

Image Processing II

Shree K. Nayar

Lecture: FPCV-1-5

Module: Imaging

Series: First Principles of Computer Vision

Computer Science, Columbia University

March 30, 2022

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Image Processing II

FPCV-1-5 1

In the previous lecture, we described how image processing can transform an image into one that is
clearer or easier to analyze. We first discussed pixel processing, which is the simplest type of image
processing. Then, we discussed linear shift invariant systems and their properties. We showed that any
linear shift invariant system is performing a convolution. Based on this theory, we described linear image
filters that can smooth an image or reduce noise in it. Next, we covered nonlinear image filters which
cannot be implemented using convolution but can, for some tasks such as denoising, do better than
linear filters. In particular, we looked at the median filter and the bilateral filter. Finally, we presented
template matching, which uses correlation — a concept that is closely related to convolution — to find
a given pattern in an image.

In this lecture, we will begin with the Fourier transform, which will allow us to switch from the spatial
domain to the frequency domain, also known as the Fourier domain. Many image processing methods
are easier to develop and analyze in the frequency domain. We will discuss how convolution in the spatial
domain is equivalent to multiplication in the frequency domain. This important result can be used to
design a variety of linear filters in the frequency domain. Next, we will describe deconvolution, which is
the process of undoing the effect of an undesirable convolution. We show that deconvolution is easier
to formulate and implement in the frequency domain. We develop a deconvolution algorithm for
removing motion blur from images.

Finally, we will study sampling theory. While capturing an image, we are sampling a continuous optical
image with a pixel grid. If we sample the image beyond a certain sampling frequency, the continuous
image can be recovered without any loss of information. However, under-sampling of the image can
result in information loss as well as the introduction of unwanted artifacts in the image. We will study
this phenomenon, known as aliasing, and describe how cameras avoid aliasing.

1

Image Processing II

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Transform image to new one that is clearer or
easier to analyze.

Recap: Image Processing I

Topics:

(1) Pixel Processing

(2) LSIS and Convolution

(3) Linear Image Filters

(4) Non-Linear Image Filters

(5) Template Matching by Correlation

First Principles of Computer Vision Image Processing II

FPCV-1-5 2

The Fourier transform is named for Joseph Fourier, who worked for Napoleon. Fourier was very
interested in how heat propagates through materials of different shapes, which led him to develop the
Fourier transform. This transform states that any periodic function can be written as the weighted sum
of an infinite number of sinusoids of different frequencies.

The basic building block of the Fourier transform is
the sinusoid. Shown here is the expression for the
sinusoid, when A is its amplitude, 𝑢 is its
frequency, and 𝜑 is its phase (or shift). The period
T of the sinusoid is the reciprocal of its frequency.

Shown below is a square wave and the first eight of its component sinusoids, as determined by the
Fourier transform. These sinusoids are shown in increasing order of frequency. Note that they have
different amplitudes and phases. By simply adding these eight sinusoids, we get the fairly good
approximation of the square wave shown on the right. It turns out that the Fourier transform of the
square wave has an infinite number of sinusoids with non-zero amplitude. If we could add all of these
sinusoids, we would get exactly the square wave.

4

Fourier Transform

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

5

Jean Baptiste Joseph Fourier

Any Periodic Function can be rewritten as a Weighted Sum

of Infinite Sinusoids of Different Frequencies.

(1768-1830)
I.1

6

Sinusoid

! " = $ sin(2*+" + -)

!: Amplitude

": Phase

#: Period

$: Frequency (1/#)

0

!

"

#
$

% $

MATH PRIMER

First Principles of Computer Vision Image Processing II

FPCV-1-5 3

An important thing to note here are the amplitudes
and phases of the component sinusoids. Note that
the phases flip between 𝜋/2 and -𝜋/2 in the case of
the square wave. While we have used the square
wave as an example here, the Fourier transform
can be applied to any signal. In each case, it gives
an alternative representation of the signal in terms
of the amplitudes and phases of its component
sinusoids. This representation is referred to as the
frequency domain.

7

Fourier Series

+

…

0 "−"

−1

1

+

+

+

+

+

+

Square Wave
(Period 2')

10

Fourier Transform (FT)

Represents a signal ((*) in terms of Amplitudes and
Phases of its Constituent Sinusoids.

FT!(") 0(+)

0 "−"

−1

1

(

Amplitude

(

Phase
%
&

'%&

!

11

Inverse Fourier Transform (IFT)

Computes the signal ((*) from the Amplitudes and
Phases of its Constituent Sinusoids.

IFT!(") 0(+)

0 "−"

−1

1

(

Amplitude

(

Phase

!

9

!

Amplitude

Frequency Representation of Signal

+

…+

+

+

+

+

+

!

Phase
!
"

#!"

!0 %−%

−1

1

!

8

Sum of First
8 Sinusoids

First Principles of Computer Vision Image Processing II

FPCV-1-5 4

As shown here, when the Fourier transform (FT) is applied to a function 𝑓(𝑥) we get the function 𝐹(𝑢),
which represents the amplitude and phase corresponding to the sinusoid for each frequency 𝑢.	 𝐹(𝑢) is
the frequency representation of the spatial function 𝑓(𝑥). We can also go from 𝐹(𝑢) back to the original
function 𝑓(𝑥) by using the inverse Fourier transform (IFT). It is important to note that we can switch
between the spatial and frequency representations, without any loss of information.

Here are the mathematical expressions for the
Fourier transform and the inverse Fourier
transform. For now, we will stick to signals with a
single dimension (𝑥), bearing in mind that all the
expressions we present are easily extensible to
higher dimensions. Let us first take a close look at
the inverse Fourier transform. This tells us that the
original signal is an integral (sum) of sinusoids of
different frequencies. As we will see shortly, the
sinusoids reside within the complex exponential
inside the integral. The amplitudes and phases are
captured by the Fourier coefficient 𝐹(𝑢)
associated with each frequency	𝑢. The Fourier transform looks similar to its inverse, except you have a
negative 𝑖 in the exponent. Sometimes, the Fourier transform is referred to as the plus 𝑖 transform, and
the inverse is called the minus 𝑖	transform.

Shown here is the relation between the sinusoid
and the complex exponential. Let’s take a look at
why this relation is valid. We expand the complex
exponential using Taylor series and then separate
the terms into two groups – the first one has terms
with even powers and the second group has terms
with odd powers. Each term in the group with odd
powers is multiplied by 𝑖	on the outside. We see
that the first group is the Taylor series expansion
of cosine 𝜃 while the other is of sine 𝜃.

