
 

Image Sensing 

 
Shree K. Nayar 

 

Monograph: FPCV-1-2 

Module: Imaging 

Series: First Principles of Computer Vision 

Computer Science, Columbia University 

 

February 21, 2022 

 

 

FPCV Channel 

FPCV Website 

 

 

 

 

 

 

 

 

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/


First Principles of Computer Vision                                                                                                                            Image Sensing 
 

FPCV-1-2 1 

 

In this lecture, we discuss how to convert an optical image into a digital image so that a computer vision 
system can analyze it. We will first give a brief history of imaging, with a timeline of the major inventions 
that led to the modern digital camera. We argue that the most important invention in the evolution of 
imaging is that of the image sensor.  We will describe two types of image sensors — CCD sensors and 
CMOS sensors — and study their characteristics, including resolution (the number of pixels in an image), 
noise (undesirable modifications to the image), and dynamic range (the range of brightness values that 
a sensor is able to measure). Then, we will discuss how image sensors can be designed to capture color, 
which, simply put, is the human response to different wavelengths of light.  

Next, we will define a camera’s response function, which determines how changing the brightness of a 
point in the scene affects its brightness in the image. We explain why the response function is often 
non-linear and show how it can be measured. We also introduce the popular technology of high dynamic 
range (HDR) imaging and discuss how one can use an image sensor with limited dynamic range to 
capture images with wider dynamic range. Finally, we will take a look at some of the fascinating image 
sensors that have evolved in nature, not the least of which is the retina of the human eye.  
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The concept of image formation dates back to 500 B.C., when Chinese philosophers were writing about 
the pinhole camera. Around 1000 A.D., Arabian philosophers and scientists described the pinhole 
camera and its properties in great detail. It was not until the 16th century though that this idea came to 
the West and became popular among artists. On the right is a sketch by Gemma Frisius, the Dutch 
mathematician and philosopher. There is a tiny pinhole in the wall on the right which projects the three-
dimensional scene onto the wall on the left to create a two-dimensional image. An artist can simply 
walk up to the wall on the left and create an accurate sketch of the projection of the scene. The pinhole 
camera is powerful in terms of the sharpness of the images that it is able to create. However, only a tiny 
amount of light passes through it, causing the projected image to be very dim.  

 

 
In the subsequent decades, the pinhole camera 
was enhanced with the addition of a lens, enabling 
the creation of brighter images. During this stage 
of the evolution of the camera, the emphasis was 
on making the imaging process more convenient 
for artists. In this 18th century sketch, the lens 
creates a vertical image which is “folded” using a 
45-degree mirror such that the final image is 
created on a horizontal translucent sheet (tracing 
paper). This allows the artist to comfortably sit and 
make a sketch.  
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It is often argued that the most important 
invention in the history of photography was the 
invention of film. This is a photograph taken in 
1837 by Daguerre who co-invented the 
Daguerreotype camera. For the first time, one 
could record a moment by simply pressing a 
button; there was no need for an artist. This was 
an incredible advancement in terms of its impact 
on human expression and culture. Typically, film 
has a layer of silver halide on it and, when exposed 
to light, the silver halide is converted to metallic 
silver. The amount of conversion at any given point 
on the film depends on the exposure of that point, that is, the brightness of light falling on it. Once film 
is exposed, it is developed using a chemical process, resulting in a photograph.  

 

Several decades later, color photography became 
possible. Here is one of the first color photographs, 
taken in 1887. The addition of color required major 
advancements in chemistry — photographers still 
utilized a silver halide layer but with an additional 
layer next to it called a dye coupler, which 
contained various color pigments.  
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In the 1920s, consumer film cameras became 
available. Here is the Ernemann camera, with the 
advertisement proclaiming, "What you can see, 
you can photograph." This was a remarkable 
moment — for the first time, it was possible for 
anyone who could afford it to buy a device that 
enabled them to memorialize anything they could 
see with their eyes. Humans were now able to 
express themselves and communicate with each 
other visually in a way that was never possible 
before.  

 

Clearly, the invention of film was a game-changer, 
and many consider it to be the most important 
invention in the history of photography. In my 
opinion, however, even more significant was the 
invention of the silicon image detector. This chip 
can do exactly what film can do, except it does not 
need to be replaced after each image is captured. 
Its ability to capture an infinite number of images 
ushered a new era of visual expression and 
communication.  

