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In the previous lecture, we described how image processing can transform an image into one that is 
clearer or easier to analyze. We first discussed pixel processing, which is the simplest type of image 
processing. Then, we discussed linear shift invariant systems and their properties. We showed that any 
linear shift invariant system is performing a convolution. Based on this theory, we described linear image 
filters that can smooth an image or reduce noise in it. Next, we covered nonlinear image filters which 
cannot be implemented using convolution but can, for some tasks such as denoising, do better than 
linear filters. In particular, we looked at the median filter and the bilateral filter. Finally, we presented 
template matching, which uses correlation — a concept that is closely related to convolution — to find 
a given pattern in an image. 

In this lecture, we will begin with the Fourier transform, which will allow us to switch from the spatial 
domain to the frequency domain, also known as the Fourier domain. Many image processing methods 
are easier to develop and analyze in the frequency domain. We will discuss how convolution in the spatial 
domain is equivalent to multiplication in the frequency domain. This important result can be used to 
design a variety of linear filters in the frequency domain. Next, we will describe deconvolution, which is 
the process of undoing the effect of an undesirable convolution. We show that deconvolution is easier 
to formulate and implement in the frequency domain. We develop a deconvolution algorithm for 
removing motion blur from images.  

Finally, we will study sampling theory. While capturing an image, we are sampling a continuous optical 
image with a pixel grid. If we sample the image beyond a certain sampling frequency, the continuous 
image can be recovered without any loss of information. However, under-sampling of the image can 
result in information loss as well as the introduction of unwanted artifacts in the image. We will study 
this phenomenon, known as aliasing, and describe how cameras avoid aliasing. 
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The Fourier transform is named for Joseph Fourier, who worked for Napoleon. Fourier was very 
interested in how heat propagates through materials of different shapes, which led him to develop the 
Fourier transform. This transform states that any periodic function can be written as the weighted sum 
of an infinite number of sinusoids of different frequencies. 

 

The basic building block of the Fourier transform is 
the sinusoid. Shown here is the expression for the 
sinusoid, when A is its amplitude, 𝑢 is its 
frequency, and 𝜑 is its phase (or shift). The period 
T of the sinusoid is the reciprocal of its frequency.  

 

 

 

 

 

 

Shown below is a square wave and the first eight of its component sinusoids, as determined by the 
Fourier transform. These sinusoids are shown in increasing order of frequency. Note that they have 
different amplitudes and phases. By simply adding these eight sinusoids, we get the fairly good 
approximation of the square wave shown on the right. It turns out that the Fourier transform of the 
square wave has an infinite number of sinusoids with non-zero amplitude. If we could add all of these 
sinusoids, we would get exactly the square wave. 
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An important thing to note here are the amplitudes 
and phases of the component sinusoids. Note that 
the phases flip between 𝜋/2 and -𝜋/2 in the case of 
the square wave. While we have used the square 
wave as an example here, the Fourier transform 
can be applied to any signal. In each case, it gives 
an alternative representation of the signal in terms 
of the amplitudes and phases of its component 
sinusoids. This representation is referred to as the 
frequency domain. 
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As shown here, when the Fourier transform (FT) is applied to a function 𝑓(𝑥) we get the function 𝐹(𝑢), 
which represents the amplitude and phase corresponding to the sinusoid for each frequency 𝑢.	 𝐹(𝑢) is 
the frequency representation of the spatial function  𝑓(𝑥). We can also go from 𝐹(𝑢) back to the original 
function 𝑓(𝑥) by using the inverse Fourier transform (IFT). It is important to note that we can switch 
between the spatial and frequency representations, without any loss of information.  

 

 

Here are the mathematical expressions for the 
Fourier transform and the inverse Fourier 
transform. For now, we will stick to signals with a 
single dimension (𝑥), bearing in mind that all the 
expressions we present are easily extensible to 
higher dimensions. Let us first take a close look at 
the inverse Fourier transform. This tells us that the 
original signal is an integral (sum) of sinusoids of 
different frequencies. As we will see shortly, the 
sinusoids reside within the complex exponential 
inside the integral. The amplitudes and phases are 
captured by the Fourier coefficient 𝐹(𝑢) 
associated with each frequency	𝑢. The Fourier transform looks similar to its inverse, except you have a 
negative 𝑖 in the exponent. Sometimes, the Fourier transform is referred to as the plus 𝑖 transform, and 
the inverse is called the minus 𝑖	transform. 

 

 

Shown here is the relation between the sinusoid 
and the complex exponential. Let’s take a look at 
why this relation is valid. We expand the complex 
exponential using Taylor series and then separate 
the terms into two groups – the first one has terms 
with even powers and the second group has terms 
with odd powers. Each term in the group with odd 
powers is multiplied by 𝑖	on the outside. We see 
that the first group is the Taylor series expansion 
of cosine 𝜃 while the other is of sine 𝜃.  