12

Finding FT and IFT

0 + = 1
!"

"
!(")2!#$%&'3"

! " = 1
!"

"
0(+)2#$%&'3+

Fourier Transform:

Inverse Fourier Transform:

$: space

(: frequency

)() = cos . + 0 sin .

0 = −1

13

Complex Exponential (Euler Formula)

4 = −1

2#(= 1 + 47 +
#(!

$! +
#("

*! +
#(#

+! +
#($

,! +
#(%

-! +…

Expand ,!" using Taylor Series:

,!" = 1 −
/#

2!
+
/$

4!
−
/%

6!
+⋯ + 5 / −

/&

3!
+
/'

5!
−
/(

7!
+⋯

cos 7 sin 7

2#(= cos 7 + 4 sin 7

MATH PRIMER

First Principles of Computer Vision Image Processing II

FPCV-1-5 5

Note that the Fourier transform is complex
because the coefficient 𝐹(𝑢) is complex, as it
needs to capture both the amplitude and phase of
the sinusoid. Also note that the integral goes from
minus infinity to infinity, so frequencies are
represented using both positive and negative
numbers. The formulas for the amplitude and
phase are shown here, where ℜ𝔢 denotes real and
ℑ𝔪 denotes imaginary.

Now let’s take a look at the Fourier transforms of
a few simple functions. Here, we see a cosine
function. Since it is basically a sinusoid that is
shifted, it is a signal with a single non-zero
frequency. Given that 𝑘 is the frequency of this
cosine function, we get a delta function at 𝑘 and
−𝑘 in the Fourier transform. The two delta
functions happen to reside in the real domain of
the Fourier transform.

If we have a signal that is the sum of two cosine
functions with different frequencies, The Fourier
transform is simply the sum of the transforms of
the two cosine functions. As a result, we get the
four delta functions seen here.

14

Fourier Transform is Complex!

0 + = ℜ; 0 + + 4 ℑ= 0 +

Amplitude: $ + = ℜ; 0 + $ + ℑ= 0 + $

Phase: - + = atan2(ℑ= 0 + ,ℜ; 0 +)

0 + = 1
!"

"
!(")2!#$%&'3"

9($) holds the Amplitude and Phase of the
sinusoid of frequency $.

15

Fourier Transform Examples

! " = cos 2*A"

Signal ((*) Fourier Transform 9($)

9 $ =)
: $ + ; + : $ − ;

($ −+ +

ℜ6 , -% $

!
"

16

Fourier Transform Examples

! " = cos 2*A." +
cos 2*A$"

Signal ((*) Fourier Transform 9($)

($ −+! +! +#−+#

ℜ6 , -% $

9 $ = !
" [: $ + ;) + : $ − ;)

+ : $ + ;# + : $ − ;#]

First Principles of Computer Vision Image Processing II

FPCV-1-5 6

Now let us take a look at the case of a sinusoidal
function. As before, we only have one frequency 𝑘,
which again results in delta functions, at 𝑘 and −𝑘.
In this case, however, the two delta functions are
flipped. In addition, they reside in the imaginary
domain of the Fourier transform.

Now, consider a signal that is a constant. In this
case, there are no component sinusoids. The
constant value of the function can be accounted
for by viewing it as the amplitude of a sinusoid with
frequency equal to zero. Therefore, we have a
single delta function at 𝑢	equal to zero.

What if we have a signal that is itself a delta
function? In this case, we need equal amplitudes
of sinusoids of all frequencies to represent it. As a
result, the Fourier transform is flat.

17

Fourier Transform Examples

! " = sin 2*A"

Signal ((*) Fourier Transform 9($)

9 $ =)
#5 : $ + ; − : $ − ;

($ −+ +

ℑ8 9 (% $

!
"

18

Fourier Transform Examples

! " = 1

Signal ((*) Fourier Transform 9($)

0 + = B(+)

($

% $ ℜ6 , -

19

Fourier Transform Examples

! " = B(")

Signal ((*) Fourier Transform 9($)

0 + = 1

($

% $ ℜ6 , -

First Principles of Computer Vision Image Processing II

FPCV-1-5 7

Here is the rectangular function, also known as a
pulse. If you remember, in the previous lecture, we
talked about the box filter. The pulse is a one-
dimensional box filter. The Fourier transform of
this rectangular function is the sinc function. It
starts off with a maximum value at zero frequency
and then tapers down. Note that it oscillates as it
tapers.

Finally, we have the Gaussian. Here, 𝑎 is related to
the sigma (width) of the Gaussian. Its Fourier
Transform is also a Gaussian, but with a width
proportional to 1 over 𝑎. For any function, if we
widen it in the spatial domain, we actually
compress it in the frequency domain and vice
versa. This is referred to as inverse scaling.

Let us take a look at some important properties of
the Fourier transform. The first is linearity. If we
take a linear combination of two functions in
spatial domain, then the Fourier transform of that
sum is the same linear combination of the Fourier
transforms of the two functions. The second
property is the inverse scaling we discussed above.
If we shift a function, the Fourier transform is
simply the Fourier transform of the original
function multiplied by a complex exponential.
Perhaps, most interesting is the differentiation
property. The Fourier transform of the
𝑛!"derivative of a function is simply the Fourier transform of the original function multiplied by 𝑖2𝜋𝑢#.

20

Fourier Transform Examples

! " = Rect '
/

Signal ((*) Fourier Transform 9($)

0 + = E sinc E+

($*
&'*&

% $ ℜ6 , -

$
%&$%

21

Fourier Transform Examples

! " = 2!0'
!

Signal ((*) Fourier Transform 9($)

0 + = ⁄* G 2!%
!&!/0

($

% $ ℜ6 , -

22

Properties of Fourier Transform

Spatial Domain Frequency Domain

<() * + =(#(*) <9) $ + =9#($)

Property

Linearity

Scaling

Shifting

Differentiation

(>*
1
>
9
$
>

(* − > ,.!#/019 $

?2

?*2
(* 52@$ 29 $

First Principles of Computer Vision Image Processing II

FPCV-1-5 8

We have already seen that convolution is a very
useful concept in image processing. It turns out
that there is a very close relationship between
convolution and the Fourier Transform. First, let us
take a look at convolution once again. Below, we
see the convolution of two functions, 𝑓 and ℎ, and
the result, 𝑔. Let us recap how convolution works.
We take the function ℎ, flip it, move it to a point 𝑥,
and overlay this function on 𝑓. We then find the
product of the two functions. The integral of the
product of the two functions is a single number,
which is the value of 𝑔 at 𝑥. If we want to get the
entire function 𝑔(𝑥), we take the flipped ℎ, move it to minus infinity, slide it and perform the same
operation we just discussed for each value of 𝑥.