 

 

It took about 20 years for the image sensor to 
mature. When it did, in the early 1990s, there was 
an explosion of digital cameras in the marketplace. 
These are some of the first consumer digital 
cameras. In the top left corner is the Nikon 
COOLPIX, which was perhaps the most popular. 
These cameras would typically capture a 640 x 480 
image, which was considered high-resolution at 
that time. They were also very power-hungry; after 
taking a few dozen photographs, the battery 
would need to be replaced or recharged.  
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The demand for image sensor technology surged, 
driving the industry to innovate at a rapid pace. 
Somewhere around the end of the 20th century, 
smartphones with cameras entered the market. 
That was a major technological milestone, as it 
required the miniaturization of the camera while 
simultaneously an improvement in terms of 
performance. Here you see Apple’s iPhone 1, 
which was released in 2007 and included a tiny 
camera. The smartphone camera gave rise to 
social platforms like Snapchat and Instagram, 
where billions of users communicate visually on a 
daily basis today. The evolution of the digital camera has also served as a catalyst for the major advances 
in computer vision and artificial intelligence we have witnessed in the last decade.  

Most image sensors in use today are made of silicon, which has properties that make it well-suited for 
imaging applications. Shown on the right is a single silicon atom. When it is hit with a photon of sufficient 
energy, it releases an electron, creating an electron-hole pair. If we have a silicon crystal — a lattice of 
silicon atoms — and we hit it with light, the photons arriving at it cause the generation of electrons 
within it. There will be an equilibrium established between the photon flux and the electron flux. If we 
had a way to measure this electron flux, it would represent the intensity of light falling on the silicon 
crystal. In short, silicon does most of the work for us when it comes to image sensing — all we need is a 
method for converting the electrons into voltage that can be measured.  
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Here is an 18-megapixel image sensor. Each pixel 
is roughly 1.25 micrometers along each of its two 
dimensions. Using today’s technology, 100 million 
pixels can easily be packed onto an image sensor. 
It is worth noting that image resolution does not 
follow Moore’s law, which states that every 18 
months, the computational power that can be 
packed into a unit area of silicon will double. With 
image sensors, once the pixel size is as small as the 
wavelength of light — approximately half a 
micrometer — reducing it further does not 
increase the true resolution of the image. 

 

One popular type of image sensor is a Charged 
Coupled Device, or CCD. Each pixel has a “potential 
well” in which incoming photons are converted 
into electrons. That is, photon to electron 
conversion happens within the pixel. To read out 
the electron flux values in all of the pixels, a circuit 
is used that enables each row to pass its collected 
electrons to the next row, while that row passes its 
electrons to the next row, and so on.  

 

 

 

Eventually, the electrons in each row reach the 
bottom row. In this row, the electrons are shifted 
horizontally from one pixel to the next. When the 
electrons reach the last pixel, they are converted 
to an analog voltage, which is then converted to 
digital output using an analog-to-digital converter 
(ADC). The transfer of charges from one row of 
pixels to the next was a remarkable innovation. 
This transfer technique is known as “bucket 
brigade”; it is the same process whereby a string of 
people would pass buckets of water from one to 
the next. In the CCD, electric fields are applied to 
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certain regions underneath the potential wells to shift electrons from one row to the next. This 
technology is sophisticated as it needs to avoid losing electrons or collecting unwanted ones during the 
transfer process.  

 

Shown here is another popular type of image sensor called CMOS (Complementary Metal-Oxide 
Semiconductor). Again, there are potential wells that collect light, but in this case, each pixel includes a 
circuit to convert electrons to voltage. As a result, voltage can be measured directly from each pixel. If 
we were interested in only a small region of the image, we could read out just those pixels at a much 
faster rate as there are fewer of them in the region as compared to the entire image.  

The ability to read voltages directly from pixels makes CMOS technology more flexible than CCD. 
However, each pixel in a CMOS sensor has a smaller light sensitive area because of the electron-to-
voltage conversion circuit sitting next to it. Although CMOS and CCD are both widely used, CMOS 
sensors are more commonly found in consumer cameras because of their flexibility. 
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Seen here on the left are the potential wells 
(referred to as photodiodes) corresponding to 
pixels. A pixel has no way of determining what 
color of light is arriving at it; it can only convert 
photons to electrons. In order to measure color, 
we situate color filters above the pixels. Red, green 
and blue filters are typically used. Since only one 
color can be measured at any given location, each 
pixel has one color filter placed atop it. After the 
image is captured, we can take the red, green and 
blue values, which are distributed over the image, 
and interpolate them to obtain a red, green and 
blue measurement at each pixel.  
 
Each pixel also has a lens sitting on top of it called a microlens. This is not the lens that is forming the 
image; rather, this lens takes light from the image-forming lens and focuses it onto the light sensitive 
area of the pixel. The reason the light sensitive area is smaller than the size of the pixel is because there 
is circuitry sitting around the pixel, and we want to ensure that the light falling on the circuit region is 
not wasted. That is, each microlens takes all of the light falling on the entire pixel area and funnels it 
down to the light sensitive area.  
 