 
 
 

12

Finding FT and IFT

0 + = 1
!"

"
!(")2!#$%&'3"

! " = 1
!"

"
0(+)2#$%&'3+

Fourier Transform:

Inverse Fourier Transform:

$: space

(: frequency

)() = cos . + 0 sin .

0 = −1

13

Complex Exponential (Euler Formula)

4 = −1

2#( = 1 + 47 +
#( !

$! +
#( "

*! +
#( #

+! +
#( $

,! +
#( %

-! +…

Expand ,!" using Taylor Series:

,!" = 1 −
/#

2!
+
/$

4!
−
/%

6!
+⋯ + 5 / −

/&

3!
+
/'

5!
−
/(

7!
+⋯

cos 7 sin 7

2#( = cos 7 + 4 sin 7

MATH PRIMER



First Principles of Computer Vision                                                                                                                    Image Processing II 
 

FPCV-1-5 5 

 
Note that the Fourier transform is complex 
because the coefficient 𝐹(𝑢) is complex, as it 
needs to capture both the amplitude and phase of 
the sinusoid. Also note that the integral goes from 
minus infinity to infinity, so frequencies are 
represented using both positive and negative 
numbers. The formulas for the amplitude and 
phase are shown here, where ℜ𝔢 denotes real and 
ℑ𝔪 denotes imaginary. 

 

 

 

Now let’s take a look at the Fourier transforms of 
a few simple functions. Here, we see a cosine 
function. Since it is basically a sinusoid that is 
shifted, it is a signal with a single non-zero 
frequency. Given that 𝑘 is the frequency of this 
cosine function, we get a delta function at 𝑘 and 
−𝑘 in the Fourier transform. The two delta 
functions happen to reside in the real domain of 
the Fourier transform. 

 

 

 

If we have a signal that is the sum of two cosine 
functions with different frequencies, The Fourier 
transform is simply the sum of the transforms of 
the two cosine functions. As a result, we get the 
four delta functions seen here. 
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Now let us take a look at the case of a sinusoidal 
function. As before, we only have one frequency 𝑘,  
which again results in delta functions, at 𝑘 and −𝑘. 
In this case, however, the two delta functions are 
flipped. In addition, they reside in the imaginary 
domain of the Fourier transform. 

 
 
 
 
 

 

Now, consider a signal that is a constant. In this 
case, there are no component sinusoids. The 
constant value of the function can be accounted 
for by viewing it as the amplitude of a sinusoid with 
frequency equal to zero. Therefore, we have a 
single delta function at 𝑢	equal to zero. 

 

 

 

 

 

What if we have a signal that is itself a delta 
function? In this case, we need equal amplitudes 
of sinusoids of all frequencies to represent it. As a 
result, the Fourier transform is flat. 
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Here is the rectangular function, also known as a 
pulse. If you remember, in the previous lecture, we 
talked about the box filter. The pulse is a one-
dimensional box filter. The Fourier transform of 
this rectangular function is the sinc function. It 
starts off with a maximum value at zero frequency 
and then tapers down. Note that it oscillates as it 
tapers.   

 

 

 

 

Finally, we have the Gaussian. Here,  𝑎 is related to 
the sigma (width) of the Gaussian. Its Fourier 
Transform is also a Gaussian, but with a width 
proportional to 1 over 𝑎. For any function, if we 
widen it in the spatial domain, we actually 
compress it in the frequency domain and vice 
versa. This is referred to as inverse scaling. 

 

 

 

 

Let us take a look at some important properties of 
the Fourier transform. The first is linearity. If we 
take a linear combination of two functions in 
spatial domain, then the Fourier transform of that 
sum is the same linear combination of the Fourier 
transforms of the two functions. The second 
property is the inverse scaling we discussed above. 
If we shift a function, the Fourier transform is 
simply the Fourier transform of the original 
function multiplied by a complex exponential. 
Perhaps, most interesting is the differentiation 
property. The Fourier transform of the 
𝑛!"derivative of a function is simply the Fourier transform of the original function multiplied by 𝑖2𝜋𝑢#. 
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We have already seen that convolution is a very 
useful concept in image processing. It turns out 
that there is a very close relationship between 
convolution and the Fourier Transform. First, let us 
take a look at convolution once again. Below, we 
see the convolution of two functions, 𝑓 and ℎ, and 
the result, 𝑔. Let us recap how convolution works. 
We take the function ℎ, flip it, move it to a point 𝑥, 
and overlay this function on 𝑓. We then find the 
product of the two functions. The integral of the 
product of the two functions is a single number, 
which is the value of 𝑔 at 𝑥. If we want to get the 
entire function 𝑔(𝑥), we take the flipped ℎ, move it to minus infinity, slide it and perform the same 
operation we just discussed for each value of 𝑥.  
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Previously, we looked at this simple example 
where we have the convolution of a rectangular 
function with itself. In this case, ℎ  is the same as 
𝑓. As the rectangular function slides over itself, the 
area of the overlap increases linearly and then 
decreases linearly. The result of the convolution is 
therefore a triangle.  