23

Convolution Theorem

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

24

Convolution

A * = ((*) ∗ ℎ(*) = D
.3

3

(E ℎ(* − E) ?E

((E)

E

ℎ(E)

E

Convolution of two functions ((*) and ℎ *

REVIEW 25

Convolution

((E)

E

Convolution of two functions ((*) and ℎ *

ℎ(* − E)

*
E

*

A * = ((*) ∗ ℎ(*) = D
.3

3

(E ℎ(* − E) ?E

REVIEW

26

Convolution

((E)

E

ℎ(* − E)

*
E

*

∫.3
3
(E ℎ(* − E) ?E

Convolution of two functions ((*) and ℎ *

A * = ((*) ∗ ℎ(*) = D
.3

3

(E ℎ(* − E) ?E

REVIEW 27

Convolution

((E)

E

ℎ(* − E)

*
E

Convolution of two functions ((*) and ℎ *

A * = ((*) ∗ ℎ(*) = D
.3

3

(E ℎ(* − E) ?E

(* ∗ ℎ(*)

REVIEW

First Principles of Computer Vision Image Processing II

FPCV-1-5 9

Previously, we looked at this simple example
where we have the convolution of a rectangular
function with itself. In this case, ℎ is the same as
𝑓. As the rectangular function slides over itself, the
area of the overlap increases linearly and then
decreases linearly. The result of the convolution is
therefore a triangle.

Now let us take a look at the relationship between
convolution and the Fourier transform. Let us start
with convolution. 𝑔 is the result of 𝑓 convolved
with ℎ, and here is the expression for convolution
we are familiar with 1 . Now, we are going to find
the Fourier Transform of 𝑔, which is 𝐺(𝑢). If we
substitute the expression for 𝑔 from convolution,
we end up getting a double integral, which can be
written as the product of two single integrals. We
see that the first integral is indeed the Fourier
transform of 𝑓(𝑥),	 which is 𝐹(𝑢). Now let us take
a look at the second integral. If we substitute 𝑦 =
(𝑥 − 𝜏), the limits of the integral remain the same since 𝜏 is finite. Therefore, what we have here is the
Fourier transform of ℎ(𝑥), which is 𝐻(𝑢). Essentially, we have that convolution of 𝑓 with ℎ in spatial
domain corresponds to multiplication of the Fourier transforms of 𝑓 and ℎ in frequency domain.

28

Convolution: Example

-1 1

1

-1 1

1

((*) ℎ(*)

1 2-1-2

2

(* ∗ ℎ(*)
REVIEW

29

Convolution and Fourier Transform

Convolution: A * = (* ∗ ℎ * = ∫.3
3
(E ℎ(* − E) ?E

G $ = D
.3

3

A(*),.!#/04?*

G $ = D
.3

3

D
.3

3

(E ℎ * − E ,.!#/04?E?*

G $ = D
.3

3

((E),.!#/05?E D
.3

3

ℎ(* − E),.!#/0(4.5) ?*

9 $

Fourier Transform of A * :

H $

1

First Principles of Computer Vision Image Processing II

FPCV-1-5 10

The above is a very important relationship
between convolution and the Fourier Transform,
also referred to as the convolution theorem. It tells
us that if we are finding the convolution of two
functions in spatial domain, that is equivalent to
multiplying the Fourier transforms of the two
functions in frequency domain. Using the same
approach, we can also show that if we are taking
the product of two functions in spatial domain,
that is equivalent to convolving the Fourier
transforms of the two functions in frequency
domain.

What does the convolution theorem allow us to
do? Well, if we want to find the convolution of 𝑓
with ℎ to get 𝑔, we no longer have to do it in spatial
domain — we can use the frequency domain
instead. We first take the Fourier transform of 𝑓 to
get 𝐹(𝑢) and the Fourier transform of ℎ to get
𝐻(𝑢). Then, we multiply the two to get the Fourier
transform 𝐺(𝑢), and then find its inverse Fourier
transform to get 𝑔(𝑥).

Why is this useful? As it turns out, there are very
fast algorithms for finding the Fourier transform and the inverse Fourier transform. So, when we have a
very large filter we want to convolve an image with, it is much cheaper and hence much more efficient
to do the convolution in the frequency domain. In addition, it allows us to understand the effects of
applying a filter. We can take any filter that we design in spatial domain and see what it really does to
the frequencies in frequency domain, and vice versa.

30

Convolution and Fourier Transform

Spatial Domain Frequency Domain

A * = ((*) ∗ ℎ(*) G $ = 9($) H($)

A * = ((*) ℎ(*) G $ = 9 $ ∗ H($)

Multiplication Convolution

Convolution Multiplication

31

Convolution Using Fourier Transform

! " = $ " ∗ ℎ(")

) * = +(*) × -(*)

FTFTIFT

First Principles of Computer Vision Image Processing II

FPCV-1-5 11

Let us look at a very simple example — Gaussian
smoothing in frequency domain. Imagine we have
this signal shown on the left. As we can see, there
is some noise in the signal which we wish to
remove, or at least reduce. What we can do is
convolve this signal in spatial domain using the
Gaussian kernel shown on the right. Alternatively,
we can achieve the same in frequency domain
using the convolution theorem.

We first take the Fourier transforms of the signal
and the Gaussian kernel to get 𝐹(𝑢) and 𝐺(𝑢). We
can see here that the signal that we are interested
in is really the central peak in the bottom left plot,
while the two little bumps off to the side are high
frequency noise that we want to remove. As we
previously discussed, the Fourier transform of a
Gaussian is also a Gaussian. This Gaussian will act
like a low-pass filter that removes the high
frequencies.

Now, remember that convolution in spatial domain
is multiplication in frequency domain. Thus, what
we are going to do is find the product of these two
Fourier transforms. In the result, we see that the
little bumps that correspond to noise are more or
less gone.

32

Gaussian Smoothing in Fourier Domain

Noisy Signal %($) Gaussian Kernel <+($)

∗

Convolve the Noisy Signal with a Gaussian Kernel

$$

34

Noisy Signal %($) Gaussian Kernel <+($)

∗

FT FT

$$

=+ (

|1!(/)|

Low Pass (

9 (

|-(/)|

Noise

(

35

=+ (

|1!(/)|

Low Pass (

9 (

|-(/)|

Noise

(

9 (>(()

|- / 2(/)|

X

First Principles of Computer Vision Image Processing II

FPCV-1-5 12

If we find the inverse Fourier transform of the
above result, we end up with this clean signal
(black). For comparison the original signal (green)
has been overlayed on the clean signal.