 

Here we see a scanning electron microscope (SEM) 
image of the cross section of an image sensor. We 
can see the microlenses and the color filters. 
Underneath each color filter is a potential well. 
Note that, in this particular sensor, the distance 
between the top of the microlens and the bottom 
of the circuitry is only 9.6 micrometers — there is 
an incredible amount of technology packed into 
this thin layer of silicon! With time, more and more 
technology will be integrated within an image 
sensor. In the future, we can expect to see 
additional layers of circuitry beneath the image 
sensor that enable them to perform various image processing and visual processing steps before the 
image is outputted by the sensor. 
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Now, let us talk about some of the key characteristics of an image sensor. We will start with resolution, 
which is the number of pixels in the image. In the graph on the right, we see the resolution (in 
megapixels) plotted as a function of the year, going from 1996 to 2013. The first digital cameras had a 
resolution of about a quarter of a megapixel, which by today’s standard is very low. As seen in the plot, 
image sensor technology improved at a rapid pace, and by 2013, it was possible to capture a 16-
megapixel image with a consumer camera. Today, even smartphone cameras can capture images with 
that resolution. For most applications, we have more resolution than we need. 

 

Next, let us discuss the important topic of noise. 
Noise is unwanted modification of a signal during 
its capture, conversion, processing, transmission, 
or even storage. Clearly, in virtually all applications, 
we want to minimize the noise. To do so, we need 
to first understand the various sources of noise. 

The first type of noise is called photon shot noise. 
This is due to the quantum nature of light itself, as 
a result of which photons arrive at the lens of the 
camera in a random fashion – akin to the arrival of 
rain drops on the ground. This phenomenon results 
in noise in the image which is a function of how 
bright the scene is and has nothing to do with the image sensor itself.  

We know that photons that arrive at the image sensor are converted to electrons. These electrons need 
to be converted into a voltage and, during that process, noise is introduced by the conversion circuit. 
This is referred to as read (or electronic) noise. Next, the voltage is converted to a number using analog-
to-digital (ADC) conversion. Although this conversion is being done intentionally, it can be regarded as 
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• Photon Shot Noise (Scene Dependent)
– Quantum nature of light
– Random arrival of photons

Noise in Image Sensors

• Readout Noise (Scene Independent)
– Electronic Noise: Pre analog-to-digital conversion
– Quantization Noise: Post analog-to-digital conversion

• Other Sources (Scene Independent)
– Dark Current Noise: Thermally generated electrons
– Fixed Pattern Noise: Defective pixels

Noise: Unwanted modification of signal during 
capture, conversion, transmission, processing.
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a modification of the signal and is referred to as quantization noise. 

Finally, there are other sources of noise. For instance, even if we have a cap on the lens of the camera 
— that is, there is no light entering the camera — as the temperature of the camera is increased, there 
could be electrons released by the image sensor. This is referred to as dark current (or thermal) noise. 
We also have fixed pattern noise, which comes from the fact that no two pixels can be made identical 
during manufacturing — they can be expected to have slightly different responses to light. 

 

Let us first take a closer look at photon shot noise. 
Say we wanted to measure the number of photons 
arriving at a pixel from a point in the scene. The 
pixel can be viewed as a bucket in which the 
photons are collected over a fixed time — which is 
the exposure time or integration time of the image 
sensor. In the first measurement, we may measure 
3 photons. If we take a second measurement, we 
may get 6 photons and the third time we may get 
none. This is because of the random nature of the 
arrival of photons.   

 

We can model the photon shot noise using the 
Poisson distribution. This distribution has a mean 
λ, which is the value we really want to measure. 
However, we can get other values around the 
mean, and the probability that we get the value k 
is given by the Poisson distribution shown here. In 
the plot, we show three distributions with different 
means. Note that as the mean value increases, so 
does the width of the distribution, and for higher 
mean values the Poisson distribution begins to look 
like a Gaussian distribution. The Poisson 
distribution has the interesting property that its 
variance is equal to its mean. The photon shot noise is clearly scene dependent as the mean value of 
the distribution corresponds to the brightness of the scene point. As the brightness increases, the mean 
increases, and so does the variance of the distribution. 
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Now, let us talk about read noise, which is 
introduced during the conversion of electrons to a 
voltage. This noise is often modeled as a Gaussian 
distribution, which has a mean and a standard 
deviation. Once again, the mean is the value we are 
interested in measuring but, due to read noise, we 
end up with the value x, the probability of which is 
given by the Gaussian distribution. If the image 
sensor is of high quality, the distribution is going to 
be narrow, while for low quality (noisier) sensors it 
is wider. In short, read noise is entirely dependent 
on the quality of the sensor and is independent of 
the brightness of the scene point. 