 

 

 

 
 
Now let us take a look at the relationship between 
convolution and the Fourier transform. Let us start 
with convolution. 𝑔 is the result of 𝑓 convolved 
with ℎ, and here is the expression for convolution 
we are familiar with 1 . Now, we are going to find 
the Fourier Transform of 𝑔, which is 𝐺(𝑢). If we 
substitute the expression for 𝑔 from convolution, 
we end up getting a double integral, which can be 
written as the product of two single integrals. We 
see that the first integral is indeed the Fourier 
transform of 𝑓(𝑥),	 which is 𝐹(𝑢). Now let us take 
a look at the second integral. If we substitute 𝑦 =
(𝑥 − 𝜏), the limits of the integral remain the same since 𝜏 is finite. Therefore, what we have here is the 
Fourier transform of ℎ(𝑥), which is 𝐻(𝑢). Essentially, we have that convolution of 𝑓 with ℎ in spatial 
domain corresponds to multiplication of the Fourier transforms of 𝑓 and ℎ  in frequency domain. 
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The above is a very important relationship 
between convolution and the Fourier Transform, 
also referred to as the convolution theorem. It tells 
us that if we are finding the convolution of two 
functions in spatial domain, that is equivalent to 
multiplying the Fourier transforms of the two 
functions in frequency domain. Using the same 
approach, we can also show that if we are taking 
the product of two functions in spatial domain, 
that is equivalent to convolving the Fourier 
transforms of the two functions in frequency 
domain.  

 

What does the convolution theorem allow us to 
do? Well, if we want to find the convolution of 𝑓 
with ℎ to get 𝑔, we no longer have to do it in spatial 
domain — we can use the frequency domain 
instead. We first take the Fourier transform of 𝑓 to 
get 𝐹(𝑢) and the Fourier transform of ℎ to get 
𝐻(𝑢). Then, we multiply the two to get the Fourier 
transform 𝐺(𝑢), and then find its inverse Fourier 
transform to get 𝑔(𝑥).  

 

Why is this useful? As it turns out, there are very 
fast algorithms for finding the Fourier transform and the inverse Fourier transform. So, when we have a 
very large filter we want to convolve an image with, it is much cheaper and hence much more efficient 
to do the convolution in the frequency domain. In addition, it allows us to understand the effects of 
applying a filter. We can take any filter that we design in spatial domain and see what it really does to 
the frequencies in frequency domain, and vice versa. 
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Let us look at a very simple example — Gaussian 
smoothing in frequency domain. Imagine we have 
this signal shown on the left. As we can see, there 
is some noise in the signal which we wish to 
remove, or at least reduce. What we can do is 
convolve this signal in spatial domain using the 
Gaussian kernel shown on the right. Alternatively, 
we can achieve the same in frequency domain 
using the convolution theorem.  

 

 

 

We first take the Fourier transforms of the signal 
and the Gaussian kernel to get 𝐹(𝑢) and 𝐺(𝑢). We 
can see here that the signal that we are interested 
in is really the central peak in the bottom left plot, 
while the two little bumps off to the side are high 
frequency noise that we want to remove. As we 
previously discussed, the Fourier transform of a 
Gaussian is also a Gaussian. This Gaussian will act 
like a low-pass filter that removes the high 
frequencies.  

 

 

Now, remember that convolution in spatial domain 
is multiplication in frequency domain. Thus, what 
we are going to do is find the product of these two 
Fourier transforms. In the result, we see that the 
little bumps that correspond to noise are more or 
less gone. 
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If we find the inverse Fourier transform of the 
above result, we end up with this clean signal 
(black). For comparison the original signal (green) 
has been overlayed on the clean signal.  

 

 

 

 

 

 

 

Now, let us take a look at image filtering in 
frequency domain. Since images are two-
dimensional, we will first need to extend the 
Fourier transform from one dimension to two 
dimensions. 

 

 

 

 

 

 

 

Shown here is the expression for the two-
dimensional Fourier transform. Our image is 
𝑓(𝑥, 𝑦) where 𝑥 and 𝑦  are the spatial 
coordinates. We now also have two frequencies: 
𝑢 along the 𝑥-direction and 𝑣 along the 𝑦-
direction. A similar expression for the inverse 
Fourier transform is also shown at the bottom of 
the slide. In fact, the expressions for the Fourier 
transform and its inverse can be extended to any 
number of dimensions.  
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Since images are discrete, we need discrete forms 
of the expressions for the Fourier transform and 
its inverse, which are shown here. In this case, 𝑚 
and 𝑛 are used for the spatial coordinates and 𝑝 
and 𝑞 are used for the frequency coordinates. 
Using these expressions, we can now find the 
Fourier transform of any discrete image. 