Now, let us take a look at image filtering in
frequency domain. Since images are two-
dimensional, we will first need to extend the
Fourier transform from one dimension to two
dimensions.

Shown here is the expression for the two-
dimensional Fourier transform. Our image is
𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are the spatial
coordinates. We now also have two frequencies:
𝑢 along the 𝑥-direction and 𝑣 along the 𝑦-
direction. A similar expression for the inverse
Fourier transform is also shown at the bottom of
the slide. In fact, the expressions for the Fourier
transform and its inverse can be extended to any
number of dimensions.

38

2D Fourier Transform

0 +, H = I
!"

"
!(", J)2!#$% &'234 3"3J

! ", J = I
!"

"
0(+, H)2#$% '&243 3+3H

Fourier Transform:

Inverse Fourier Transform:

(and @ are frequencies along $ and A, respectively

37

Image Filtering

in Frequency Domain

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

36

IFT

Gaussian Blurred Signal ?($)

9 (>(()

|- / 2(/)|

Original

36

IFT

Gaussian Blurred Signal ?($)

9 (>(()

|- / 2(/)|

Original

First Principles of Computer Vision Image Processing II

FPCV-1-5 13

Since images are discrete, we need discrete forms
of the expressions for the Fourier transform and
its inverse, which are shown here. In this case, 𝑚
and 𝑛 are used for the spatial coordinates and 𝑝
and 𝑞 are used for the frequency coordinates.
Using these expressions, we can now find the
Fourier transform of any discrete image.

Let us take a look at the Fourier transforms of a
few simple images. While the Fourier transform
includes both the magnitude and the phase, for
our purposes here, we are going to ignore the
phase. We will take the absolute of the
magnitude for each frequency and, for
visualization purposes, we will also take the log of
that value in order to compress the wide range of
magnitude values into a smaller range. The center
of the magnitude of the transform (shown as an
image) is the zero frequency, and the frequency
increases with distance (in both direction) from
the center.

On the left is an image which is a cosine function in the 𝑥 direction. We know that the Fourier transform
of a cosine is just one frequency — the frequency 𝑘 of the cosine function. So, we end up getting two
dots on the horizontal axis in the Fourier transform, one at 𝑘 and one at -𝑘. Note that there is a third dot
in the center at the zero frequency. This results from the fact that images cannot be negative. Let us say
that the image intensity values are in the range from 0 to 256 and that the mean value of the cosine
function is 128. Hence, the image has an average value of 128. This constant results in a non-zero value
at the zero frequency.

The image shown on the right is another cosine function, but one which is of higher frequency. Because
it has a higher frequency, the three dots are now more separated from each other. If we take the average
of the two cosine images in the top row, we get the image in the bottom row. It’s Fourier transform has
five dots — we get the center dot again and two dots for each of the two cosines.

39

2D Fourier Transform: Discrete Images

9 I, K = L
89:

;.)
L
29:

<.)
([N, O],.!#/=8/;,.!#/?2/<

Discrete Fourier Transform (DFT):

Inverse Discrete Fourier Transform (IDFT):

(N, O = 1
QR L

=9:

;.)
L
?9:

<.)
9[I, K],!#/=8/;,!#/?2/<

@ = 0…D − 1
F = 0…G − 1

H = 0…D − 1
I = 0…G − 1

B and C are frequencies along D and <, respectively

40

2D Fourier Transform: Example 1

log 9 B, C% D, < log H B, C? D, <

% D, < + ? D, < log 9 B, C + H B, C

Note: log , is used just for display

First Principles of Computer Vision Image Processing II

FPCV-1-5 14

Let us now take a look at two simple binary
images. For the top left image, the Fourier
transform is shown on the top right. Once again,
the intensity at each point in the transform image
is proportional to the log of the magnitude of the
transform value for the corresponding frequency.
As we can see, we get very strong frequencies
along two lines. That is because we have two pairs
of strong edges and to re-create each edge we
need frequencies in the direction perpendicular to
the edge. The second image is that of a disk. The
flat part of the disk produces some low
frequencies. Again, the edges produce high frequencies. Note that since the image is rotationally
symmetric, its Fourier transform is rotationally symmetric as well.

Moving to more natural images, here we have a
Rubik’s cube on the top. In this case, we see that
we get three strong lines in the Fourier transform,
indicating high frequencies along these lines. This
is because the original image has edges along
three dominant directions: vertical edges,
horizontal edges, and slanted edges. In the case of
the Mandrill, there is not really much that can be
said. Since the image is complex it is hard to
interpret its transform. As humans, we are not
wired to easily interpret signals in frequency
domain.

41

2D Fourier Transform: Example 2

log 9 I, K(N, O

MaxMin

42

2D Fourier Transform: Example 3

log 9 I, K(N, O

I.2

I.3

MaxMin

First Principles of Computer Vision Image Processing II

FPCV-1-5 15

Here is a more complex image with lots of strong
edges. The second example is an image which is
just noise. In this case we see that we get very
strong values in the Fourier transform, even for
high frequencies. As we will see soon, this makes
the removal of noise from images a challenging
problem.

Now let us take a look at some simple types of
filtering. Taking the Fourier transform of the image
of the Rubik’s cube, we get the same output we
saw earlier. If we want to low-pass filter this
image, we can simply cut out the outer parts of the
Fourier transform. Taking the inverse Fourier
transform, we see that we get a blurrier
(smoother) version of the image. This image has
some block artifacts, and that is because we have
done a very harsh low-pass filtering — the sharp
boundary of the cut-out region causes the
artifacts.

If we more severely low-pass filter this image,
meaning we use a smaller cut-out region in
frequency domain, as expected, we get an even
blurrier image.

43

2D Fourier Transform: Example 4

log 9 I, K(N, O

MaxMin

45

Low Pass Filtering

log 9 I, K(N, O

44

Low Pass Filtering

log 9 I, K(N, O

First Principles of Computer Vision Image Processing II

FPCV-1-5 16

We can also do the opposite, which is high-pass filter the image. Here we have the Fourier transform
again, but now we are going to eliminate the low frequencies and keep the high frequencies. When we
do that, we see that we essentially remove all of the constant brightness regions in the image, leaving
us with the regions where there is a rapid change in brightness. If we increase the severity of our high
pass filtering by using the larger cutout on the right, we see that the edges and corners begin to appear
more prominent. In the next lecture, we will develop methods for detecting edges and corners. The
above examples hint at the fact that edge and corner detectors should be designed to high-pass filter
images.

