

38
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Dealing with Outliers: RANSAC

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

39

RANdom SAmple Consensus

1. Randomly choose 3 samples. Typically 3 is the 
minimum samples to fit a model.

2. Fit the model to the randomly chosen samples.

3. Count the number B of data points (inliers) that fit 
the model within a measure of error C.

4. Repeat Steps 1-3 D times

5. Choose the model that has the largest number B
of inliers.

General RANSAC Algorithm:

7 = 4 points.
For homography:

N is acceptable alignment error in pixels.
[Fischler 1981]MATH PRIMER
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a final step, since we know the inliers that correspond to the chosen model, we recompute the model 
using all the inliers so that it is a more refined model than the one computed using just the minimum 
number of random samples.  
 
In our case, the model we are trying to fit is the homography matrix and we need a minimum of 4 pairs 
of matching points to compute the matrix (s =4). Once we have found the homography that maximizes 
the number M of inliers, we recompute the homography using all M inliers.  
 

To demonstrate how RANSAC works, let us 
consider the case of line fitting. Shown here is a set 
of points on a plane. The line we wish to find is 
seen on the right in slide 42. If we simply fit a line 
to all the points using the least squares method, 
we get the line in the left image in slide 40, which 
is not the line we are looking for. Now, let us take 
a look at what RANSAC does. Remember that to fit 
a line we need a minimum of two points. So, we 
randomly choose two points from the entire set 
and find the line that passes through them. In the 
first iteration (the right image in slide 40), we 
happen to have two more points that lie close to this line, so we have four inliers. In our second iteration 
(the right image in slide 41), we get a total of three inliers, including the two randomly chosen ones. We 
keep repeating this process and, sooner or later, we are going to pick two points that lie within the set 
of points we are looking for. When that happens (right image in slide 42), we get a total of 20 inliers. As 
a final step, once we have found the line with maximum inliers, we refit the line using just the inliers to 
get a better estimate of the line. 
 

40

RANSAC Example: Line Fitting

Robust line fitting:

RANSAC Iteration 1

Inliers: 4

Least Squares Fitting

Inliers: 2

MATH PRIMER 41

RANSAC Example: Line Fitting

Robust line fitting:

Inliers: 3

RANSAC Iteration 2

MATH PRIMER

Least Squares Fitting

42

RANSAC Example: Line Fitting

Robust line fitting:

Inliers: 20

RANSAC Iteration i

MATH PRIMER

Least Squares Fitting
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At this point, we have most of the tools needed to 
stitch images together to create a panorama. 
Given a set of images, we begin by selecting a 
reference image and computing the homography 
between that image and each of the other images 
in the set. These homographies can be used to  
warp all the images into the coordinate frame of 
the reference image. The images are now aligned 
and can be merged to create a panorama. 
However, there are still a few technical issues that 
need to be addressed to ensure that the final 
output is of high quality. The first issue is related 
to warping the images.  
 

Suppose we have an image f and we want to apply a geometric transformation T to it, to get a 
transformed image g. A naive implementation would be to visit each pixel in the input image f, apply the 
transformation T to it, and obtain the corresponding pixel coordinates in output image g. Consider how 
this might is implemented. We have a grid of pixels for f and another for g. Looking at these two grids, 
we can see that a transformed pixel may not land exactly at the center of a pixel in g. Furthermore, there 
could be pixels in g that do not end up getting filled. That is, this method of warping could result in holes 
in g.  
 
 

43

Warping and Blending Images

Topic: Image Stitching, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

44

;(&, ()

Warping Images

Given a transformation ! and a image E ", # , compute 
the transformed image F ", #

!(#, %) = ) ( #, %

&

(

&

(

<(&, () =(&, ()

45

&

(

Forward Warping

Send each pixel ", # in E ", # to its corresponding 
location ! ", # in F ", #

&

(

!(#, %) = ) ( #, %

<(&, () =(&, ()

What if pixel lands in between pixels? 
What if not all pixels in F ", # are filled?

Can result in holes!

(
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The above issues can be resolved by using 
backward warping. Forward warping is first 
applied to the four corners of the input image f to 
get the four corners of the output image g. This 
gives us the bounding box for g. Then, we create a 
grid of pixels for g within its bounding box.  Our 
goal is to fill all the pixels in this grid. To do so, we 
take the coordinates of each pixel in g and apply 
the inverse of the transformation T to it. The result 
is a point that may not lie at the center of a pixel in 
f, in which case, we can use the brightness value of 
the nearest neighbor. Alternatively, we could use 
interpolation—take a window of pixels in f around the pixel in which the backward warped point lies, 
and then use all the brightness values within that window to compute the brightness of the pixel. Note 
that, by using backward warping, we are guaranteed that there will be no holes in g.  

