

Image Processing I

Shree K. Nayar

Lecture: FPCV-1-4

Module: Imaging

Series: First Principles of Computer Vision

Computer Science, Columbia University

March 15, 2022

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Image Processing I

FPCV-1-4 1

This is the first of two lectures devoted to the topic of image processing. In image processing, we are
given an image which we want to transform into one that is easier to analyze. Perhaps we have an image
of a scene at night time, and it happens to be grainy or noisy due to the lack of light. We want to be able
to remove the noise from the image. Or, in an image of a fast-moving object, the object gets smeared,
an effect called motion blur. We want to be able to remove this smearing and create a crisp image of the
object. In a different scenario, an object of interest may lie outside the depth of field while it is imaged,
causing it to be defocus blurred. We want to be able to remove the blur so that the object is in focus. All
of these image enhancements can be achieved using image processing.

We may also be interested in recovering information from the image that is most salient to the vision
problem we are trying to solve. This may involve the detection of features such as edges and corners. A
wide variety of features can be detected using image processing. Image processing tools lie under the
hood in any computer vision system.

We will start with pixel processing, the simplest type of image processing. This just involves looking at
the brightness or the color of each pixel in the image and transforming it using some predetermined
mapping. We are not really concerned about where the pixel lies in the image. Next, we will talk about
linear shift invariant systems. This is a very important class of systems in image processing. Many
operations that are applied to images are linear and shift invariant, and any system that is linear and
shift invariant can be implemented as a convolution. We will look at what convolution is and discuss its
properties. Then, we will develop a suite of simple linear image filters that can be applied using
convolutions. We will take a look at what kinds of modification we can make to an image using linear
filters.

We will argue that there are certain image modifications that cannot be done using convolution. That
takes us to the class of nonlinear image filters, which can be viewed as more algorithmic in nature.
Looking at the values of both a pixel and its neighborhood, we apply simple algorithms to come up with
the output value of that pixel. Finally, we will talk about the important problem of template matching.

1

Image Processing I

Topic: Image Processing I, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Transform image to new one that is clearer or easier
to analyze.

Image Processing I

Topics:

(1) Pixel Processing

(2) LSIS and Convolution

(3) Linear Image Filters

(4) Non-Linear Image Filters

(5) Template Matching by Correlation

First Principles of Computer Vision Image Processing I

FPCV-1-4 2

Given a certain pattern, we want to find everywhere it appears in an image. This problem can be solved
using correlation, which is related to the concept of convolution.

Let us start by defining an image as a function f(x,y), where f is the intensity at the spatial coordinates
(x,y). If we have a color image, there will be multiple channels – red, green, and blue – each of which will
be a function.

Pixel processing, or point processing, is the
simplest type of processing we can apply to an
image. Taking a pixel, we can simply transform its
brightness value based on the value itself, and
independent of the location of the pixel or the
values of other pixels in the image. It is basically a
mapping of one brightness value to another
brightness value or one color to another color.

3

Pixel Processing

Topic: Image Processing I, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

4

Image as a Function

!(#, %) is the image intensity at position (#, %)
I.1

!

"

5

Pixel (Point) Processing

Transformation ! of intensity ! at each pixel to
intensity ':

! ", $ = & (((", $))

First Principles of Computer Vision Image Processing I

FPCV-1-4 3

Here are some simple things we can do with pixel
processing. Consider the color image shown on the
left. If we wish to darken it, we can subtract some
number from each one of the three channels. If we
wish to lighten it, we can add some number to each
channel. We can also invert the image. Let us say it
is an 8-bit image. In each one of its three channels,
we take 255 minus the current value to obtain the
“negative” of the image shown at the bottom.

We can also lower the contrast of the image, by
compressing down the range of brightness values
by simply dividing f by, say, 2. Or, we can increase
the contrast by multiplying f by 2. When increasing
the contrast, we may get values beyond the
dynamic range of the image itself, which results in
saturation (the bright white regions). We can also
convert a color image to a grayscale (brightness)
image, by taking a linear combination of the three
color values at each pixel. Pixel processing is a very
simple form of processing and we discuss it here
primarily for the sake of completeness.

