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This is the first of two lectures devoted to the topic of image processing. In image processing, we are 
given an image which we want to transform into one that is easier to analyze. Perhaps we have an image 
of a scene at night time, and it happens to be grainy or noisy due to the lack of light. We want to be able 
to remove the noise from the image. Or, in an image of a fast-moving object, the object gets smeared, 
an effect called motion blur. We want to be able to remove this smearing and create a crisp image of the 
object. In a different scenario, an object of interest may lie outside the depth of field while it is imaged, 
causing it to be defocus blurred. We want to be able to remove the blur so that the object is in focus. All 
of these image enhancements can be achieved using image processing. 

We may also be interested in recovering information from the image that is most salient to the vision 
problem we are trying to solve. This may involve the detection of features such as edges and corners. A 
wide variety of features can be detected using image processing. Image processing tools lie under the 
hood in any computer vision system.  

We will start with pixel processing, the simplest type of image processing. This just involves looking at 
the brightness or the color of each pixel in the image and transforming it using some predetermined 
mapping. We are not really concerned about where the pixel lies in the image. Next, we will talk about 
linear shift invariant systems. This is a very important class of systems in image processing. Many 
operations that are applied to images are linear and shift invariant, and any system that is linear and 
shift invariant can be implemented as a convolution. We will look at what convolution is and discuss its 
properties. Then, we will develop a suite of simple linear image filters that can be applied using 
convolutions. We will take a look at what kinds of modification we can make to an image using linear 
filters.  

We will argue that there are certain image modifications that cannot be done using convolution. That 
takes us to the class of nonlinear image filters, which can be viewed as more algorithmic in nature. 
Looking at the values of both a pixel and its neighborhood, we apply simple algorithms to come up with 
the output value of that pixel. Finally, we will talk about the important problem of template matching. 
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Given a certain pattern, we want to find everywhere it appears in an image. This problem can be solved 
using correlation, which is related to the concept of convolution. 

 

Let us start by defining an image as a function f(x,y), where f is the intensity at the spatial coordinates 
(x,y). If we have a color image, there will be multiple channels – red, green, and blue – each of which will 
be a function.  

 

 

Pixel processing, or point processing, is the 
simplest type of processing we can apply to an 
image. Taking a pixel, we can simply transform its 
brightness value based on the value itself, and 
independent of the location of the pixel or the 
values of other pixels in the image. It is basically a 
mapping of one brightness value to another 
brightness value or one color to another color.  
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Here are some simple things we can do with pixel 
processing. Consider the color image shown on the 
left. If we wish to darken it, we can subtract some 
number from each one of the three channels. If we 
wish to lighten it, we can add some number to each 
channel. We can also invert the image. Let us say it 
is an 8-bit image. In each one of its three channels, 
we take 255 minus the current value to obtain the 
“negative” of the image shown at the bottom. 

 

 

 

We can also lower the contrast of the image, by 
compressing down the range of brightness values 
by simply dividing f by, say, 2. Or, we can increase 
the contrast by multiplying f by 2. When increasing 
the contrast, we may get values beyond the 
dynamic range of the image itself, which results in 
saturation (the bright white regions). We can also 
convert a color image to a grayscale (brightness) 
image, by taking a linear combination of the three 
color values at each pixel. Pixel processing is a very 
simple form of processing and we discuss it here 
primarily for the sake of completeness. 

 

Now let us talk about the important concept of 
linear shift invariant systems, or LSIS. The study of 
this class of systems is important because it leads 
to many useful image processing algorithms.  We 
will present this concept using one-dimensional 
signals before extending to multiple dimensions. 
Here is an LSIS system with input f(x) and output 
g(x).  
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The first property of an LSIS is that it is linear. 
Imagine we have the system here where when we 
feed it an input f1 we get an output g1, and when 
we feed it f2 we get g2. If it is a linear system, some 
linear combination of inputs, such as 𝛼𝑓1+ 𝛽𝑓2, 
should yield the same linear combination of the 
corresponding outputs, 𝛼𝑔1+𝛽𝑔2. If this condition 
is satisfied, we say that the system is linear. 