 

 

 

 

 

Let us take a look at the Fourier transforms of a 
few simple images. While the Fourier transform 
includes both the magnitude and the phase, for 
our purposes here, we are going to ignore the 
phase. We will take the absolute of the 
magnitude for each frequency and, for 
visualization purposes, we will also take the log of 
that value in order to compress the wide range of 
magnitude values into a smaller range. The center 
of the magnitude of the transform (shown as an 
image) is the zero frequency, and the frequency 
increases with distance (in both direction) from 
the center.  

On the left is an image which is a cosine function in the 𝑥 direction. We know that the Fourier transform 
of a cosine is just one frequency — the frequency 𝑘 of the cosine function. So, we end up getting two 
dots on the horizontal axis in the Fourier transform, one at 𝑘 and one at -𝑘. Note that there is a third dot 
in the center at the zero frequency. This results from the fact that images cannot be negative. Let us say 
that the image intensity values are in the range from 0 to 256 and that the mean value of the cosine 
function is 128. Hence, the image has an average value of 128. This constant results in a non-zero value 
at the zero frequency.  

The image shown on the right is another cosine function, but one which is of higher frequency. Because 
it has a higher frequency, the three dots are now more separated from each other. If we take the average 
of the two cosine images in the top row, we get the image in the bottom row. It’s Fourier transform has 
five dots — we get the center dot again and two dots for each of the two cosines. 
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Let us now take a look at two simple binary 
images. For the top left image, the Fourier 
transform is shown on the top right. Once again, 
the intensity at each point in the transform image 
is proportional to the log of the magnitude of the 
transform value for the corresponding frequency. 
As we can see, we get very strong frequencies 
along two lines. That is because we have two pairs 
of strong edges and to re-create each edge we 
need frequencies in the direction perpendicular to 
the edge. The second image is that of a disk. The 
flat part of the disk produces some low 
frequencies. Again, the edges produce high frequencies. Note that since the image is rotationally 
symmetric, its Fourier transform is rotationally symmetric as well.  

 

Moving to more natural images, here we have a 
Rubik’s cube on the top. In this case, we see that 
we get three strong lines in the Fourier transform, 
indicating high frequencies along these lines. This 
is because the original image has edges along 
three dominant directions: vertical edges, 
horizontal edges, and slanted edges. In the case of 
the Mandrill, there is not really much that can be 
said. Since the image is complex it is hard to 
interpret its transform. As humans, we are not 
wired to easily interpret signals in frequency 
domain.  
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Here is a more complex image with lots of strong 
edges. The second example is an image which is 
just noise. In this case we see that we get very 
strong values in the Fourier transform, even for 
high frequencies. As we will see soon, this makes 
the removal of noise from images a challenging 
problem. 

 

 

 

 

 

Now let us take a look at some simple types of 
filtering. Taking the Fourier transform of the image 
of the Rubik’s cube, we get the same output we 
saw earlier. If we want to low-pass filter this 
image, we can simply cut out the outer parts of the 
Fourier transform. Taking the inverse Fourier 
transform, we see that we get a blurrier 
(smoother) version of the image. This image has 
some block artifacts, and that is because we have 
done a very harsh low-pass filtering — the sharp 
boundary of the cut-out region causes the 
artifacts.  

 

If we more severely low-pass filter this image, 
meaning we use a smaller cut-out region in 
frequency domain, as expected, we get an even 
blurrier image.  
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We can also do the opposite, which is high-pass filter the image. Here we have the Fourier transform 
again, but now we are going to eliminate the low frequencies and keep the high frequencies. When we 
do that, we see that we essentially remove all of the constant brightness regions in the image, leaving 
us with the regions where there is a rapid change in brightness. If we increase the severity of our high 
pass filtering by using the larger cutout on the right, we see that the edges and corners begin to appear 
more prominent. In the next lecture, we will develop methods for detecting edges and corners. The 
above examples hint at the fact that edge and corner detectors should be designed to high-pass filter 
images.  

 

We have talked previously about Gaussian smoothing, so now let us take a look at the same in frequency 
domain. Here we wish to convolve the Rubik’s cube image with a Gaussian kernel. As we discussed 
earlier, we can perform this convolution by taking the product of the Fourier transforms of the image 
and the Gaussian kernel. By applying the inverse Fourier transform to the product, we get the result of 

46

High Pass Filtering

log 9 I, K( N, O

47

High Pass Filtering

log 9 I, K( N, O

48

Gaussian Smoothing

!

K5

L

9

RM

G

* x

49

Gaussian Smoothing

!

K5

L

* x

9

RM

G



First Principles of Computer Vision                                                                                                                    Image Processing II 
 

FPCV-1-5 17 

the convolution, which is a blurred version of the original image. It is only slightly blurred because the 
Gaussian kernel in spatial domain is a very narrow kernel. If we choose a wider kernel (right slide), then 
we see that we end up getting an even blurrier image. 