Now let us talk about the important concept of
linear shift invariant systems, or LSIS. The study of
this class of systems is important because it leads
to many useful image processing algorithms. We
will present this concept using one-dimensional
signals before extending to multiple dimensions.
Here is an LSIS system with input f(x) and output
g(x).

7

Pixel Processing

Original ($)
I.2

Low Contrast ($/2)

High Contrast ($ ∗ 2)

Gray (0.3%% + 0.6%& + 0.1%')

I.2

8

Linear Shift Invariant System (LSIS)

Study of Linear Shift Invariant Systems (LSIS)
leads to useful image processing algorithms.

LSIS((") !(")

6

Point Processing

Original ($)

Darken ($ − 128)

Lighten ($ + 128)

I.2

Invert (255 − $)

I.2

First Principles of Computer Vision Image Processing I

FPCV-1-4 4

The first property of an LSIS is that it is linear.
Imagine we have the system here where when we
feed it an input f1 we get an output g1, and when
we feed it f2 we get g2. If it is a linear system, some
linear combination of inputs, such as 𝛼𝑓1+ 𝛽𝑓2,
should yield the same linear combination of the
corresponding outputs, 𝛼𝑔1+𝛽𝑔2. If this condition
is satisfied, we say that the system is linear.

Now, let us take a look at shift invariance. Again,
let us say that the input is f(x) and that the
corresponding output is g(x). In the case of a shift
invariant system, if we shift the input by a, then
the output will also be shifted by a. Any system
that satisfies linearity and shift invariance is a
linear shift invariant system.

Let us take a look at why linear shift invariant
systems are relevant in imaging and computer
vision. Shown here is an ideal lens system, which
forms a focused image f on the image plane. If we
move the image plane back, what forms instead is
a defocused image g. Let us not be concerned with
the change in magnification between f and g, as we
can always correct for it. Then, we see that the
relationship between f and g can be described by
a linear shift invariant system. If we increase the
brightness of the scene, the brightness of the
focused image is going to increase linearly, as is the

9

LSIS: Linearity

LSIS(! !! LSIS(" !"

LSIS*(! + ,(" *!! + ,!"

10

LSIS: Shift Invariance

"($) &($)

"($ − () &($ − ()

LSIS

LSIS
. .

11

Ideal Lens is an LSIS

Defocused Image (!): Processed version of Focused Image (")

Linearity: Brightness variation

Shift invariance: Scene movement

' !

First Principles of Computer Vision Image Processing I

FPCV-1-4 5

brightness of the defocused image. If we shift an object in the scene, its image is going to shift in the
focused image, and its defocused image is also going to shift by the same amount. The relationship
between f and g is therefore linear and shift invariant. This is an example of how a linear shift invariant
system might manifest in the case of an imaging system.

Now let us talk about the important concept of
convolution. Irrespective of whether you end up
working in computer vision or not, this concept is
going to pop up sooner or later, so it is worth
paying close attention to. Shown here is the
mathematical definition of convolution, which is
denoted by an asterisk. We have f(x) convolved
with h(x) to get the result g(x). To gain some
geometrical insight into the mathematical
definition of convolution, we will first express f and
g as functions of	𝜏, as shown below.

We take h(𝜏) and flip it about the vertical axis to get h(-𝜏), as shown in the left slide. We shift h(-𝜏) by x
to get h(x-	𝜏), which is then overlaid on f(𝜏), as shown in the right slide.