 

 

 

 

Now, let us take a look at shift invariance. Again, 
let us say that the input is f(x) and that the 
corresponding output is g(x). In the case of a shift 
invariant system, if we shift the input by a, then 
the output will also be shifted by a. Any system 
that satisfies linearity and shift invariance is a 
linear shift invariant system.  

 

 

 

 

 

Let us take a look at why linear shift invariant 
systems are relevant in imaging and computer 
vision. Shown here is an ideal lens system, which 
forms a focused image f on the image plane. If we 
move the image plane back, what forms instead is 
a defocused image g. Let us not be concerned with 
the change in magnification between f and g, as we 
can always correct for it. Then, we see that the 
relationship between f and g can be described by 
a linear shift invariant system. If we increase the 
brightness of the scene, the brightness of the 
focused image is going to increase linearly, as is the 
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brightness of the defocused image. If we shift an object in the scene, its image is going to shift in the 
focused image, and its defocused image is also going to shift by the same amount. The relationship 
between f and g is therefore linear and shift invariant. This is an example of how a linear shift invariant 
system might manifest in the case of an imaging system. 

 

 

Now let us talk about the important concept of 
convolution. Irrespective of whether you end up 
working in computer vision or not, this concept is 
going to pop up sooner or later, so it is worth 
paying close attention to. Shown here is the 
mathematical definition of convolution, which is 
denoted by an asterisk. We have f(x) convolved 
with h(x) to get the result g(x). To gain some 
geometrical insight into the mathematical 
definition of convolution, we will first express f and 
g as functions of	𝜏, as shown below. 

 

 

We take h(𝜏) and flip it about the vertical axis to get h(-𝜏), as shown in the left slide. We shift h(-𝜏) by x 
to get h(x-	𝜏), which is then overlaid on f(𝜏), as shown in the right slide. 
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Now we take the product f(𝜏)h(x-	𝜏) of these two 
overlapping functions and integrate it from minus 
infinity to infinity. This gives us a single number, 
which is the result of the convolution at the point 
x.  

 

 

 

 

 

 

 

To find the entire function g(x), we would flip the 
function h(𝜏) and then move it to minus infinity, 
that is the shift x in h(x-	𝜏) equals minus infinity.  
We then vary the shift from minus infinity to plus 
infinity by sliding the function h(-𝜏) over f(𝜏) from 
left to right. For each shift value x we find the 
product of the two functions and then the integral 
of the product. This gives us the entire function 
g(x), which is the result of the convolution.  

It turns out that any linear shift invariant system is 
performing a convolution, and whenever we are 
doing a convolution, that means we have a linear 
shift invariant system. We will prove this shortly, but let us first take a look at a couple of very simple 
examples of convolution. 
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Let us say we want to convolve the rectangle on 
the left with the identical rectangle on the right. 
We first flip the function h(x). In this particular 
case, it is going to look exactly the same – a 
rectangular function. Then, we take the flipped 
h(x) and slide it over f(x) from left to right, and for 
each location of the sliding function we find the 
integral of the product of the two functions. As we 
move from minus infinity, most of the time the 
product of the two functions is going to be zero. 
But at some point, the two rectangles will touch 
each other, which happens at x = -2. Now, as one 
rectangle continues to slide over the other, the overlap between the two rectangles increases, and the 
area under the product of the two functions increases with x. Starting with an overlap area of zero at x 
= -2, the area increases linearly until the two rectangles sit exactly on top of each other. At this point, we 
can see that the product is the rectangle itself, and the area under it is going to be equal to 2 because 
each rectangle has a width of 2 and a height of 1. Then, one rectangle slides away from the other and 
the result of the convolution decreases linearly until it goes to zero at x = 2. The end result of the 
convolution is therefore a triangle. 