 

In the above examples we have taken the Fourier 
transform of an image which gives us both the 
magnitude and the phase, but we have focused 
our attention on the magnitude. It turns out, 
however, that the phase is often more important 
in terms of preserving information than the 
magnitude. Let us demonstrate this. Shown here 
is an image of Marilyn Monroe, to which we have 
applied the Fourier transform to get the 
magnitude and the phase. The first thing we are 
going to do is just set all of the phases to zero 
while preserving the magnitudes and then apply 
the inverse Fourier transform. The result, shown in the middle, reveals that if we remove all the phase 
information, we end up with an image that is unrecognizable.  

Next, we are going to do the opposite. In this case, we are going to keep the phases, but change the 
magnitudes. We cannot set the magnitudes to zero, because then we would just get a black image. 
Instead, we take a bunch of natural images, find the Fourier transforms of those images, and take the 
average of the magnitudes of those images. We will use that average as the magnitudes and the original 
phases of the Marilyn Monroe image to construct a Fourier transform, and then apply the inverse Fourier 
transform to it. As seen, we get an image that is actually recognizable — although the magnitudes do 
not correspond to those of the original image, Monroe is clearly visible in this image. This simple 
demonstration tells us that the phase information is extremely important. In the bottom row is the same 
process applied to an image of Albert Einstein.  
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Importance of Phase
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Finally, let us talk about hybrid images. On the top 
left, we see an image of Marilyn Monroe. This 
image has already been low-pass filtered, meaning 
the high frequencies were cut out and the low 
frequencies were preserved, using the techniques 
that we just discussed. Therefore, we end up with 
this blurred version of the image. On the bottom 
left, we see an image of Albert Einstein where the 
opposite was done. The original image was high-
pass filtered, meaning the low frequencies were 
cut out and the high frequencies were preserved. 
Hence, we see the fine details exaggerated here. 
Then, we take an average of these two images and get what is called the “hybrid image.” When we look 
at this hybrid image from up close, we see mostly Albert Einstein. But if we walk away from the image, 
we see Marilyn Monroe. What is going on here is that when we are close to the display, we are able to 
see all the fine details (high frequencies) which are of Einstein. But when we are far away, the high 
frequencies in the image get even higher. At some distance, because of the point-spread function of the 
lens of the eye, these frequencies are filtered out and the image falling on the retina has mostly the low 
frequencies that belong to Marilyn Monroe. 

 

There are instances when, while we are taking an image, the image is inadvertently convolved with an 
undesirable function. An example of this is motion blur. While taking an image with your smartphone 
camera, the camera can shake a bit when you press the shoot button. In this case, the captured image 
is a sharp image of the scene convolved by a motion blur function. 

 

52

Deconvolution

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

53

Motion Blur

* =

Scene % $, A PSF ℎ $, A

I.4

(Camera Shake)
Image ? $, A

( *, V ∗ ℎ *, V = A *, V

51

Hybrid Images

[Oliva 2006] 

Low Freq Only

High Freq Only Hybrid (Sum) Image
I.8



First Principles of Computer Vision                                                                                                                    Image Processing II 
 

FPCV-1-5 19 

Thus far, we have been talking about how images 
can be convolved with filters to enhance their 
quality. In the case of motion blur, though, we 
have the opposite problem, where we have an 
image that has been unintentionally convolved 
with a function and we want to undo the effect of 
this convolution. That process is called 
deconvolution. It turns out that it is much easier to 
do in frequency domain using the Fourier 
transform.  

 
 
 

Shown here is the motion blur problem. Imagine 
we have an ideal image 𝑓 of the scene, but because 
of motion blur, we end up convolving this image 
with a point spread function ℎ. The result is a 
smeared image 𝑔. To recover the ideal image 𝑓 we 
need to know the point spread function ℎ. One 
way to estimate ℎ is by using an inertial 
measurement unit, or an IMU, embedded within 
the capture device (phone, tablet, or camera). The 
IMU includes accelerometers that can provide an 
estimate of the 3D motion of the camera during 
image capture, which can be used to estimate the 
point spread function ℎ. 

Let 𝑓$ be the image that you want to recover. We call it 𝑓$ and not 𝑓 because after the recovery process, 
𝑓$ may be slightly different than the original image. One way to approach the problem is to find the 
Fourier transforms 𝐻 and 𝐺	of ℎ and 𝑔, respectively, and then divide 𝐺 by 𝐻 and take the inverse Fourier 
transform to get 𝑓′. This is a pretty straightforward solution, so let us see how well it works. 
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Here we have our original captured image and our 
point spread function, which has been estimated 
using the IMU. We take the Fourier transform of 
the image and divide it by the Fourier transform of 
the point spread function. This yields the Fourier 
transform of our recovered image. The three 
Fourier transforms are shown in the top right slide. 
Now, if we take the inverse Fourier transform, we 
end up with our result, which is shown in the slide 
on the right. We see that this simple solution to 
deconvolution works quite well — the recovered 
image is of high quality.  