Next, the measured analog voltage is converted to 
an integer value using an analog-to-digital 
convertor (ADC). The end result is a discrete value 
that could differ slightly from the voltage. Although 
it is introduced on purpose, this can be regarded as 
a form of noise and is called quantization noise. If 
the step, or gap, between two consecutive discrete 
values is delta, it is simple to show that the 
variance of this noise is delta divided by 12. In 
present day cameras, which typically output 10 or 
12 bits of brightness resolution, quantization noise 
tends to be small.  

 

In the case of thermal noise, electrons are 
generated within the image sensor due to its 
temperature, even when there is no light arriving 
at the sensor. This noise is very low and is only an 
issue when the exposure time of the sensor is very 
long, which is the case in extreme low-light 
imaging applications such as astronomy or night 
time photography. For this reason, in applications 
like astronomy, where exposure times can be 
several minutes, the sensor is kept cool at a given 
temperature to minimize thermal noise.  
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Finally, there is fixed pattern noise, which is due to imprecisions inherent to the manufacturing of image 
sensors. No two pixels on an image sensor are going to be identical — there will be some (small) 
variation between the efficiencies of the millions of pixels on the sensor. In the image on the right, the 
bottom half shows the effect of fixed pattern noise. Even though this is the image of a scene with 
uniform brightness, there are differences in the brightness values measured by the pixels. These 
differences are extremely small and are magnified here for visualization purposes. For comparison, we 
show random noise in the top half of the image. Fortunately, fixed pattern noise can be compensated 
for by calibrating the response (or gain) of each pixel and then normalizing all subsequent 
measurements made by that pixel using the gain.  

 

The last characteristic we discuss is dynamic range, 
which is defined as 20 times the log of the ratio of 
the maximum possible photon energy the pixel 
can measure to the minimum photon energy the 
pixel can detect. The maximum photon energy is 
determined by the potential well of the pixel. 
There exists a photon energy that fills up the 
potential well, and energy levels higher than that 
cannot be measured — they produce the same 
(maximum) electron count. The minimum 
detectable energy is the electron count that is 
detectable in the presence of noise. Note that if 
the signal we are trying to measure is weaker than the noise, it is not distinguishable from the noise and 
hence is not detectable. The unit of dynamic range is decibels. 

Shown in the table are the dynamic ranges of some commonly used imaging systems, including the 
human eye. It should be noted that these are rough estimates. The human eye has a remarkable dynamic 
range of roughly 1 million to 1, which corresponds to 120 decibels. We see that a typical consumer digital 
camera today has a range of about 72 decibels, which is higher than that of film. Note that a video 
camera has a lower dynamic range than a still camera, since a video camera must capture images in 
quick succession and hence use low exposure times. As a result, the photon energy levels received by a 
video camera are relatively low while read noise remains the same. In short, video cameras are forced 
to have lower signal-to-noise ratios and hence lower dynamic ranges. 
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Now let us examine what it means to measure the color of a scene point. We can denote the photon 
flux from a point in the scene as p(λ), indicating that it is a function of wavelength λ. The photon flux 
arrives at a pixel, where it is converted to electron flux, I. The quantum efficiency of the material (silicon, 
for example) utilized to make this conversion is defined as the ratio of the electron flux to the photon 
flux. Since it is also a function of wavelength, we can denote quantum efficiency as q(λ).  

 

We are especially interested in the quantum 
efficiency of silicon. The visible light spectrum —
the range of wavelengths that are visible to the 
human eye — lies between 400 and 700 
nanometers.  At higher wavelengths, such as 
around 1,000 nanometers, silicon’s quantum 
efficiency is 1, which means that every photon 
received is converted into an electron. However, 
as the wavelength decreases, the quantum 
efficiency does as well. Around 400 nanometers, it 
drops to almost zero. Thus, silicon is virtually 
transparent for wavelengths above 1,000 
nanometers, and it becomes nearly opaque for wavelengths below 400 nanometers. 
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Now, consider a single wavelength of light, that is,   
λ = λ!. This is called monochromatic light. From the 
definition of quantum efficiency, we know that the 
electron flux is equal to this expression 1 . 
However, the light arriving at the pixel from the 
scene point typically includes photon flux 
corresponding to a range of wavelengths. We refer 
to this as the spectral distribution p(λ) of the scene 
point. How do we determine the electron flux I due 
to a given p(λ)? Let us look at an infinitesimally 
narrow band of wavelengths from λ to λ + dλ. In 
this case, the flux arriving at the pixel is p(λ)d(λ). 
Therefore, the electron flux generated by the pixel for the entire spectral distribution is given by this 
integral 2  .This represents the total number of electrons generated due to the incoming light p(λ).  