We have talked previously about Gaussian smoothing, so now let us take a look at the same in frequency
domain. Here we wish to convolve the Rubik’s cube image with a Gaussian kernel. As we discussed
earlier, we can perform this convolution by taking the product of the Fourier transforms of the image
and the Gaussian kernel. By applying the inverse Fourier transform to the product, we get the result of

46

High Pass Filtering

log 9 I, K(N, O

47

High Pass Filtering

log 9 I, K(N, O

48

Gaussian Smoothing

!

K5

L

9

RM

G

* x

49

Gaussian Smoothing

!

K5

L

* x

9

RM

G

First Principles of Computer Vision Image Processing II

FPCV-1-5 17

the convolution, which is a blurred version of the original image. It is only slightly blurred because the
Gaussian kernel in spatial domain is a very narrow kernel. If we choose a wider kernel (right slide), then
we see that we end up getting an even blurrier image.

In the above examples we have taken the Fourier
transform of an image which gives us both the
magnitude and the phase, but we have focused
our attention on the magnitude. It turns out,
however, that the phase is often more important
in terms of preserving information than the
magnitude. Let us demonstrate this. Shown here
is an image of Marilyn Monroe, to which we have
applied the Fourier transform to get the
magnitude and the phase. The first thing we are
going to do is just set all of the phases to zero
while preserving the magnitudes and then apply
the inverse Fourier transform. The result, shown in the middle, reveals that if we remove all the phase
information, we end up with an image that is unrecognizable.

Next, we are going to do the opposite. In this case, we are going to keep the phases, but change the
magnitudes. We cannot set the magnitudes to zero, because then we would just get a black image.
Instead, we take a bunch of natural images, find the Fourier transforms of those images, and take the
average of the magnitudes of those images. We will use that average as the magnitudes and the original
phases of the Marilyn Monroe image to construct a Fourier transform, and then apply the inverse Fourier
transform to it. As seen, we get an image that is actually recognizable — although the magnitudes do
not correspond to those of the original image, Monroe is clearly visible in this image. This simple
demonstration tells us that the phase information is extremely important. In the bottom row is the same
process applied to an image of Albert Einstein.

50

Importance of Phase

[Oppenheim 1983]

Original Image Magnitude Preserved,
Phase Set to Zero

Phase Preserved,
Magnitude Set to Average

of Natural Images

First Principles of Computer Vision Image Processing II

FPCV-1-5 18

Finally, let us talk about hybrid images. On the top
left, we see an image of Marilyn Monroe. This
image has already been low-pass filtered, meaning
the high frequencies were cut out and the low
frequencies were preserved, using the techniques
that we just discussed. Therefore, we end up with
this blurred version of the image. On the bottom
left, we see an image of Albert Einstein where the
opposite was done. The original image was high-
pass filtered, meaning the low frequencies were
cut out and the high frequencies were preserved.
Hence, we see the fine details exaggerated here.
Then, we take an average of these two images and get what is called the “hybrid image.” When we look
at this hybrid image from up close, we see mostly Albert Einstein. But if we walk away from the image,
we see Marilyn Monroe. What is going on here is that when we are close to the display, we are able to
see all the fine details (high frequencies) which are of Einstein. But when we are far away, the high
frequencies in the image get even higher. At some distance, because of the point-spread function of the
lens of the eye, these frequencies are filtered out and the image falling on the retina has mostly the low
frequencies that belong to Marilyn Monroe.

There are instances when, while we are taking an image, the image is inadvertently convolved with an
undesirable function. An example of this is motion blur. While taking an image with your smartphone
camera, the camera can shake a bit when you press the shoot button. In this case, the captured image
is a sharp image of the scene convolved by a motion blur function.

52

Deconvolution

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

53

Motion Blur

* =

Scene % $, A PSF ℎ $, A

I.4

(Camera Shake)
Image ? $, A

(*, V ∗ ℎ *, V = A *, V

51

Hybrid Images

[Oliva 2006]

Low Freq Only

High Freq Only Hybrid (Sum) Image
I.8

First Principles of Computer Vision Image Processing II

FPCV-1-5 19

Thus far, we have been talking about how images
can be convolved with filters to enhance their
quality. In the case of motion blur, though, we
have the opposite problem, where we have an
image that has been unintentionally convolved
with a function and we want to undo the effect of
this convolution. That process is called
deconvolution. It turns out that it is much easier to
do in frequency domain using the Fourier
transform.

Shown here is the motion blur problem. Imagine
we have an ideal image 𝑓 of the scene, but because
of motion blur, we end up convolving this image
with a point spread function ℎ. The result is a
smeared image 𝑔. To recover the ideal image 𝑓 we
need to know the point spread function ℎ. One
way to estimate ℎ is by using an inertial
measurement unit, or an IMU, embedded within
the capture device (phone, tablet, or camera). The
IMU includes accelerometers that can provide an
estimate of the 3D motion of the camera during
image capture, which can be used to estimate the
point spread function ℎ.

Let 𝑓$ be the image that you want to recover. We call it 𝑓$ and not 𝑓 because after the recovery process,
𝑓$ may be slightly different than the original image. One way to approach the problem is to find the
Fourier transforms 𝐻 and 𝐺	of ℎ and 𝑔, respectively, and then divide 𝐺 by 𝐻 and take the inverse Fourier
transform to get 𝑓′. This is a pretty straightforward solution, so let us see how well it works.

54

!

Motion Blur

(*, V ∗ ℎ *, V = A *, V

Given captured image "(!, %) and PSF ℎ(!, %),
can we estimate actual scene (!, % ?

Fourier Transform to the rescue

* =

Scene % $, A PSF ℎ $, A

(Camera Shake)
Image ? $, A

55

Motion Deblur: Deconvolution

Let (′ be the recovered scene.

(′ *, V ∗ ℎ *, V = A *, V

9′ $, X H $, X = G $, X

9′ $, X =
G $, X
H $, X IFT (′ *, V

! * =

Scene % $, A PSF ℎ $, A

(Camera Shake)
Image ? $, A

First Principles of Computer Vision Image Processing II

FPCV-1-5 20

Here we have our original captured image and our
point spread function, which has been estimated
using the IMU. We take the Fourier transform of
the image and divide it by the Fourier transform of
the point spread function. This yields the Fourier
transform of our recovered image. The three
Fourier transforms are shown in the top right slide.
Now, if we take the inverse Fourier transform, we
end up with our result, which is shown in the slide
on the right. We see that this simple solution to
deconvolution works quite well — the recovered
image is of high quality.