 

In our discussion above, we have ignored the 
effect of image noise. When we shake the camera, 
the optical image that is falling on the sensor itself 
is changing while the sensor is integrating the 
image. This is why the blur happens. Note that this 
blurred image, when it is read out of the camera, 
will include various types of noise, including, 
photon noise, read noise, quantization noise, 
thermal noise, and so on. The end result is a noisy 
motion blurred image. 
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How well does the above deconvolution process 
work when the image includes noise? Here is the 
same captured image, but with noise added to it. 
Shown next to it is our point spread function. 
Again, we find the Fourier transforms of both, 
divide them, and get the Fourier transform shown 
in the bottom left slide. If we take the inverse 
Fourier transform, we get an image that is 
overwhelmed by the noise (bottom right slide). 
Our simple deconvolution method amplifies the 
noise and drowns out the signal that we are 
looking for.  

 
Let us take a closer look at what is happening here. 
Remember that the Fourier transform 𝐻 of the 
point spread function of the motion blur could be 
zero for certain frequencies. Additionally, since it 
is a low-pass filter, it could just be zero for all 
frequencies above some value. For all frequencies 
for which the magnitude is zero, 𝐹′ is simply not 
recoverable because we would be performing 
division by zero. Furthermore, while the point 
spread function is a low-pass filter with low values 
for high frequencies, we know that noise in the 
captured image includes high values for high 
frequencies. As a result, the division stated above ends up amplifying the noise in the recovered image 
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𝑓$. That is why we end up getting the recovered image we did, which is basically salt and pepper noise 
over the entire image. 

 

We need some form of noise suppression during 
the deconvolution process, which brings us to 
Wiener deconvolution. Once again, we have that 
𝐹$ is equal to 𝐺 divided by 𝐻, except that this time, 
we are going to multiply it with this term 1 . In this 
term, NSR is a noise-to-signal ratio. It is, for any 
given frequency, the power of noise divided by the 
power of the signal itself. Admittedly, we do not 
know the power of the noise for any given 
frequency. We also do not know the signal itself for 
that frequency because that is what we are trying 
to recover. However, let us pretend for a moment 
that we do know these two values. Then, if the noise is high for that frequency, NSR is going to be high, 
which means that the entire term 1  is going to be small. In effect, the recovery of the signal for that 
frequency is attenuated. Also, if 𝐻 happens to be small because the motion blur kernel itself has low 
power for that frequency, then, once again, this factor 1  is going to be small. 

We have established here that if we know the Fourier transforms of both the noise and the signal that 
we are looking for, we can actually develop a recovery process in which the amplification of the noise 
during deconvolution is suppressed. 

 

Unfortunately, we do not know the Fourier 
transform of the noise nor the Fourier transform 
of the signal that we are trying to recover, thus NSR 
is unknown. It turns out, though, that if we use a 
carefully chosen constant value (𝜆) for NSR, we 
often obtain impressive deconvolution results. 
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Let’s take a look at how well Weiner deconvolution 
works. Shown here is our example image with 
noise added to it, as well as the point spread 
function due to motion blur. We end up recovering 
this image with an NSR equal to 0.002. While this 
is not a perfect image — it has some graininess and 
some ringing artifacts — but, it is clearly much 
sharper than the captured image. 

  

 

  

We know that the lens of the camera creates a continuous optical image on the image plane. On this 
image plane sits the image sensor, which converts the continuous image into a discrete digital image. In 
other words, the continuous image is sampled and, while this happens, we could lose information in the 
continuous image as well as introduce undesirable artifacts in the sampled image. So, the question is, 
how densely should we sample the continuous image to avoid both these phenomena.  

First, let us take a look at how we go from a continuous image to a digital or discrete image. In the right 
slide is shown a continuous image (shown as a one-dimensional signal), formed on the image plane by 
the lens. We are going to uniformly sample this image so as to get the discrete digital signal shown below.  
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Let us use a simple example to illustrate the 
significance of sampling. On the left is a sinusoid, 
and on the right is a higher frequency version of it. 
Let us sample both of these functions with the 
same sampling frequency. The sampled (discrete) 
signals are shown below. We can try to 
reconstructed the original signals from the discrete 
samples using interpolations. For our purposes 
here we use linear interpolation, where we simply 
connect consecutive discrete samples using 
straight lines. We see that, for the low frequency 
signal, the reconstructed signal looks close to the 
original signal. Not much damage has been done. However, for the higher frequency signal, we end up 
getting a flat reconstructed signal. All the information is lost in this case. This phenomenon is called 
aliasing and results from the fact that we have under-sampled the signal. In fact, aliasing can also 
introduce new frequencies in the reconstructed signal, which did not even exist in the original signal. It 
is in our best interest, therefore, to adequately sample the image and avoid aliasing. 