 

Given the electron flux and the quantum 
efficiency, can we find the spectral distribution 
p(λ)? We cannot, because there are many p(λ)s 
that can be multiplied with q(λ) and integrated 
over all λs to obtain the same I. To measure p(λ), 
we utilize filters placed in front of the pixel, where 
each filter i has a response fi(λ). Consider a filter 
with a response that is a delta function centered at 
𝜆". Note that a delta function is infinitesimally thin 
and infinitely tall with an area equal to 1.  

 

Now we have that I is equal to this integral 1  
which gives us I = q(𝜆")p(𝜆"). That is, a filter with a 
narrow response centered at 𝜆"  can be used to 
measure (or “pick out”) the value p(𝜆"). So the 
question is, how many such filters do we need to 
recover all of p(λ) ? It would seem that we need an 
infinite number of filters. In practice, however, 
since p(λ) is almost certain to be a smooth 
function, it turns out that a finite number of filters 
suffice. We will discuss the reasons for this in our 
lectures on image processing.  
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That brings us to the topic of color. What really is 
color? It turns out that color is not a physical 
quantity that you measure — rather, it is the 
human response to different wavelengths of light. 
We cannot see anything lower than 400 
nanometers, which is ultraviolet light, or above 700 
nanometers, which is infrared light. If we design 
cameras that can measure information outside the 
visible light spectrum, we can indeed develop 
computer vision systems that can perceive things 
that we cannot.  

How do we, humans, measure spectral 
distributions that lie within the visible light spectrum? Our image sensor — the retina — utilizes two 
types of pixels: rods and cones. The rods are not sensitive to the color of light, but rather sense the 
brightness of the incoming light. Cones, on the other hand, are sensitive to color, and there are three 
types of cones. These are neurochemical sensors that respond to three types of color. 

 
Let us take a closer look at the retina. Here is the 
anatomy of the human eye, which we reviewed in 
the lecture on image formation. The cornea acts as 
a lens and works with the inner lens of the eye to 
form an image on the retina. Unlike the planar 
image sensors found in cameras, the retina is 
curved.   
 
 
 
 
 
 
  

37

The Human Eye

I.9

EYE AND BRAIN

Retina

36

Human Response to different wavelengths

400nm
(Violet)

700nm
(Red)

Do We recover spectral distribution ( $ ?

Sensors in the human eye: Rods & Cones
Neurochemical Sensors  (3 types)

What is “Color”?

Visible light:

6

InfraredUV



First Principles of Computer Vision                                                                                                                            Image Sensing 
 

FPCV-1-2 16 

In this cross-sectional view of the retina, we can 
see the rods and cones. Measurements made by 
the rods and cones are passed on to bipolar cells 
and then to ganglion cells. Using these cells, the 
retina does some early visual processing. That 
semi-processed image is passed through the optic 
nerve to the visual cortex in the brain. Which 
direction is light coming from in this diagram? One 
might assume that since the pixels (rods and 
cones) are sitting towards the bottom, light should 
be coming from the bottom as well. However, in a 
strange quirk of nature, light actually comes from 
the top and passes through the ganglion and bipolar cells before reaching the rods and cones.  
 
 
Here is a scanning electron microscope (SEM) 
image of rods and cones in a real retina. The rods 
actually look like rods, more or less cylindrical, and 
the cones are more conical. Both are 
neurochemical sensors that take in light and 
generate impulses that represent the intensity of 
that light.  However, they have different proteins 
— rods have rhodopsin and cones have photopsin. 
Rods are able to measure black and white images 
— they are most useful in a dark environment. You 
may have noticed that in moonlight, you cannot 
discern the colors of things; rather, you perceive a 
very dim, colorless scene. When there is enough light, the cones are able to discern color. Vision using 
rods is called scotopic vision, and vision using cones is called photopic vision. These are two different 
“modes” that the eye operates in. Irrespective of the mode, the end result is that, after early 
processing by the cells in the eye, the impulses generated by our pixels (rods and cones) are sent to 
the brain for higher levels of visual processing  
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Shown here is the spatial distribution of cones on 
the retina. There are three types of cones – red, 
blue, and green – roughly corresponding to the 
type of light they respond to. You can see that the 
cones are most dense in the fovea, which 
corresponds to the part of the eye’s field of view 
that has maximum acuity, or “sharpness.” When 
you look at something in a scene, the image of that 
thing falls on the fovea — everything else is 
considered to be in your peripheral vision. 
 
 
 
The retina has roughly 120 million rods compared 
to only about 7 million cones. There are very few 
rods in the center of the fovea; moving outwards, 
the number of rods rapidly increases in density and 
then begins to drop off. Note that there is a spot 
where there are no rods and cones, which is the 
blind spot. That is where the image is transmitted 
along the optic nerve to the brain. Our brain fills in 
visual information that is missing in the blind spot, 
creating the illusion of a continuous image.  
 