12

Convolution

' # = !(#) ∗ ℎ(#) = +
/0

0

! , ℎ(# − ,) .,

!(,)

,

ℎ(,)

,

Convolution of two functions !(#) and ℎ #

13

Convolution

!(,)

,

ℎ(−,)

,

' # = !(#) ∗ ℎ(#) = +
/0

0

! , ℎ(# − ,) .,

Convolution of two functions !(#) and ℎ #

14

Convolution

!(,)

,

Convolution of two functions !(#) and ℎ #

ℎ(# − ,)

,#

' # = !(#) ∗ ℎ(#) = +
/0

0

! , ℎ(# − ,) .,

First Principles of Computer Vision Image Processing I

FPCV-1-4 6

Now we take the product f(𝜏)h(x-	𝜏) of these two
overlapping functions and integrate it from minus
infinity to infinity. This gives us a single number,
which is the result of the convolution at the point
x.

To find the entire function g(x), we would flip the
function h(𝜏) and then move it to minus infinity,
that is the shift x in h(x-	𝜏) equals minus infinity.
We then vary the shift from minus infinity to plus
infinity by sliding the function h(-𝜏) over f(𝜏) from
left to right. For each shift value x we find the
product of the two functions and then the integral
of the product. This gives us the entire function
g(x), which is the result of the convolution.

It turns out that any linear shift invariant system is
performing a convolution, and whenever we are
doing a convolution, that means we have a linear
shift invariant system. We will prove this shortly, but let us first take a look at a couple of very simple
examples of convolution.

16

Convolution

!(,)

,

ℎ(# − ,)

,

Convolution of two functions !(#) and ℎ #

' # = !(#) ∗ ℎ(#) = +
/0

0

! , ℎ(# − ,) .,

LSIS implies Convolution and Convolution implies LSIS

! # ∗ ℎ(#)

15

Convolution

!(,)

,

ℎ(# − ,)

,#

∫/0
0 ! , ℎ(# − ,) .,

Convolution of two functions !(#) and ℎ #

' # = !(#) ∗ ℎ(#) = +
/0

0

! , ℎ(# − ,) .,

First Principles of Computer Vision Image Processing I

FPCV-1-4 7

Let us say we want to convolve the rectangle on
the left with the identical rectangle on the right.
We first flip the function h(x). In this particular
case, it is going to look exactly the same – a
rectangular function. Then, we take the flipped
h(x) and slide it over f(x) from left to right, and for
each location of the sliding function we find the
integral of the product of the two functions. As we
move from minus infinity, most of the time the
product of the two functions is going to be zero.
But at some point, the two rectangles will touch
each other, which happens at x = -2. Now, as one
rectangle continues to slide over the other, the overlap between the two rectangles increases, and the
area under the product of the two functions increases with x. Starting with an overlap area of zero at x
= -2, the area increases linearly until the two rectangles sit exactly on top of each other. At this point, we
can see that the product is the rectangle itself, and the area under it is going to be equal to 2 because
each rectangle has a width of 2 and a height of 1. Then, one rectangle slides away from the other and
the result of the convolution decreases linearly until it goes to zero at x = 2. The end result of the
convolution is therefore a triangle.

Let us take a look at a more interesting case. Here
we have a rectangle again, but now we are going
to convolve it with a triangular function. We flip
the triangle, move it to minus infinity, and slide it
from left to right. As the triangle slides over the
rectangle, the area of the overlapping region will
increase as before. However, the overlapping
region is actually a triangle in this case, and both
the base and the height of the triangle increase
linearly with the shift x. Thus, the area of the
overlap region is going to be a quadratic function
of x. As in the previous example, since both the
original functions are symmetric with respect to x = 0, the result of the convolution will also be
symmetric.

17

Convolution: Example

-1 1

1

-1 1

1

!(#) ℎ(#)

1 2-1-2

2

! # ∗ ℎ(#)

18

Convolution: Example

-1 1

1

-1 1

1

!(#) ℎ(#)

1 2-1-2

1

! # ∗ ℎ(#)

First Principles of Computer Vision Image Processing I

FPCV-1-4 8

As shown above, in the case of simple functions,
we can visualize how convolution works. When we
get to more complicated functions, as with most
things mathematical, it gets harder to visualize
what the result is going to be. However, there are
several online convolution tools that you can use
to create new functions and see what happens
when you convolve them with each other. Here is
the link to one such interactive tool.