 

 

Let us look at how sampling manifests visually in 
images. On the left is an image of a brick wall that 
is well-sampled — everything looks fine in the 
image. When we under-sample the image, 
however, we end up with the ringing pattern seen 
in the image on the right. This is often referred to 
as a Moiré type of pattern. It is a common visual 
manifestation of aliasing. 
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Let us now develop a theory of sampling that 
reveals, for any given continuous signal, the 
sampling frequency needed to avoid aliasing. We 
start with a continuous signal and sample it by 
multiplying it with a train of impulse functions, or 
delta functions shown below. This function is 
called the Shah function.  

 

 

 

 

 

It turns out that the Fourier transform of the Shah function is also a Shah function, as shown in the left 
slide below. The period of this function — the distance between consecutive delta functions — is the 
inverse of the period of the original Shah function.  

Let us take a look at what happens in Fourier domain when we sample a continuous signal. In the right 
slide, we have our continuous function 𝑓 multiplied by the Shah function. We know that multiplication 
in spatial domain is equivalent to convolution in Fourier domain.  

Let us say that we have a continuous image with the trapezoid shaped Fourier transform 𝐹(𝑢) shown 
below. We convolve 𝐹(𝑢) with the transform of the Shah function, which is also a Shah function. Given 
the sifting property of the delta function, we know that if we convolve any function with a single delta 
function, we will end up reading out that function itself. Thus, if we convolve the function 𝐹(𝑢) with the 
Shah function, we obtain multiple copies of the original function 𝐹(𝑢). 
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Shown here are a few of the copies of 𝐹(𝑢).  In the 
example shown here, the copies are non-
overlapping. In this case, it is straightforward to 
exactly recover the original continuous signal 
𝑓(𝑥). To do so, we can simply cut out one of the 
copies and find the inverse Fourier transform of it. 
That is, we can actually recover the original 
continuous signal from the discrete signal, without 
any loss of information.  

 

 

 

However, if the copies overlap as shown here, we 
end up introducing new frequencies into the 
transform of the sampled signal. From the overlap 
region, there is no way to figure out what the 
original function was since there are many original 
signals that could have created the same overlap 
region. The creation of these new frequencies in 
the overlap regions is what is referred to as 
aliasing. It produces undesirable artifacts in 
sampled images. 

 

 

That brings us to the Nyquist theorem, which tells 
us when we have aliasing and when we do not. 
Note that the distance between the copies of 𝐹(𝑢)  
is one over the period 𝑥%	of the sampling function 
𝑠(𝑥). Let us assume that the maximum non-zero 
frequency in the original continuous image is 
𝑢&'(. Observe from the figure shown here that 
the overlap does not occur when 𝑢&'( is lesser or 
equal to 1 2𝑥!$ , which is called the Nyquist 

frequency. When this condition is satisfied, the 
signal is well-sampled and there is no aliasing or 
loss of information due to sampling. In this case, 
we can recover the original continuous signal by simply multiplying  𝐹)(𝑢) with a rectangular function 
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𝐶(𝑢) to cut out a single copy of 𝐹(𝑢). By applying the inverse Fourier transform to the cut-out function, 
we get the original continuous signal  𝑓(𝑥). 

 

Aliasing, or under-sampling, produces a variety of 
artifacts in images. That signal arriving at the 
image sensor depends on the scene that we 
expose the camera to. For most natural scenes, the 
Fourier Transform of the scene looks like the plot 
shown on the left — 𝐹(𝑢) falls off as a function of 
𝑢, the frequency. Let us assume that the maximum 
non-zero frequency that falls on the image sensor 
is 𝑢&'(. To avoid aliasing, we need to make sure 
that the sensor samples the image at a frequency 
that is at least two times 𝑢&'(. On the right is 
another example of aliasing, where on the curved 
wall we can see the ringing (Moiré) effects we saw earlier.  Can a camera be designed such that it can 
always avoid aliasing?  

 

One factor that helps us mitigate aliasing is the 
inherent structure of the image sensor itself. 
Remember that each pixel on the image sensor has 
a sensing area associated with it, as shown here. 
Thus, we can model the discrete image as the 
continuous image convolved with a box filter 
(where the box has the size of a pixel). Then, that 
image is sampled to produce the final discrete 
image. The convolution with the box filter results 
in low-pass filtering of the image. It serves to cut 
out the highest frequencies in the continuous 
image. In short, the finite area of each pixel helps 
reduce aliasing.   

One way to entirely avoid aliasing is to use an optical filter that sits on top of the image sensor (see right 
image). The filter is designed to cut out high frequencies, or specifically those frequencies that are above 
the Nyquist frequency. In this case, the captured image with be free of aliasing, irrespective of the scene. 