In our discussion above, we have ignored the
effect of image noise. When we shake the camera,
the optical image that is falling on the sensor itself
is changing while the sensor is integrating the
image. This is why the blur happens. Note that this
blurred image, when it is read out of the camera,
will include various types of noise, including,
photon noise, read noise, quantization noise,
thermal noise, and so on. The end result is a noisy
motion blurred image.

56

Motion Deblur: Deconvolution

9′ $, X =
G $, X
H $, X IFT (′ *, V

Image ?($, A) PSF ℎ($, A) Recovered %′($, A)

de
co

nv
ol

ve

= !

57

!

Motion Deblur: Deconvolution

9′ $, X =
G $, X
H $, X IFT (′ *, V

Image H((, @) PSF >((, @) Recovered 9′((, @)

/ =

Step 1: Recover +′(,, -) in Fourier Domain

58

Motion Deblur: Deconvolution

9′ $, X =
G $, X
H $, X IFT (′ *, V

Image ?($, A) PSF ℎ($, A) Recovered %′($, A)

=

Step 2: Compute IFT of +′(,, -) to recover scene

de
co

nv
ol

ve

59

Adding Noise to the Problem

* =

Scene % $, A PSF ℎ $, A

I.4

(Camera Shake)

+

Noise K $, A Image ? $, A

(*, V ∗ ℎ *, V + Y *, V = A *, V

Can we afford to ignore noise?

First Principles of Computer Vision Image Processing II

FPCV-1-5 21

How well does the above deconvolution process
work when the image includes noise? Here is the
same captured image, but with noise added to it.
Shown next to it is our point spread function.
Again, we find the Fourier transforms of both,
divide them, and get the Fourier transform shown
in the bottom left slide. If we take the inverse
Fourier transform, we get an image that is
overwhelmed by the noise (bottom right slide).
Our simple deconvolution method amplifies the
noise and drowns out the signal that we are
looking for.

Let us take a closer look at what is happening here.
Remember that the Fourier transform 𝐻 of the
point spread function of the motion blur could be
zero for certain frequencies. Additionally, since it
is a low-pass filter, it could just be zero for all
frequencies above some value. For all frequencies
for which the magnitude is zero, 𝐹′ is simply not
recoverable because we would be performing
division by zero. Furthermore, while the point
spread function is a low-pass filter with low values
for high frequencies, we know that noise in the
captured image includes high values for high
frequencies. As a result, the division stated above ends up amplifying the noise in the recovered image

60

Motion Deblur: Deconvolution

G $, X
H $, X

= 9′ $, X IFT (′ *, V

Image ?($, A)
(with noise)

PSF ℎ($, A) Recovered %′($, A)

=

If we ignore the noise (. !, %):

!

de
co

nv
ol

ve

62

Motion Deblur: Deconvolution

Image ?($, A)
(with noise)

PSF ℎ($, A) Recovered %′($, A)

=

Noise is significantly amplified

G $, X
H $, X

= 9′ $, X IFT (′ *, V

If we ignore the noise (. !, %):

de
co

nv
ol

ve

63

Deconvolution: Issues

For high frequencies ,, - :
• Noise / ,, - in 0 ,, - is high
• Filter 1(,, -) ≈ 0

We need some kind of Noise Suppression.

G $, X
H $, X

= 9′ $, X IFT (′ *, V

2. Motion blur filter 1 ,, - is a low pass filter.

1. Where 1 ,, - = 0, +& ,, - = ∞ → Not recoverable

Noise in 0 ,, -
is amplified

61

Motion Deblur: Deconvolution

Image H((, @) PSF >((, @) Recovered 9′((, @)

/ =

Higher frequencies in +′(,, -) are amplified

If we ignore the noise (. !, %):

G $, X
H $, X

= 9′ $, X IFT (′ *, V

First Principles of Computer Vision Image Processing II

FPCV-1-5 22

𝑓$. That is why we end up getting the recovered image we did, which is basically salt and pepper noise
over the entire image.

We need some form of noise suppression during
the deconvolution process, which brings us to
Wiener deconvolution. Once again, we have that
𝐹$ is equal to 𝐺 divided by 𝐻, except that this time,
we are going to multiply it with this term 1 . In this
term, NSR is a noise-to-signal ratio. It is, for any
given frequency, the power of noise divided by the
power of the signal itself. Admittedly, we do not
know the power of the noise for any given
frequency. We also do not know the signal itself for
that frequency because that is what we are trying
to recover. However, let us pretend for a moment
that we do know these two values. Then, if the noise is high for that frequency, NSR is going to be high,
which means that the entire term 1 is going to be small. In effect, the recovery of the signal for that
frequency is attenuated. Also, if 𝐻 happens to be small because the motion blur kernel itself has low
power for that frequency, then, once again, this factor 1 is going to be small.

We have established here that if we know the Fourier transforms of both the noise and the signal that
we are looking for, we can actually develop a recovery process in which the amplification of the noise
during deconvolution is suppressed.

Unfortunately, we do not know the Fourier
transform of the noise nor the Fourier transform
of the signal that we are trying to recover, thus NSR
is unknown. It turns out, though, that if we use a
carefully chosen constant value (𝜆) for NSR, we
often obtain impressive deconvolution results.

64

Noise Suppression: Weiner Deconvolution

Z $, X =
1

H $, X
1

1 +
R[\ $, X
H $, X #

Where:

Weiner Filter ≝

9′ $, X =
G($, X)
H $, X

1

1 +
R[\ $, X
H $, X #

Noise-to-Signal Ratio, =MN (, @ :

Power of Noise at ((, @)

Power of Signal (Scene) at ((, @)
=R[\($, X) =

R $, X #

9 $, X #

65

• Determining /78 requires us to have prior knowledge
of the noise “pattern” and the scene (or of a similar
scene).

9′ $, X =
G($, X)
H $, X

1

1 +
R[\ $, X
H $, X #

R[\ $, X =]

Noise Suppression: Weiner Deconvolution

R[\ $, X =
R $, X #

9 $, X #

• Often /78 is set to a single suitable constant 9.

1

First Principles of Computer Vision Image Processing II

FPCV-1-5 23

Let’s take a look at how well Weiner deconvolution
works. Shown here is our example image with
noise added to it, as well as the point spread
function due to motion blur. We end up recovering
this image with an NSR equal to 0.002. While this
is not a perfect image — it has some graininess and
some ringing artifacts — but, it is clearly much
sharper than the captured image.