 
 
Now let us discuss the spectral responses of the 
cones. Since there are three types of cones, we 
have three different spectral responses. They 
measure light that corresponds to the sensations 
of red, green, and blue. These spectral responses 
are shown here and are called tristimulus curves. 
They are essentially the quantum efficiencies of 
the red, green, and blue cones.  
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As in the case of our silicon pixel, let p(λ) be the 
spectral distribution of the light falling on the 
retina. Using the tristimulus curves, we can obtain 
these three expressions for the outputs of the red, 
green, and blue cones. These values — R, G, and B 
— are called tristimulus values. The eye does not 
measure the complete spectral distribution p(λ), 
but, rather, we have three numbers corresponding 
to any incoming spectral distribution. 

 

 

 
 
Since the eye only produces three values (R,G,B) 
for any given spectral distribution p(λ), there is an 
entire continuum of distributions that generate the 
same three values. Such a class of indistinguishable 
distributions are called metamers. Here we can see 
different p(λ)s, that produce the same R,G,B values 
— 115,60, and 108, respectively. The color that we 
perceive in this case is a shade of purple. The 
existence of these metamers reveals that there are 
many distinctly different spectral distributions that 
we as humans perceive to be the same color.  
 

 
This brings us to Young’s experiment. Young found 
that just three wavelengths of light can be mixed 
to produce the sensations of virtually all the colors 
we are capable of sensing. He used a different 
projector for each of the three wavelengths. Note 
that where the projected circles overlap, a color is 
produced that is different from the original three 
projected colors. By simply mixing different 
intensities of three wavelengths, we can reproduce 
almost the entire gamut of colors that humans can 
perceive. These wavelengths are 650, 530, and 410 
nanometers, and they generate sensations 
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corresponding to the colors red, green, and blue. One does not need to use exactly these three 
wavelengths — they can be varied somewhat and yet produce a similar effect. It is Young’s discovery 
that enables us to use just three filters – red, green, and blue — to implement color cameras and displays.  

 
 
In digital cameras, color images can be captured 
using an optical element known as a dichroic prism. 
This prism is a fairly sophisticated piece of optics. 
When shown an image, it splits the image into 
three components: a reddish image, a greenish 
image, and a bluish image. As shown on the right, 
an image sensor can be placed on each of the three 
flat faces of the dichroic prism to capture a red 
image, green image, and blue image. When we 
stack these three images, we have red, green, and 
blue values at each pixel, which is referred to as a 
color image. The disadvantage of using a dichroic 
prism is that the entire imaging system tends to be bulky and requires precise alignment between the 
prism and the three image sensors.  
 
 
Here is an alternative, more popular approach to 
capturing color images. In this case, a single image 
sensor is used where each pixel has one of three 
color filters in front of it. In other words, the image 
is measured by the image sensor through a mosaic 
of color filters, as shown on the left. Unlike with a 
dichroic prism, each pixel here only measures one 
color. The resulting measured image appears like 
the one shown in the middle and is referred to as a 
raw image. In this image, a pixel that measures red 
light, for instance, does not have the 
corresponding green and blue measurements. 
However, since its neighbors do make green and blue measurements, one can estimate the missing 
green and blue values of the pixel by interpolating the green and blue values provided by its neighbors. 
The end result is a full color image where every pixel has red, green, and blue values. This process of 
going from the mosaiced raw image to a full color image is called demosaicing.  
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A point in the scene with a certain brightness will produce a corresponding brightness value in the 
image. The relationship between scene brightness and image brightness is referred to as the camera 
response function. While the response function is always monotonic it is not necessarily linear. Let us 
take a look at how we can determine this function for any given camera.  
 
On the right, we see photon flux with spectral distribution p(λ) entering the pixel, which produces 
electron flux I. That, however, is not the value measured by the camera, as the electron flux will be 
modulated by the aperture of the lens and the integration time of the sensor (which will be short for 
videos, but can be longer for photographs). The image brightness B is therefore I times the “exposure,” 
which is the product of the area of the aperture and the integration time of the image sensor. Note 
that the relationship between that brightness B and the photon flux I is linear.  
 
The image brightness B usually goes through a 
series of steps before being outputted by the 
camera. These steps include electron-to-voltage 
conversion, analog-to-digital conversion, as well as 
other image processing steps such as demosaicing. 
In addition, a non-linear mapping is often 
intentionally introduced by camera manufacturers 
so that the camera can measure a wider range of 
brightness values. Any camera has a finite dynamic 
range, and a wider range of scene brightness 
values can be mapped to this dynamic range by 
“compressing” some brightness values more than 
others. As a result, the relationship between the final output of the camera M and the image brightness 
B is almost always a non-linear function f. This is referred to as the camera’s response function. 
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Shown here are the camera response functions 
corresponding to a few consumer cameras. These 
functions are sometimes referred to as gamma 
curves. In general, the response function of a 
camera is unknown. For some applications of 
computer vision, it must be measured.  