 

Let us take a look at a more interesting case. Here 
we have a rectangle again, but now we are going 
to convolve it with a triangular function. We flip 
the triangle, move it to minus infinity, and slide it 
from left to right. As the triangle slides over the 
rectangle, the area of the overlapping region will 
increase as before. However, the overlapping 
region is actually a triangle in this case, and both 
the base and the height of the triangle increase 
linearly with the shift x. Thus, the area of the 
overlap region is going to be a quadratic function 
of x. As in the previous example, since both the 
original functions are symmetric with respect to x = 0, the result of the convolution will also be 
symmetric. 
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As shown above, in the case of simple functions, 
we can visualize how convolution works. When we 
get to more complicated functions, as with most 
things mathematical, it gets harder to visualize 
what the result is going to be. However, there are 
several online convolution tools that you can use 
to create new functions and see what happens 
when you convolve them with each other. Here is 
the link to one such interactive tool. 

 

 

 

We stated earlier that convolution implies linear 
shift invariance. Let us take a look at why this is the 
case. What we need to show is that when 
performing a convolution, the result is a function 
which satisfies linearity and shift invariance. 
Suppose we have that f1 convolved with h gives us 
g1 and f2 convolved with h gives us g2. If we take a 
linear combination of f1 and f2 and convolve it with 
h, we can rewrite it in terms of the sum of two 
integrals with the constants 𝛼 and 𝛽 outside the 
two integrals. Note that the first integral is g1 and 
the second integral is g2, and so the result is simply 
𝛼g1(x)+𝛽g2(x). This proves that convolution is linear. 

 
Now let us examine whether convolution is shift 
invariant. This time, we will shift the input function 
f(𝜏) in the expression for convolution by a to get 
f(𝜏-a). Next, we will use the substitution 𝜇 = 𝜏-a to 
get this expression 1 . The limits of the integral 
remain the same – minus infinity to infinity – 
because a is a finite number. This integral is simply 
g(x-a). In shifting the input by a, the output is also 
shifted by a, so we see that convolution is shift 
invariant. Since convolution is both linear and shift 
invariant, convolution is a linear shift invariant 
system.  
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Let us assume that we are given a system that is 
linear and shift invariant. We know that it is doing 
a convolution, but we do not know what it is 
convolving the input with. Let us assume the 
system is a black box that we cannot “open up” to 
determine what the function h(x) is that the input 
is being convolved with. The question that we are 
asking is whether there is a specific input we could 
apply to the system such that its output is h(x)?  

 

 

 

It turns out that the input we are looking for is the 
unit impulse function. We referred to it as a delta 
function in a previous lecture. The unit impulse 
function is infinitesimally thin and infinitely tall. Its 
width is 2𝜀 and its height is 1 2𝜀$   , where 𝜀 tends to 
zero. Its area is equal to one. 

If we convolve a function b(x) with a unit impulse 
function, we get the expression shown at the 
bottom. To visualize what happens in this case, 
imagine we take the unit impulse function, flip it, 
move it to minus infinity, and slide it over b(x) 
while finding the integral of the product of the two 
functions at each point. Since we are integrating over an infinitesimal width (the width of the impulse 
function) and the area of the impulse function is one, we simply end up reading out the values of the 
function b(x). Thus, any function convolved with the unit impulse function is the original function itself. 
This is called the sifting property of the unit impulse function.  
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Thus, given a system – a black box – that is a linear 
shift invariant system, meaning it is applying a 
convolution with some unknown function h, all we 
need to do is hit it with the unit impulse function 
as the input and the output will be h. h is therefore 
often referred to as the impulse response of the 
system. For any linear shift invariant system, the 
impulse response fully describes the system. 