We know that the lens of the camera creates a continuous optical image on the image plane. On this
image plane sits the image sensor, which converts the continuous image into a discrete digital image. In
other words, the continuous image is sampled and, while this happens, we could lose information in the
continuous image as well as introduce undesirable artifacts in the sampled image. So, the question is,
how densely should we sample the continuous image to avoid both these phenomena.

First, let us take a look at how we go from a continuous image to a digital or discrete image. In the right
slide is shown a continuous image (shown as a one-dimensional signal), formed on the image plane by
the lens. We are going to uniformly sample this image so as to get the discrete digital signal shown below.

66

Noisy, Blurred
Image ?($, A)

PSF ℎ($, A) Recovered %′($, A)

/ =

R[\ $, X =] = 0.002 was used to recover image

Noise Suppression: Weiner Deconvolution

67

Sampling Theory and Aliasing

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

68

From Continuous to Digital Image

Continuous Signal:

Digital Signal:

How “dense” should the samples be?

% $

$

%3 $

$

First Principles of Computer Vision Image Processing II

FPCV-1-5 24

Let us use a simple example to illustrate the
significance of sampling. On the left is a sinusoid,
and on the right is a higher frequency version of it.
Let us sample both of these functions with the
same sampling frequency. The sampled (discrete)
signals are shown below. We can try to
reconstructed the original signals from the discrete
samples using interpolations. For our purposes
here we use linear interpolation, where we simply
connect consecutive discrete samples using
straight lines. We see that, for the low frequency
signal, the reconstructed signal looks close to the
original signal. Not much damage has been done. However, for the higher frequency signal, we end up
getting a flat reconstructed signal. All the information is lost in this case. This phenomenon is called
aliasing and results from the fact that we have under-sampled the signal. In fact, aliasing can also
introduce new frequencies in the reconstructed signal, which did not even exist in the original signal. It
is in our best interest, therefore, to adequately sample the image and avoid aliasing.

Let us look at how sampling manifests visually in
images. On the left is an image of a brick wall that
is well-sampled — everything looks fine in the
image. When we under-sample the image,
however, we end up with the ringing pattern seen
in the image on the right. This is often referred to
as a Moiré type of pattern. It is a common visual
manifestation of aliasing.

69

Sampling Problem

Low Frequency Signal Higher Frequency Signal

Reconstructed Signal Reconstructed Signal

“Aliasing”

70

Sampling Problem

“Well sampled” image “Under sampled” image
(visible aliasing artifacts)

I.4 I.4

First Principles of Computer Vision Image Processing II

FPCV-1-5 25

Let us now develop a theory of sampling that
reveals, for any given continuous signal, the
sampling frequency needed to avoid aliasing. We
start with a continuous signal and sample it by
multiplying it with a train of impulse functions, or
delta functions shown below. This function is
called the Shah function.

It turns out that the Fourier transform of the Shah function is also a Shah function, as shown in the left
slide below. The period of this function — the distance between consecutive delta functions — is the
inverse of the period of the original Shah function.

Let us take a look at what happens in Fourier domain when we sample a continuous signal. In the right
slide, we have our continuous function 𝑓 multiplied by the Shah function. We know that multiplication
in spatial domain is equivalent to convolution in Fourier domain.

Let us say that we have a continuous image with the trapezoid shaped Fourier transform 𝐹(𝑢) shown
below. We convolve 𝐹(𝑢) with the transform of the Shah function, which is also a Shah function. Given
the sifting property of the delta function, we know that if we convolve any function with a single delta
function, we will end up reading out that function itself. Thus, if we convolve the function 𝐹(𝑢) with the
Shah function, we obtain multiple copies of the original function 𝐹(𝑢).

71

Sampling Theory

Continuous Signal:

Shah Function (Impulse Train):

Sampled Function:

% $

$

P $ = Q
45'6

6

R $ − <$7

$
$7

P $

!6 " = ! " M "

72

Shah Function (Impulse Train)

Shah Function (Spatial Domain):

P $ = Q
45'6

6

R $ − <$7

$

P $

Shah Function (Fourier Domain):

M (=
1

$7
Q
45'6

6

R $ −
<

$7

(

M (

$7

1/$(73

Fourier Analysis of Sampled Signal

Sampled Signal:

(N * = (* ` * = ((*)∑: * − O*:

9N $ = 9 $ ∗ [$ = 9 $ ∗
)

4#
∑: $ − O/*:

9 (
%

&&)*+ (

M (

1/$(

For example:

First Principles of Computer Vision Image Processing II

FPCV-1-5 26

Shown here are a few of the copies of 𝐹(𝑢). In the
example shown here, the copies are non-
overlapping. In this case, it is straightforward to
exactly recover the original continuous signal
𝑓(𝑥). To do so, we can simply cut out one of the
copies and find the inverse Fourier transform of it.
That is, we can actually recover the original
continuous signal from the discrete signal, without
any loss of information.

However, if the copies overlap as shown here, we
end up introducing new frequencies into the
transform of the sampled signal. From the overlap
region, there is no way to figure out what the
original function was since there are many original
signals that could have created the same overlap
region. The creation of these new frequencies in
the overlap regions is what is referred to as
aliasing. It produces undesirable artifacts in
sampled images.

That brings us to the Nyquist theorem, which tells
us when we have aliasing and when we do not.
Note that the distance between the copies of 𝐹(𝑢)
is one over the period 𝑥%	of the sampling function
𝑠(𝑥). Let us assume that the maximum non-zero
frequency in the original continuous image is
𝑢&'(. Observe from the figure shown here that
the overlap does not occur when 𝑢&'(is lesser or
equal to 1 2𝑥!$, which is called the Nyquist

frequency. When this condition is satisfied, the
signal is well-sampled and there is no aliasing or
loss of information due to sampling. In this case,
we can recover the original continuous signal by simply multiplying 𝐹)(𝑢) with a rectangular function

75

Aliasing

9 (
%

&&)*+

If (89: >
1

2$7
Aliasing

93 (

&&)*+

!" #!

1/$(

(N * = (* ` * = ((*)∑: * − O*:

9N $ = 9 $ ∗ [$ = 9 $ ∗
)

4#
∑: $ − O/*:

Sampled Signal:

76

Nyquist Theorem

Can we recover ((!) from (' ! ? In other words,
can we recover +(,) from +' , ?