We stated earlier that convolution implies linear
shift invariance. Let us take a look at why this is the
case. What we need to show is that when
performing a convolution, the result is a function
which satisfies linearity and shift invariance.
Suppose we have that f1 convolved with h gives us
g1 and f2 convolved with h gives us g2. If we take a
linear combination of f1 and f2 and convolve it with
h, we can rewrite it in terms of the sum of two
integrals with the constants 𝛼 and 𝛽 outside the
two integrals. Note that the first integral is g1 and
the second integral is g2, and so the result is simply
𝛼g1(x)+𝛽g2(x). This proves that convolution is linear.

Now let us examine whether convolution is shift
invariant. This time, we will shift the input function
f(𝜏) in the expression for convolution by a to get
f(𝜏-a). Next, we will use the substitution 𝜇 = 𝜏-a to
get this expression 1 . The limits of the integral
remain the same – minus infinity to infinity –
because a is a finite number. This integral is simply
g(x-a). In shifting the input by a, the output is also
shifted by a, so we see that convolution is shift
invariant. Since convolution is both linear and shift
invariant, convolution is a linear shift invariant
system.

19

Convolution: Online Demo

http://www.jhu.edu/signals/convolve/

21

Convolution is LSIS

! " = $
"#

#

% & ℎ(" − &) +&

$

"#

#

% & − / ℎ(" − &) +&

Let:

Then:

= ! " − /

= $

"#

#

% 0 ℎ(" − / − 0) +0 (Substituting µ = 3 − .)

Shift Invariance:

1

20

Convolution is LSIS

!! " = $

"#

#

%! & ℎ(" − &) +&

$

"#

#

(,%! & + .%$ &)ℎ(" − &) +&

!$ " = $

"#

#

%$ & ℎ(" − &) +&Let: and

Then:

= , $

"#

#

%! & ℎ(" − &) +& + . $

"#

#

%$ & ℎ(" − &) +&

= ,!! " + .!$ "

Linearity:

First Principles of Computer Vision Image Processing I

FPCV-1-4 9

Let us assume that we are given a system that is
linear and shift invariant. We know that it is doing
a convolution, but we do not know what it is
convolving the input with. Let us assume the
system is a black box that we cannot “open up” to
determine what the function h(x) is that the input
is being convolved with. The question that we are
asking is whether there is a specific input we could
apply to the system such that its output is h(x)?

It turns out that the input we are looking for is the
unit impulse function. We referred to it as a delta
function in a previous lecture. The unit impulse
function is infinitesimally thin and infinitely tall. Its
width is 2𝜀 and its height is 1 2𝜀$, where 𝜀 tends to
zero. Its area is equal to one.

If we convolve a function b(x) with a unit impulse
function, we get the expression shown at the
bottom. To visualize what happens in this case,
imagine we take the unit impulse function, flip it,
move it to minus infinity, and slide it over b(x)
while finding the integral of the product of the two
functions at each point. Since we are integrating over an infinitesimal width (the width of the impulse
function) and the area of the impulse function is one, we simply end up reading out the values of the
function b(x). Thus, any function convolved with the unit impulse function is the original function itself.
This is called the sifting property of the unit impulse function.

22

Can we find ℎ?

ℎ" &

What input ! will produce output ' = ℎ ?

ℎ $ = +
!"

"

? - ℎ($ − -) .-

& $ = +
!"

"

" - ℎ($ − -) .-

23

Unit Impulse Function

−4 4

5
670 # = 1 ⁄1 25 , # ≤ 5

0, # > 5
5 → 0

8(!)

+
/0

0

0 , : # − , ., = :(#) Sifting Property

+
/0

0

0 , ., =
1
25 . 25 = 1

First Principles of Computer Vision Image Processing I

FPCV-1-4 10

Thus, given a system – a black box – that is a linear
shift invariant system, meaning it is applying a
convolution with some unknown function h, all we
need to do is hit it with the unit impulse function
as the input and the output will be h. h is therefore
often referred to as the impulse response of the
system. For any linear shift invariant system, the
impulse response fully describes the system.