 

 

 

 

Let us take a look at the impulse response of a real 
imaging system – the human eye. We know the eye 
has a lens which forms an image on the retina. We 
want to know the relationship between the perfect 
image of the scene — a focused image — and the 
image that is received by the retina. Since we now 
know that lenses are linear and shift invariant, we 
want to find the impulse response of the human 
eye. This system is two-dimensional since the 
retina is two-dimensional. Thus, if we can input 
into the eye a two-dimensional impulse function, 
𝛿(x,y), we can measure its impulse response h(x,y). 
What does it mean to actually stimulate the eye with an impulse function? In this case, the impulse 
function would be a tiny point source of light in the scene. An example of such a source is a distant star. 
The image that is formed on the retina is then the impulse response of the eye.  

In the case of an imaging system, the impulse response is often referred to as the point spread function 
of the system. Shown here is the point spread function of the human eye that has been experimentally 
measured. Since the retina is curved, the function is described using angles rather than Cartesian 
coordinates. We can see that the impulse response of the eye is narrow — by about 0.05 degrees, the 
response has already fallen off quite a bit. That is why, when our eye is not defective, we see fairly sharp 
images of scenes.  
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Let us discuss a few properties of convolution. 
Convolutions are commutative and associative, 
and these two properties enable us to simplify 
systems that perform a sequence of convolutions. 
Let us take the simple case of two convolutions 
performed in sequence. We call such a system a 
cascaded system. In the example shown here, the 
system performs a convolution with h1, followed 
by a convolution with h2.  Rather than performing 
these two convolutions in sequence, we can 
actually convolve h1 and h2 to create a single 
impulse response that we then convolve the input 
with to get the output. Note that we could convolve h1 with h2 or h2 with h1 to obtain the new impulse 
response as per the commutative property of convolution. 

 

 

We described convolution using one-dimensional 
signals, but we know that images are two-
dimensional signals. The input would then be a 
two-dimensional function f(x,y), and the impulse 
response would also be a two-dimensional 
function h(x,y). The two-dimensional convolution 
is defined by this expression 1 . Note that in this 
case one of the two functions needs to be flipped 
twice, once about each of its two dimensions. In 
fact, the definition for convolution can be 
generalized to any number of dimensions. In the 
case of medical imaging for instance, convolutions 
are often applied to three-dimensional data measured using ultrasound, computer tomography, 
magnetic resonance, etc.   
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Now that we understand what a linear shift invariant system is, and that it is just performing a 
convolution, we can develop some very simple linear image filters that use convolution to enhance 
images or extract information from them.  
 
First, let us take a look at how convolution works in the case of discrete images. The definition of 
convolution in discrete domain is given by this expression 1 . The input discrete image is f[i,j] where i is 
the row and j is the column, and the size of the image is M by N.  f[i,j] is being convolved with an impulse 
response h[i,j] and the output is g[i,j], which is also an image of the same size as f[i,j]. In image processing, 
the impulse response h[i,j] is referred to as a mask, a kernel, or a filter. We will use these terms 
interchangeably. Since this is a two-dimensional convolution, the flip of the filter happens twice, once 
with respect to i and then with respect to j.  
 
There is simple way to visualize this two-dimensional convolution. Let us assume the filter is small 
compared to the input image. Then, the value of the output image g at pixel location [i,j] is obtained by 
flipping the filter h twice, overlaying it on the image f  with the center of the filter at [i,j], and finding the 
sum of the product of the pixel values of the image and the filter in the overlap region. This process is 
repeated for all pixels in the input image to get the output image g. You can imagine that writing a 
program to perform convolution is quite straightforward.  
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Now, let us discuss a practical problem we face 
when applying convolution to images of finite size. 
Here you see an image being convolved with a 
small filter. When we apply the filter to the top left 
corner of the image, we see that a good part of the 
mask lies outside the image. How do we deal with 
this issue? Well, there is no principled way to 
address this problem, also called the border 
problem. However, there are a few fixes that are 
used in practice. First, we could choose not to 
apply the filter to border pixels — it is only applied 
to pixels in the input image for which the filter lies 
completely inside the image. In this case, the output image would be smaller than the input image — 
the output image will lose a few rows and columns along its border. Another approach is to pad the input 
image with a constant value on the outside to create some extra rows and columns. The constant value 
could, for example, be the average brightness of the input image. Finally, we could pad the image with 
information that is essentially a reflection of the information inside the image. In this case, the added 
rows and columns will have content that is similar to that within the image. All of these approaches are 
hacks as we are trying to make up for the fact that we do not have any measurements in the region just 
outside the image.  