 

 

 

 

 

In order to find the response function of a camera, 
we can use a calibration chart. On the left is a 
Macbeth chart. Let us focus on the gray patches in 
the bottom row of the chart. We know the 
reflectance values of these patches — 3.1% for the 
dark one all the way to the right and 90% for the 
bright one all the way to the left. When this chart 
is lit by one or more sources that are distant from 
it, each point on the chart can be assumed to 
receive the same illumination. That is, the whole 
chart is uniformly lit. In this case, the brightness 
values of the patches in the bottom row will equal 
their exact reflectance values multiplied by the same scale factor. This unknown scale factor depends 
on various factors such as the brightness of the light sources, the gain of the camera, etc. However, 
irrespective of the scale, the ratios of the brightness values of the patches must equal the ratios of their 
(known) reflectance values. This allows us to take a single picture of the Macbeth chart using the camera 
and plot the relationship between the image brightness B and the measured brightness M. To remove 
the effect of the unknown scale factor, we can normalize all the brightness values such that the brightest 
value (produced by the left most patch) equals 1. This plot can be used as the response function of the 
camera. This process of determining the camera response function is called radiometric calibration.  

Now, given any pixel value produced by the camera, we can use the response function to determine 
the corresponding image brightness B. That, in turn, is the true brightness of the corresponding scene 
point multiplied by the unknown scale factor. That is, we are able to determine the brightness values 
of all scene points up to a single scale factor. In other words, the response function, once calibrated, 
can be used to “linearize” the camera.  
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Next we describe the concept of high dynamic 
range (HDR) imaging. Any camera, no matter how 
sophisticated, will have a limited dynamic range, 
which is the range of brightness values it can 
measure. Remember that the definition of 
dynamic range is the range from the maximum 
measurable brightness to the minimum detectable 
brightness. Needless to say, the real world has an 
enormous range of brightness values. There is no 
camera that can capture details of both a bright 
sky and a dark shadow in the same image.  

How can we enhance the dynamic range of a 
camera? Let us assume that the response function is known and hence the camera can be linearized. 
Thus, the response function is a straight line. Let us say the camera produces 8 bits of information at 
each pixel. The maximum value it can produce, which corresponds to the full-well capacity of the pixel, 
is 255. That is, the image “saturates” at 255 — there exists a scene brightness beyond which all 
brightness values will produce an image brightness of 255.  

Imagine that we wish to capture a scene with a very wide range of brightness values. We can first take 
an image using a very short exposure e0. If scene brightness is represented by P, the measured 
brightness will be the minimum of e0 P and 255, as it cannot exceed 255. The corresponding response 
function is seen in the bottom right, and the corresponding image is the left most one shown on the 
top.  As expected, the bright scene regions are captured well, while the darker regions have virtually no 
details.  

Next, we increase the exposure to emulate a response function which reaches saturation faster than in 
the previous case. In this image (second from the left), parts of the outdoor region begin to saturate, 
but the dark door becomes visible. Increasing the exposure further gives us an image in which the 
outside looks almost completely washed out, while more details appear inside the dark room. In the 
final image, taken with an even longer exposure, the outside is completely washed out — even the door 
is saturated — but more details within the dark room are revealed. This method of capturing multiple 
images of a scene is called exposure bracketing.  
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What will happen if these images are simply added 
together? In the summed image, the maximum 
measured value is 1020 — that is, 4 times 255. This 
image will look like one taken with another 
camera, a virtual camera, with a response function 
that looks like the plot on the left. It is simply the 
summation of the four response functions in the 
previous slide. This response function is non-linear 
and it compresses larger brightness values more 
than lower ones. Therefore, by simply adding 
images taken with different exposures, we can 
obtain an image with significantly greater dynamic 
range and hence more visual information. We can enhance the information in this summed image with 
a method called tone mapping to get the image shown on the right, where more details of the scene 
are revealed. This is a popular method for capturing high dynamic range images. It is used widely by 
smartphone cameras to enhance image quality.  

 

It turns out that the exposure bracketing method 
has a major limitation. The main assumption made 
by the method is that, while the multiple images 
with different exposures are being captured, the 
scene remains unchanged with respect to the 
camera. That is, each pixel corresponds to the 
same scene point during the entire capture 
process. Unfortunately, most scenes include 
objects in motion. In this example, the bicycles and 
the riders are in motion and hence they appear as 
multiple copies in the final HDR image. This is 
sometimes referred to as the ghosting artifact.   
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The only way to avoid the ghosting artifact is to 
capture all the information needed to compute the 
HDR image in a single image of the scene. Here we 
see a single-shot HDR method. The image sensors 
we have discussed thus far have pixels that have 
equal sensitivity to light. If we capture the scene 
shown here with such a sensor using a low 
exposure, the result would be an image in which 
the entire person is too dark. If we increase the 
exposure, the person might turn out fine, but the 
sky will be too bright or saturated. In both cases, 
there are large parts of the image that are devoid 
of useful information. Once this information is lost, it cannot be recovered.  