Let us take a look at the impulse response of a real
imaging system – the human eye. We know the eye
has a lens which forms an image on the retina. We
want to know the relationship between the perfect
image of the scene — a focused image — and the
image that is received by the retina. Since we now
know that lenses are linear and shift invariant, we
want to find the impulse response of the human
eye. This system is two-dimensional since the
retina is two-dimensional. Thus, if we can input
into the eye a two-dimensional impulse function,
𝛿(x,y), we can measure its impulse response h(x,y).
What does it mean to actually stimulate the eye with an impulse function? In this case, the impulse
function would be a tiny point source of light in the scene. An example of such a source is a distant star.
The image that is formed on the retina is then the impulse response of the eye.

In the case of an imaging system, the impulse response is often referred to as the point spread function
of the system. Shown here is the point spread function of the human eye that has been experimentally
measured. Since the retina is curved, the function is described using angles rather than Cartesian
coordinates. We can see that the impulse response of the eye is narrow — by about 0.05 degrees, the
response has already fallen off quite a bit. That is why, when our eye is not defective, we see fairly sharp
images of scenes.

24

Impulse Response

ℎ/ ℎ

' # = +
/0

0

! , ℎ(# − ,) .,

ℎ" &

'(#) = !(#) ∗ ℎ(#) ℎ(#) = 0(#) ∗ ℎ(#)

ℎ # = +
/0

0

0 , ℎ(# − ,) .,

Unit
Impulse

Impulse
Response

25

Impulse Response of Human Eye

Human Eye PSF

Human
Eye0(#, %)

Distant Star
ℎ(#, %)

Point Spread Function
(PSF)

I.5
0.05° 0°0.1° 0.05° 0.1°0.15° 0.15°

First Principles of Computer Vision Image Processing I

FPCV-1-4 11

Let us discuss a few properties of convolution.
Convolutions are commutative and associative,
and these two properties enable us to simplify
systems that perform a sequence of convolutions.
Let us take the simple case of two convolutions
performed in sequence. We call such a system a
cascaded system. In the example shown here, the
system performs a convolution with h1, followed
by a convolution with h2. Rather than performing
these two convolutions in sequence, we can
actually convolve h1 and h2 to create a single
impulse response that we then convolve the input
with to get the output. Note that we could convolve h1 with h2 or h2 with h1 to obtain the new impulse
response as per the commutative property of convolution.

We described convolution using one-dimensional
signals, but we know that images are two-
dimensional signals. The input would then be a
two-dimensional function f(x,y), and the impulse
response would also be a two-dimensional
function h(x,y). The two-dimensional convolution
is defined by this expression 1 . Note that in this
case one of the two functions needs to be flipped
twice, once about each of its two dimensions. In
fact, the definition for convolution can be
generalized to any number of dimensions. In the
case of medical imaging for instance, convolutions
are often applied to three-dimensional data measured using ultrasound, computer tomography,
magnetic resonance, etc.

26

Properties of Convolution

Commutative

Associative

Cascaded System

(∗ 1 = 1 ∗ (

(∗ 1 ∗ 2 = (∗ (1 ∗ 2)

ℎ#" &ℎ$

ℎ# ∗ ℎ$" &

ℎ$ ∗ ℎ#" &

≡

≡

27

2D Convolution

LSIS:

Convolution:

ℎ(#, %)!(#, %) '(#, %)

& $, 5 = 6
!"

"

" -, 7 ℎ($ − -, 5 − 7) .-.7

1

First Principles of Computer Vision Image Processing I

FPCV-1-4 12

Now that we understand what a linear shift invariant system is, and that it is just performing a
convolution, we can develop some very simple linear image filters that use convolution to enhance
images or extract information from them.