 

 

Let us take a look at some examples of linear image 
filtering, that is, convolution applied to an image. 
On the left is an input image that we will convolve 
with the impulse (delta) function. Due to the sifting 
property of the impulse function, the output image 
in this case is exactly the same as the input image.  
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Now let us do something a bit more interesting. 
We once again have a filter that is an impulse 
function, but in this case impulse function is 
located at the bottom right corner of the filter. At 
first glance, we might guess that the image is going 
to shift up and to the left. However, after the two 
flips of the filter, the impulse function is going to 
end up in the top left corner. Thus, the output 
image is going to be the input image shifted down 
and to the right.  

 

 

 

Now let us take a look at another example, which 
is the box filter. In the example shown here, it is a 
square with 5x5 pixels where each pixel has a 
constant value of 1. The output image is going to 
be a smooth (blurred) version of the input image 
because each pixel in the output image will be the 
aggregate of 5x5 or 25 pixels in the input image. In 
addition, the output image is going to be really 
bright, around 25 times brighter than the input 
image. Let us say the images are represented using 
eight bits of brightness information at each pixel. 
That means the image has brightness values 
between 0 to 255. After the convolution, the output image is going have pixels with brightness values 
well beyond that range. Typically, all values above 255 will be “clipped” to 255 before displaying the 
image, which causes the image to appear washed out, or saturated.  
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In order to avoid saturation, when we design a box 
filter, we need to make sure that the values used 
inside the box are normalized by the area of the 
box itself. In the case of our 5x5 filter, let us say 
that at each pixel we have the value 1/25 instead 
of 1. Now we see that we get an image that is 
indeed smooth, but at the same time it has the 
same average brightness as the input itself. 

 

 

 

 

Now let us take a closer look at the box filter. Here 
is a box filter that is bigger (21x21), and it gives an 
output that is smoother than the 5x5 box filter. But 
if we look closely at this image, we see that it has 
some “blocky” artifacts. We can see that these 
artifacts line up with the vertical and horizontal 
axes. This is because the box filter has hard vertical 
and horizontal edges on its boundary. 

 

 

 

 

To resolve this, we might want to use a fuzzy filter. 
In this case, we have a maximum value in the 
center and surrounding values which drop as we 
move away from the center. The filter is also 
rotationally symmetric. While the output image is 
smooth as in the case of the box filter, the blocky 
artifacts are gone. The result is a more natural 
looking image. 
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The fuzzy filter can be formalized using the 
Gaussian function. The Gaussian function is 
defined here in discrete domain 1 . The larger the 
value of 𝜎, the broader the Gaussian is. Note that, 
irrespective of how broad the Gaussian is, since it 
is normalized by 2𝜋𝜎2 the area under the Gaussian 
is always the same irrespective of the size of filter. 

So, what size filter should we use? This is an 
interesting question because the Gaussian 
function goes to zero only at infinity. Clearly, we do 
not want to use a filter that is infinite in extent.  As 
a rule of thumb, we can say that if the filter is KxK, 
then K should be roughly equal to 2𝜋𝜎 as that would capture most of the energy in the Gaussian.  

Shown here are Gaussian filters with different sizes, that is, different 𝜎s. For visualization purposes, we 
are showing them as having equal brightness at the center, but in reality the filter with 𝜎=5 would be 
much dimmer because there are a lot more pixels in it. 