Only if +70' ≤
.
$'(
(Nyquist Frequency)

9 (

%

&&)*+

93 (

&&)*+

!" #!

1/$(

U (= V
$7 , (< 1/2$7
0, Z[ℎ)\]0P)

9 $ = 9N $ b $

(* = c9# 9 $

74

Fourier Analysis of Sampled Signal

(N * = (* ` * = ((*)∑: * − O*:

9N $ = 9 $ ∗ [$ = 9 $ ∗
)

4#
∑: $ − O/*:

9 (
%

&&)*+

93 (

&&)*+

!" #!

1/$(

Sampled Signal:

If (89: ≤
1

2$7

First Principles of Computer Vision Image Processing II

FPCV-1-5 27

𝐶(𝑢) to cut out a single copy of 𝐹(𝑢). By applying the inverse Fourier transform to the cut-out function,
we get the original continuous signal 𝑓(𝑥).

Aliasing, or under-sampling, produces a variety of
artifacts in images. That signal arriving at the
image sensor depends on the scene that we
expose the camera to. For most natural scenes, the
Fourier Transform of the scene looks like the plot
shown on the left — 𝐹(𝑢) falls off as a function of
𝑢, the frequency. Let us assume that the maximum
non-zero frequency that falls on the image sensor
is 𝑢&'(. To avoid aliasing, we need to make sure
that the sensor samples the image at a frequency
that is at least two times 𝑢&'(. On the right is
another example of aliasing, where on the curved
wall we can see the ringing (Moiré) effects we saw earlier. Can a camera be designed such that it can
always avoid aliasing?

One factor that helps us mitigate aliasing is the
inherent structure of the image sensor itself.
Remember that each pixel on the image sensor has
a sensing area associated with it, as shown here.
Thus, we can model the discrete image as the
continuous image convolved with a box filter
(where the box has the size of a pixel). Then, that
image is sampled to produce the final discrete
image. The convolution with the box filter results
in low-pass filtering of the image. It serves to cut
out the highest frequencies in the continuous
image. In short, the finite area of each pixel helps
reduce aliasing.

One way to entirely avoid aliasing is to use an optical filter that sits on top of the image sensor (see right
image). The filter is designed to cut out high frequencies, or specifically those frequencies that are above
the Nyquist frequency. In this case, the captured image with be free of aliasing, irrespective of the scene.

77

Aliasing in Digital Imaging

Aliasing occurs when imaging a scene (signal) that has
frequencies above the image sensor’s Nyquist Frequency

9 (

&&)*+−&)*+
Typical Power Spectrum

of Natural Scenes

I.5

Aliasing artifacts usually occur in
the form of Moiré patterns

How do sensors combat aliasing?

78

Minimizing the Effects of Aliasing

Band Limit: Clip the signal above the Nyquist frequency.

Effectively, “blur” the scene before sampling.

Use optical low-pass filter
(anti-aliasing filter)

Pixels are area-samplers
(box-averaging filter)

I.6 I.7

Sensors use two strategies.

low-pass filter

First Principles of Computer Vision Image Processing II

FPCV-1-5 28

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription,
editing and proofreading.

79

References and Credits

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

80

References: Textbooks

Robot Vision (Chapter 6 and 7)
Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 7)
Forsyth, D and Ponce, J., Prentice Hall

Digital Image Processing (Chapter 3)
González, R and Woods, R., Prentice Hall

Computer Vision: Algorithms and Applications (Chapter 3)
Szeliski, R., Springer

The Fourier Transform and Its Applications
Bracewell, R. N., Mc-Graw Hill

81

References: Papers

[Oppenheim 1983] A. V. Oppenheim. J. S. Lim, and S. R. Curtis,
“Signal synthesis and reconstruction from partial Fourier-domain
information,” Journal of the Optical Society of America, Vol. 72, page
1413, November 1983.

[Oliva 2006] A. Oliva, A. Toralba, and P. G. Schyns, “Hybrid Images,”
ACM Transactions on Graphics, Vol. 25, No. 3, pages 527-532, 2006.

82

Image Credits

I.1 http://en.wikipedia.org/wiki/File:Fourier2.jpg. Public Domain.

I.2 MathWorks.

I.4 Licensed under CC BY_SA 3.0.

I.5 http://www.svi.nl/wikiimg/StFargeaux_kasteel_buiten1_aliased.jpg.

Huygens software: Scientific Volume Imaging B.V. Used with permission.

I.6 http://hamamatsu.magnet.fsu.edu/articles/microlensarray.html.

I.7 Astrosurf. Used with permission.

I.8 https://en.wikipedia.org/wiki/Hybrid_image.

First Principles of Computer Vision Image Processing 2

FPCV-1-5

References

[Bracewell 1963] The Fourier Transform and Its Applications, Bracewell, R. N., Mc-Graw Hill, 1963.

[Horn 1986] Robot Vision, Horn, B. K. P., MIT Press, 1986.

[Forsyth and Ponce 2003] Computer Vision: A Modern Approach, Forsyth, D and Ponce, J., Prentice Hall,

2003

[González and Woods 2009] Digital Image Processing, González, R and Woods, R., Prentice Hall, 2009.

[Oppenheim 1983] A. V. Oppenheim. J. S. Lim, and S. R. Curtis, “Signal synthesis and reconstruction from

partial Fourier-domain information,” Journal of the Optical Society of America, Vol. 72, page 1413,

November 1983.

[Oliva 2006] A. Oliva, A. Toralba, and P. G. Schyns, “Hybrid Images,” ACM Transactions on Graphics, Vol.

25, No. 3, pages 527-532, 2006.

[Nayar 2022B] Image Formation, Nayar, S. K., Monograph FPCV-1-1, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022C] Image Sensing, Nayar, S. K., Monograph FPCV-1-2, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022D] Binary Images, Nayar, S. K., Monograph FPCV-1-3, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022G] Edge Detection, Nayar, S. K., Monograph FPCV-2-1, First Principles of Computer Vision,

Columbia University, New York, May 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

First Principles of Computer Vision Image Processing 2

FPCV-1-5

[Nayar 2022I] SIFT Detector, Nayar, S. K., Monograph FPCV-2-3, First Principles of Computer Vision,

Columbia University, New York, August 2022.

https://fpcv.cs.columbia.edu/Monographs

	Image Processing 2 FPCV-1-5
	Image Processing 2 FPCV-1-5
	Image Processing 2 SN 03-30-2022 COVER
	Image Processing 2 SN 03-30-2022 FINAL

	References Processing 2