This problem can be remedied, or at least mitigated, by creating an image sensor with unequal pixels — 
pixels with different sensitivities to light. One way to do this is to place a “shade” with a chosen 
transparency on top of each pixel. Consider the case where the shades are assigned random 
transparencies. Then, for every dark pixel in the captured image, there is likely a neighbor that is not 
dark, and for every saturated pixel there is likely a neighbor that is not saturated. That is, there are no 
large areas in the image that are either too dark or completely washed out due to saturation. The 
captured image in this case looks “patterned.” On the right is an image sensor with such an assortment 
of pixel exposures. The pixels vary not only in terms of their color filters but also exposures. Since we 
know the exposure of each pixel (the transparency of each shade) we can use image processing to map 
the captured image to a high dynamic range color image. Note that assorted pixels can also be 
implemented using different integration times for the pixels rather than different shades.  

 

Let us compare the dynamic range of an assorted 
pixel image sensor with that of a traditional sensor. 
In the left column are images of two scenes taken 
with a DSLR camera with a traditional image 
sensor. Despite the high quality of the camera 
used, the images include large regions that are 
either too dark or saturated. In the right column 
are HDR images produced by the assorted pixel 
camera we described above. It is clear that these 
images reveal significantly more details in both the 
dark and bright regions. 
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This technology is used in many state-of-the-art 
image sensors, which are being used in popular 
phones. Here we see a camera module of the type 
that sits in today’s smartphones, which includes 
the assorted pixel image sensor.  

 

 

 

 

 

 

Let us take a look at some of the image sensors that nature has created. Here is an interesting example 
— the curious eye of the Copilia, which is a crustacean. It is similar to a plankton but has a long tail, 
which is not seen here. Shown on the left is its head, which includes two eyes. Each eye includes two 
lenses — an anterior lens, which is the large external lens forming an image, and a posterior lens, which 
has a single pixel (a single receptor) attached to it. The combination of the posterior lens and the single 
receptor mechanically scans the image formed by the anterior lens. On the right is a video of the 
scanning mechanism in action. It is remarkable that nature has developed an eye with a mechanical 
scanner to capture two-dimensional images.  
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It was long believed that the brittle star did not 
possess any eyes. Since it does not have a brain — 
only a nervous system — it was a mystery to 
biologists as to how the brittle star was able to 
navigate the space around it and not fall prey to 
predators. Then, about twenty years ago, it was 
discovered that the entire body of the brittle star 
is covered with lenses. On the right is a scanning 
electron microscope image of a small piece of the 
body. Each one of the tiny bumps is a lens made of 
transparent calcite, roughly 1/20 millimeters in 
diameter. Each lens focuses light from a cone in 
the scene onto a nerve bundle. Therefore, the entire body acts like a flexible camera and is able to 
measure the spatial distribution of the light around it.  

 

 

A truly incredible creation is the skin of the 
octopus. It includes a large number of 
chromatophores, which are little sacks with 
pigments in them. If one of these sacks is pulled to 
change its shape, the color of the light that the sack 
reflects also changes. Using this remarkable 
mechanism, the octopus is able to camouflage 
itself by controlling the visual texture of its skin to 
match that of its surroundings. In this video, there 
is an octopus sitting on the shrub, but it is not 
visible as it has taken on the texture of the shrub. 
When the camera gets close to the shrub, the 
octopus reveals itself and swims away.  
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Let us return to the human eye. We have 
discussed the retina and the fovea in detail. As 
mentioned earlier, at the location where the 
image sensed by the retina is transmitted through 
the optic nerve to the brain, there is a blind spot 
— a patch on the retina that is devoid of rods and 
cones. This blind spot is not obvious to us because 
our brain fills in the missing information. It is often 
said that one must be careful of the blind spot 
when driving, as objects that appear within it will 
not be visible to the driver.  
 
Here is a simple experiment you can do to find 
your blind spot. First, print the image with the 
cross and the disc so that it fills a letter-sized sheet 
of paper. Place the sheet about a foot in front of 
you, shut your left eye, and look at the cross on 
the left with your right eye. Now, slowly move the 
sheet towards and away from you. At some 
distance of the sheet, the white disc on the right 
will vanish. It vanishes when the image of the disc 
falls entirely within your blind spot.  

 

Here are a couple more tricks you can play with yourself. Using the method described above, you can 
make the sun disappear in the image on the left. If you are into dark humor, you can make Van Gogh’s 
ear disappear in the right image. 
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