Let us look at the effect of changing the width of the Gaussian filter. When we convolve f(x,y) with the 
Gaussian with 𝜎=4, we get a little bit of smoothing. When we increase 𝜎	to 16, we get more smoothing 
or blurring without any undesirable artifacts being introduced in the output image.  
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Gaussian Smoothing
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One of the things that makes the Gaussian filter 
attractive is the fact that it is separable. Here we 
have the output g[i,j], which is the input image 
convolved with the Gaussian filter. The exponent 
of the Gaussian can be split into two exponents, 
one with m only, and the other with n only. As a 
result, we can move one of the summations 
forward to end up with two terms:  one which 
sums over m and a second which sums over n. This 
implies that the input image is being convolved 
with a (horizontal) one-dimensional Gaussian of 
width K, and that resulting image is again 
convolved with a second (vertical) one-dimensional Gaussian of height K. The end result is exactly equal 
to convolving the image f with the original KxK two-dimensional Gaussian filter. This is made possible by 
the fact that the two-dimensional Gaussian function is separable, in that, it can be written as the product 
of two one-dimensional Gaussian functions. We can exploit this to dramatically reduce the 
computational cost of filtering the image.  

 

The cost of doing a convolution will depend on the 
number of pixels in the image, because we are 
repeating the same process at every pixel. So, let 
us take a look at the cost of computing the 
convolution result at a single pixel. Consider the 
KxK Gaussian filter shown here, centered at a 
particular pixel. At that pixel, we would need to do 
K2 multiplications and then K2-1 additions to get 
the final result. Instead, if we use the two 
component one-dimensional filters of length K, 
each will require K multiplications and K-1 
additions, so we end up with just 2K 
multiplications and 2(K-1) additions. We see that the use of separable filters is much cheaper for larger 
values of K. Thus, if we are convolving an image with a mask that happens to be separable, we would 
benefit from using the component filters, especially for larger masks.  
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Gaussian Smoothing is Separable
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We have seen what we can do with convolution 
and linear filters, but there are situations when we 
may want to depart from linear filtering and 
develop nonlinear filters. These filters are more 
algorithmic in nature and cannot be implemented 
as convolutions.  

 

 

 

 

 

 

Let us start with the problem of smoothing an 
image to remove noise. Shown here is an image 
which has some salt and pepper noise in it. If we 
simply apply a fuzzy filter such as a Gaussian, we 
can see that the noise is slightly diminished. 
However, what we are really doing is smearing the 
noise out and are not really removing it. At the 
same time, we are also blurring out of the edges of 
the coins and losing some of the details within the 
coins. 

 

 

 

For noise removal, we take a different approach 
called median filtering. For each pixel, we take all 
the intensity values (including its own value) within 
a KxK window centered at the pixel and sort them. 
We then find the middle value of the sorted list, 
which is the median of all the intensity values. We 
simply use the median as the filtered output for 
the pixel.  

When we apply median filtering with even a small 
filter, say K=3, we see that the result is a significant 
improvement over the original image. Almost all of 
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the noise is gone. We do lose a little bit of detail on the coins, but the result is quite impressive given 
that the mask is very small. Note that we cannot implement a median filter using convolution — the 
sorting step makes it a nonlinear method.  

 

Let us look at an image with more realistic noise in 
it, which means that literally every pixel is affected 
by noise. This is the type of noise that typically 
appears when an image is taken under low-light 
conditions. In this case, we need to use a bigger 
median filter. When we do that, the noise is 
reduced, but the price that we pay is that the 
details on the coins are also lost. If we go to an 
even bigger filter, we do better in terms of the 
noise reduction, but even more of the details are 
gone. Can we come up with a filter for removing 
noise that does better than both Gaussian 
smoothing and median filtering?  

 

Let us revisit Gaussian smoothing. Shown here is a 
grainy image to which we are applying a Gaussian 
convolution with a fairly large kernel. In the case of 
the flat region shown on the bottom, we do 
extremely well. In the case of the other two 
regions, however, important details are washed 
out.  

The reason this happens is because we are using 
the same filter at all pixels, independent of the 
content around the pixel itself. We want to design 
a filter that can change with the local structure of 
the image, that is, what the neighborhood of a 
pixel looks like. We are essentially willing to create a new filter for each pixel.  