 

With the backward warping process in place, we 
are now ready to do image alignment. Let us 
consider a simple scenario with three input 
images. Let image two be our reference image, 
meaning it is the image to which we are going to 
map the other two images. Since we know the 
homography H21 that relates image one to image 
two, we take the corners of image one and forward 
map them to get the bounding box for image one 
in the reference frame of image two. We do the 
same for image three. Now, we want to fill in each 

Image Alignment Process

Image 1 Image 2 Image 3!!"

Compute the bounds of Image 1 and Image 3 in reference image space 

!!#

Reference Image (2)

48

46

&

(

Backward Warping

&

(

!(#, %) = ) ( #, %

<(&, () =(&, ()

(*+

What if pixel lands between pixels? 
Use Nearest Neighbor or Interpolate

Get each pixel ", # in F ", # from its corresponding 
location !)" ", # in E ", #

47

Image Alignment Process

Image 1 Image 2 Image 3

Reference Image
(Image 2)

49

Image Alignment Process

Image 1 Image 2 Image 3>"!

Fill each pixel within bounds, by computing its location in captured image

>"&

Reference Image

>!" >&"
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of these bounding boxes. Starting with the bounding box for image one, we take each pixel within it, 
apply the backward map H12, and pick the brightness value from image one using either the nearest 
neighbor or interpolation, and write it into the pixel in the bounding box. Once this process is done for 
all the pixels within the bounding box, image one is warped into the reference frame for image two. The 
same is done for image three using the backward map H32. The final result is the stack of aligned images 
shown at the bottom of slide 49. 
 
 
Overlaying the stack of images does produce an 
image that looks like a panorama, but with clearly 
visible seams. When capturing the individual 
images, it is expected that there will be differences 
in the brightness of the same scene point in the 
different images. This could be due to differences 
in the exposures of the images, changes in the 
scene’s lighting while the images are taken, or a 
spatially varying brightness response of the 
camera due to effects such as vignetting.  
 
 
 
To mitigate these seams, we could try taking the 
average of all the brightness values (from different 
images) at each pixel. This does a bit better, but 
the seams are still visible. The human visual system 
is extremely sensitive to brightness changes, 
especially when they lie on smooth contours such 
as lines.  
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Blending Images

Overlaid Aligned Images

Hard seams due to vignetting, exposure differences, etc.

51

Blending Images: Averaging

Averaged Images

Seams still visible
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To remove the above seams, we use a method 
called blending. Let’s say that we want to blend the 
two images I1 and I2 shown here, exactly at the 
center, such that the left half of the output is from 
I1 and the right half is from I2. We can either just cut 
and paste these halves, or, equivalently, we can 
use a weighting function that goes from 1 to 0 at 
the center for I1 and 0 to 1 at the center for I2. If 
you multiply w1 with I1 and w2 with I2 and sum them 
together, the result is the image on the right, which 
has a clearly visible seam.  
 
 
 
To soften the seam, we can alter the weighting 
function. For instance, by using a smoother 
weighting function that gradually goes from a 1 to 
0 in the case of I1 and from 0 to 1 in the case of I2, 
we obtain an image like the one shown on the 
right. The seam is not visible in this case and the 
image could be perceived as one of a real scene.  
 
 
 
 
 
 
 

Blending Images

Image !! Image !"

=

Hard overlay

I.3

+

1
0

1
0

Weight !! Weight !"

Say we want to blend images !! and !" at the center

I.2

52

53

Blending Images
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=
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Say we want to blend images G" and G! at the center
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Applying this idea to our stitching problem, we will compute a weighting function for each image, in 
which the weight of a pixel is a function of the distance of that pixel from the closest boundary point. 
One way to compute this weighting function is by using the distance transform. Since the weight 
increases as the distance from the edge increases, the further a pixel is inside an image, the more 
confidence we have in its brightness during the process of blending. As seen on the right, the result of 
this simple blending method is a panorama that is seamless.  
 
 

 
As a final example, here we have pictures taken of Notre-Dame in Paris. After computing all the 
homographies, we see the images warped and aligned in slide 56. After blending them, we get the wide-
angle image in slide 57. 

Image Stitching Example

Source Images Blended Image

57

Image Stitching Example

Source Images Aligned Images

I.4

56

54

Computing Weighting Functions

Pixels closer to the edge get a lower weight. 

Ex: Distance Transform (bwdist in MATLAB).

Weight ?! Weight ?" Weight ?&

Image 1 Image 2 Image 3

55

Weighted Blending

Overlaid Aligned Images

Blended Image
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