77

Aliasing in Digital Imaging

Aliasing occurs when imaging a scene (signal) that has 
frequencies above the image sensor’s Nyquist Frequency

9 (

&&)*+−&)*+
Typical Power Spectrum 

of Natural Scenes

I.5

Aliasing artifacts usually occur in 
the form of Moiré patterns

How do sensors combat aliasing?

78

Minimizing the Effects of Aliasing

Band Limit: Clip the signal above the Nyquist frequency.

Effectively, “blur” the scene before sampling.

Use optical low-pass filter
(anti-aliasing filter)

Pixels are area-samplers
(box-averaging filter)

I.6 I.7

Sensors use two strategies.

low-pass filter



First Principles of Computer Vision                                                                                                                    Image Processing II 
 

FPCV-1-5 28 

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription, 
editing and proofreading. 

 

 

 

 

  
 

79

References and Credits

Topic: Image Processing II, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

80

References: Textbooks

Robot Vision (Chapter 6 and 7)
Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 7)
Forsyth, D and Ponce, J., Prentice Hall

Digital Image Processing (Chapter 3)
González, R and Woods, R., Prentice Hall

Computer Vision: Algorithms and Applications (Chapter 3) 
Szeliski, R., Springer 

The Fourier Transform and Its Applications 
Bracewell, R. N., Mc-Graw Hill

81

References: Papers

[Oppenheim 1983] A. V. Oppenheim. J. S. Lim, and S. R. Curtis, 
“Signal synthesis and reconstruction from partial Fourier-domain 
information,” Journal of the Optical Society of America, Vol. 72, page 
1413, November 1983. 

[Oliva 2006] A. Oliva, A. Toralba, and P. G. Schyns, “Hybrid Images,” 
ACM Transactions on Graphics, Vol. 25, No. 3, pages 527-532, 2006.

82

Image Credits

I.1    http://en.wikipedia.org/wiki/File:Fourier2.jpg. Public Domain.

I.2    MathWorks.

I.4    Licensed under CC BY_SA 3.0.

I.5    http://www.svi.nl/wikiimg/StFargeaux_kasteel_buiten1_aliased.jpg. 

Huygens software: Scientific Volume Imaging B.V. Used with permission.

I.6    http://hamamatsu.magnet.fsu.edu/articles/microlensarray.html.

I.7    Astrosurf. Used with permission.

I.8    https://en.wikipedia.org/wiki/Hybrid_image.



First Principles of Computer Vision                                                                                                                    Image Processing 2 

FPCV-1-5  

References 

 

[Bracewell 1963] The Fourier Transform and Its Applications, Bracewell, R. N., Mc-Graw Hill, 1963. 

 

[Horn 1986] Robot Vision, Horn, B. K. P., MIT Press, 1986. 

 

[Forsyth and Ponce 2003] Computer Vision: A Modern Approach, Forsyth, D and Ponce, J., Prentice Hall, 

2003 

 

[González and Woods 2009] Digital Image Processing, González, R and Woods, R., Prentice Hall, 2009. 

 

[Oppenheim 1983] A. V. Oppenheim. J. S. Lim, and S. R. Curtis, “Signal synthesis and reconstruction from 

partial Fourier-domain information,” Journal of the Optical Society of America, Vol. 72, page 1413, 

November 1983.  

 

[Oliva 2006] A. Oliva, A. Toralba, and P. G. Schyns, “Hybrid Images,” ACM Transactions on Graphics, Vol. 

25, No. 3, pages 527-532, 2006. 

 

[Nayar 2022B] Image Formation, Nayar, S. K., Monograph FPCV-1-1, First Principles of Computer Vision, 

Columbia University, New York, February 2022. 

 

[Nayar 2022C] Image Sensing, Nayar, S. K., Monograph FPCV-1-2, First Principles of Computer Vision, 

Columbia University, New York, February 2022. 

 

[Nayar 2022D] Binary Images, Nayar, S. K., Monograph FPCV-1-3, First Principles of Computer Vision, 

Columbia University, New York, March 2022. 

 

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision, 

Columbia University, New York, March 2022. 

 

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision, 

Columbia University, New York, March 2022. 

 

[Nayar 2022G] Edge Detection, Nayar, S. K., Monograph FPCV-2-1, First Principles of Computer Vision, 

Columbia University, New York, May 2022. 

 

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer 

Vision, Columbia University, New York, June 2022. 

 

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs


First Principles of Computer Vision                                                                                                                    Image Processing 2 

FPCV-1-5  

[Nayar 2022I] SIFT Detector, Nayar, S. K., Monograph FPCV-2-3, First Principles of Computer Vision, 

Columbia University, New York, August 2022. 

 

https://fpcv.cs.columbia.edu/Monographs

	Image Processing 2 FPCV-1-5
	Image Processing 2 FPCV-1-5
	Image Processing 2 SN 03-30-2022 COVER
	Image Processing 2 SN 03-30-2022 FINAL


	References Processing  2