 

 

45

Median Filtering

Image with Noise Median Filtered
Image (B = 11)

Not Effective when Image Noise is not a Simple
Salt and Pepper Noise.

Larger $ causes blurring of image detail

46

Revisiting Gaussian Smoothing

Same Gaussian kernel is used everywhere.
Blurs across edges.

Input Output

∗

∗

∗

=

=

=I.6



First Principles of Computer Vision                                                                                                                     Image Processing I 
 

 

FPCV-1-4 20 

Let us say we want to apply Gaussian smoothing, 
but we are going apply the Gaussian filter to only 
those pixels in the neighborhood of the center 
pixel that have intensities that are similar to that 
of the center pixel. That is, we ignore pixels in the 
neighborhood that are significantly different in 
intensity from that of the center pixel. In doing so, 
we are only going to use a part of the Gaussian 
function. The resulting filters for the three image 
patches shown here can be seen in the middle. 
When we do this, we need to normalize each filter 
to account for the fact that it is being applied to a 
smaller set of pixels so that the area under the new filter is one.  

This simple modification to Gaussian smoothing yields impressive results. For all the three patches 
shown here, we see that the output patches include all the relevant details while the noise is significantly 
reduced.  

 

 

We would like to come up with a principled way of 
implementing the above idea of modifying 
Gaussian smoothing. That brings us to the bilateral 
filter. The expression shown here is just the 
convolution of an image with a spatial Gaussian; it 
is just Gaussian smoothing. Consider the section of 
the input image in the right corner, shown here as 
a height map where the height is proportional to 
image brightness. It is a step edge that is corrupted 
by noise. We would like to remove the noise while 
preserving the edge. When the Gaussian filter is 
applied to the image patch with its center at the 
image pixel (i,j), we see that both the neighborhood pixels shown here (dots) will be multiplied by the 
same filter value as they are equidistant from the center pixel. While it makes sense for the 
neighborhood pixel on the same side of the edge as the center pixel to be multiplied by a large value, 
we would like the pixel on the other side of the edge to contribute less to the final output. The effect of 
applying a Gaussian that is independent of the content around the pixel is that, while noise is reduced, 
the output image is blurred. On the left we see the output where the edge in the original image is washed 
out.    
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We can fix this problem by adding another term 
called the brightness Gaussian, which takes the 
difference between the brightness of the center 
pixel and its neighbor. If the difference is small, it 
will have a large value, while if it is large, it will 
have a low value. The final filter shown at the 
bottom takes the shape of a Gaussian on the side 
of edge that the center pixel lies on, but has low 
values on the other side. Note that this filter will 
vary from one pixel to the next — in effect, the 
filter adapts to the image content it is applied to. 
The result of applying this filter to the noisy edge 
on the right is shown on the left — the noise has been reduced substantially while the edge has been 
preserved.  

Bilateral filtering is a popular method that is widely used in image processing. It should be noted that it 
cannot be implemented as a convolution as the filter must be recomputed for each pixel in the image.  

 

There is an important technicality related to the 
bilateral filter we have set aside, which is the 
normalization factor Wsb. This factor is crucial 
because, irrespective of the shape or complexity of 
the filter, we want to make sure that the energy in 
the filter is always equal to one. In other words, the 
normalization factor Wsb needs to be recomputed 
for each pixel in the input image. This is done by 
simply taking the sum over the extent of the filter 
of the product of the brightness Gaussian and the 
spatial Gaussian.  
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Let us take a look at how the bilateral filter 
performs on real images. The original image on the 
left has some noise in it. We want to remove this 
noise without losing the details of important 
features, such as the eyes and the hair. If we apply 
Gaussian smoothing with a sigma equal to 2, we 
see that the result is a slightly blurred image in 
which the noise has not been entirely removed. 
Now, if we use a bilateral filter with a sigma for the 
spatial Gaussian of 2 and a sigma for the brightness 
Gaussian of 10, we get a very nice result. Virtually 
all of the noise has been removed and, at the same 
time, the spatial features have been well preserved.  