First, let us take a look at how convolution works in the case of discrete images. The definition of
convolution in discrete domain is given by this expression 1 . The input discrete image is f[i,j] where i is
the row and j is the column, and the size of the image is M by N. f[i,j] is being convolved with an impulse
response h[i,j] and the output is g[i,j], which is also an image of the same size as f[i,j]. In image processing,
the impulse response h[i,j] is referred to as a mask, a kernel, or a filter. We will use these terms
interchangeably. Since this is a two-dimensional convolution, the flip of the filter happens twice, once
with respect to i and then with respect to j.

There is simple way to visualize this two-dimensional convolution. Let us assume the filter is small
compared to the input image. Then, the value of the output image g at pixel location [i,j] is obtained by
flipping the filter h twice, overlaying it on the image f with the center of the filter at [i,j], and finding the
sum of the product of the pixel values of the image and the filter in the overlap region. This process is
repeated for all pixels in the input image to get the output image g. You can imagine that writing a
program to perform convolution is quite straightforward.

28

Linear Image Filters

Topic: Image Processing I, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University
1

29

Convolution with Discrete Images

ℎ[=, >]![=, >] '[=, >]

9

:

(1, 3)

' =, > = @
;<5

=
@
><5

?
! A, B ℎ[= −A, > − B]

@

A
ℎℎ

B

“Mask,” “Kernel,” “Filter”

! '

1

First Principles of Computer Vision Image Processing I

FPCV-1-4 13

Now, let us discuss a practical problem we face
when applying convolution to images of finite size.
Here you see an image being convolved with a
small filter. When we apply the filter to the top left
corner of the image, we see that a good part of the
mask lies outside the image. How do we deal with
this issue? Well, there is no principled way to
address this problem, also called the border
problem. However, there are a few fixes that are
used in practice. First, we could choose not to
apply the filter to border pixels — it is only applied
to pixels in the input image for which the filter lies
completely inside the image. In this case, the output image would be smaller than the input image —
the output image will lose a few rows and columns along its border. Another approach is to pad the input
image with a constant value on the outside to create some extra rows and columns. The constant value
could, for example, be the average brightness of the input image. Finally, we could pad the image with
information that is essentially a reflection of the information inside the image. In this case, the added
rows and columns will have content that is similar to that within the image. All of these approaches are
hacks as we are trying to make up for the fact that we do not have any measurements in the region just
outside the image.

Let us take a look at some examples of linear image
filtering, that is, convolution applied to an image.
On the left is an input image that we will convolve
with the impulse (delta) function. Due to the sifting
property of the impulse function, the output image
in this case is exactly the same as the input image.

30

Border Problem

Solution:
• Ignore border
• Pad with constant value
• Pad with reflection

31

Example: Impulse Filter

∗ =

Input Output

!(#, %) 0(#, %) !(#, %)

I.6

First Principles of Computer Vision Image Processing I

FPCV-1-4 14

Now let us do something a bit more interesting.
We once again have a filter that is an impulse
function, but in this case impulse function is
located at the bottom right corner of the filter. At
first glance, we might guess that the image is going
to shift up and to the left. However, after the two
flips of the filter, the impulse function is going to
end up in the top left corner. Thus, the output
image is going to be the input image shifted down
and to the right.

Now let us take a look at another example, which
is the box filter. In the example shown here, it is a
square with 5x5 pixels where each pixel has a
constant value of 1. The output image is going to
be a smooth (blurred) version of the input image
because each pixel in the output image will be the
aggregate of 5x5 or 25 pixels in the input image. In
addition, the output image is going to be really
bright, around 25 times brighter than the input
image. Let us say the images are represented using
eight bits of brightness information at each pixel.
That means the image has brightness values
between 0 to 255. After the convolution, the output image is going have pixels with brightness values
well beyond that range. Typically, all values above 255 will be “clipped” to 255 before displaying the
image, which causes the image to appear washed out, or saturated.

32

Example: Image Shift

∗ =

Input Output

!(#, %) 0(# − C, % − D) !(# − C, % − D)

33

Example: Averaging

∗ =

Input Output

!(#, %) '(#, %)

“Box Filter”

Result Image is saturated. Why?

E(#, %)

5 x 5

First Principles of Computer Vision Image Processing I

FPCV-1-4 15

In order to avoid saturation, when we design a box
filter, we need to make sure that the values used
inside the box are normalized by the area of the
box itself. In the case of our 5x5 filter, let us say
that at each pixel we have the value 1/25 instead
of 1. Now we see that we get an image that is
indeed smooth, but at the same time it has the
same average brightness as the input itself.

Now let us take a closer look at the box filter. Here
is a box filter that is bigger (21x21), and it gives an
output that is smoother than the 5x5 box filter. But
if we look closely at this image, we see that it has
some “blocky” artifacts. We can see that these
artifacts line up with the vertical and horizontal
axes. This is because the box filter has hard vertical
and horizontal edges on its boundary.

To resolve this, we might want to use a fuzzy filter.
In this case, we have a maximum value in the
center and surrounding values which drop as we
move away from the center. The filter is also
rotationally symmetric. While the output image is
smooth as in the case of the box filter, the blocky
artifacts are gone. The result is a more natural
looking image.

34

Example: Averaging

∗ =

Input Output

!(#, %) '(#, %)

“Box Filter”

Sum of all the filter (kernel) weights should be 1.

E(#, %)

5 x 5

35

Smoothing With Box Filter

∗ =

Input Output

!(#, %) '(#, %)

“Box Filter”

E(#, %)

21 x 21

Image smoothed with a box filter does not look
“natural.” Has blocky artifacts.

I.7

36

Smoothing With “Fuzzy” Filter

∗ =

Input Output

!(#, %) '(#, %):(#, %)

“Fuzzy Filter”
21 x 21

First Principles of Computer Vision Image Processing I

FPCV-1-4 16

The fuzzy filter can be formalized using the
Gaussian function. The Gaussian function is
defined here in discrete domain 1 . The larger the
value of 𝜎, the broader the Gaussian is. Note that,
irrespective of how broad the Gaussian is, since it
is normalized by 2𝜋𝜎2 the area under the Gaussian
is always the same irrespective of the size of filter.

So, what size filter should we use? This is an
interesting question because the Gaussian
function goes to zero only at infinity. Clearly, we do
not want to use a filter that is infinite in extent. As
a rule of thumb, we can say that if the filter is KxK,
then K should be roughly equal to 2𝜋𝜎 as that would capture most of the energy in the Gaussian.

Shown here are Gaussian filters with different sizes, that is, different 𝜎s. For visualization purposes, we
are showing them as having equal brightness at the center, but in reality the filter with 𝜎=5 would be
much dimmer because there are a lot more pixels in it.

Let us look at the effect of changing the width of the Gaussian filter. When we convolve f(x,y) with the
Gaussian with 𝜎=4, we get a little bit of smoothing. When we increase 𝜎	to 16, we get more smoothing
or blurring without any undesirable artifacts being introduced in the output image.

37

Gaussian Kernel: A Fuzzy Filter

8%[:, ;] =
1

2?@$ A
!#$

&!'(!
%! >

=
#": Variance

F = 5F = 2 F = 3 F = 4
Rule of thumb: Set kernel size $ ≈ 2'#

B
B

B
B

38

Gaussian Smoothing

∗ =

Input Output

!(#, %) '(#, %)BC(#, %)

4 = 4

Larger the kernel (or σ), more the blurring
39

Gaussian Smoothing

∗ =

Input Output

!(#, %) '(#, %)B5D(#, %)