 

Now, let’s see what happens when we change the 
two sigma values of the bilateral filter. If we 
increase the spatial sigma to 4, we get a much 
blurrier image in the case of Gaussian smoothing, 
while we still get a fairly sharp image in the case of 
bilateral filtering.  

 

 

 

 

 

If we increase the spatial sigma even further to 8, 
we see that we start to get a “painterly” effect 
where the shaded regions start to get flatter. This 
adds a watercolor-like look to the final image, 
which is especially apparent in the hair region. Still, 
the output from bilateral filtering is much nicer 
than that from just pure Gaussian smoothing with 
the same spatial sigma value. 
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So far, we have kept the brightness sigma constant 
at a value of 10. What happens when we change 
this value? With a spatial sigma of 6 and a 
brightness sigma of 10, we get the image on the 
left. If we increase the brightness sigma to 20, we 
get the image shown in the center. This image has 
a bit more blurring. However, when we increase 
the brightness sigma to a very large value, the 
brightness Gaussian within the bilateral filter 
becomes flat which means all pixels within the 
neighborhood of the center pixel have the same 
importance. At that point, bilateral filtering is 
reduced to just Gaussian smoothing.  
 

 
Next, let us discuss the problem of template matching, where we are given a template — an image patch 
with a pattern that is relevant to the application — and the goal is to find all the locations in an image 
where the template appears.  
Consider the example shown in the slide on the right. Our goal is to find the template (the face of the 
king) on the right in the image of the card on the left. A natural way to solve this problem is to slide the 
template over the image and for each position of the template find the difference between the template 
and the image region it overlaps. We can mathematically define the difference E(i,j) between the 
template and the underlying image region for the template location (i,j) as the  sum of the squared 
differences (SSD) between the pixels in the template and the image region. When this difference is small, 
we have found the template in the image. If we expand E(i,j), we get this expression 1 . Note that 
maximizing E(i,j) is equivalent to minimizing the last of the three terms of E(i,j). 
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Here we show the last term mentioned above, which is called cross-correlation. Notice that it looks 
similar to the expression for convolution. The difference is that while in convolution one of the two 
functions needs to flipped before computing the integral (or summation), in this case neither of the two 
functions is flipped. This appears to be a trivial difference but, in fact, it has mathematical implications 
that result in convolution and correlation having different properties.  

 

 

Now let’s apply cross-correlation to a simple one-
dimensional example of template matching. 
Consider the template shown on the left. We wish 
to find the best matching signal among the three 
shown on the right. Clearly, our hope is that cross-
correlation would give us a maximum value for the 
signal A. However, the cross-correlation with the 
template is actually highest for C, then B, and lastly 
A. The reason is that the intensity values in C and 
B are larger than in A. As a result, even though the 
template does not match these signals, the cross-
correlations are higher than in the case of A. This 
simple example highlights a problem with the direct use of cross-correlation for template matching.  
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The above problem with cross-correlation is 
remedied by dividing the cross-correlation with 
the denominator shown here. The denominator 
includes two terms that correspond to the 
energies in the template and the image region that 
the template overlaps.  This normalization of 
cross-correlation makes it insensitive to the overall 
brightness of the image region it is being applied 
to. At the bottom, we see the result of applying 
normalized cross-correlation to our example 
problem. We see that the normalized cross-
correlation of the template is now highest for A, 
which is the result we want.  

 
 

Here is the result of normalized cross-correlation 
applied to a two-dimensional template matching 
problem. We are trying to find the king’s face (the 
template) in the image of the playing card. The 
image on the right shows the correlation value for 
each pixel in the original image (the playing card). 
In this correlation image, the brighter the pixel, the 
higher the correlation value. Note that the 
maximum value is indeed at the location of the 
king’s face in the card.  
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