4 = 16

Larger the kernel (or σ), more the blurring

1

First Principles of Computer Vision Image Processing I

FPCV-1-4 17

One of the things that makes the Gaussian filter
attractive is the fact that it is separable. Here we
have the output g[i,j], which is the input image
convolved with the Gaussian filter. The exponent
of the Gaussian can be split into two exponents,
one with m only, and the other with n only. As a
result, we can move one of the summations
forward to end up with two terms: one which
sums over m and a second which sums over n. This
implies that the input image is being convolved
with a (horizontal) one-dimensional Gaussian of
width K, and that resulting image is again
convolved with a second (vertical) one-dimensional Gaussian of height K. The end result is exactly equal
to convolving the image f with the original KxK two-dimensional Gaussian filter. This is made possible by
the fact that the two-dimensional Gaussian function is separable, in that, it can be written as the product
of two one-dimensional Gaussian functions. We can exploit this to dramatically reduce the
computational cost of filtering the image.

The cost of doing a convolution will depend on the
number of pixels in the image, because we are
repeating the same process at every pixel. So, let
us take a look at the cost of computing the
convolution result at a single pixel. Consider the
KxK Gaussian filter shown here, centered at a
particular pixel. At that pixel, we would need to do
K2 multiplications and then K2-1 additions to get
the final result. Instead, if we use the two
component one-dimensional filters of length K,
each will require K multiplications and K-1
additions, so we end up with just 2K
multiplications and 2(K-1) additions. We see that the use of separable filters is much cheaper for larger
values of K. Thus, if we are convolving an image with a mask that happens to be separable, we would
benefit from using the component filters, especially for larger masks.

40

Gaussian Smoothing is Separable

'[=, >] =
1

2?@$ @
;<5

E

J/
5
6
;!
F! .@

><5

E

J/
5
6
>!
F! ![= −A, > − B]

Using One 2D Gaussian Filter ≡ Using Two 1D Gaussian Filters

∗=(∗ (∗

'[=, >] =
1

2?@$ @
;<5

E

@
><5

E

J/
5
6
;!G>!
F! ![= −A, > − B]

B

B
B

41

Gaussian Smoothing is Separable

Which one is faster? Why?

Using One 2D Gaussian Filter ≡ Using Two 1D Gaussian Filters

K6 − 1 Additions

K6 Multiplications

2(K − 1) Additions

2K Multiplications

=(∗ (∗
B

∗
B

B

First Principles of Computer Vision Image Processing I

FPCV-1-4 18

We have seen what we can do with convolution
and linear filters, but there are situations when we
may want to depart from linear filtering and
develop nonlinear filters. These filters are more
algorithmic in nature and cannot be implemented
as convolutions.

Let us start with the problem of smoothing an
image to remove noise. Shown here is an image
which has some salt and pepper noise in it. If we
simply apply a fuzzy filter such as a Gaussian, we
can see that the noise is slightly diminished.
However, what we are really doing is smearing the
noise out and are not really removing it. At the
same time, we are also blurring out of the edges of
the coins and losing some of the details within the
coins.

For noise removal, we take a different approach
called median filtering. For each pixel, we take all
the intensity values (including its own value) within
a KxK window centered at the pixel and sort them.
We then find the middle value of the sorted list,
which is the median of all the intensity values. We
simply use the median as the filtered output for
the pixel.

When we apply median filtering with even a small
filter, say K=3, we see that the result is a significant
improvement over the original image. Almost all of

42

Non-Linear Image Filters

Topic: Image Processing I, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

43

Smoothing to Remove Image Noise

Image with
Salt and Pepper Noise

Gaussian Blurred
Image

∗
I.5

Problem with Smoothing:
• Does not remove outliers (Noise)
• Smooths edges (Blur)

=

44

Median Filtering

Median Filtered
Image (B = 3)

1. Sort the 8$ values in window centered at the pixel

2. Assign the Middle Value (Median) to pixel

Non-linear Operation
(Cannot be implemented using convolution)

B

B

Image with
Salt and Pepper Noise

First Principles of Computer Vision Image Processing I

FPCV-1-4 19

the noise is gone. We do lose a little bit of detail on the coins, but the result is quite impressive given
that the mask is very small. Note that we cannot implement a median filter using convolution — the
sorting step makes it a nonlinear method.

Let us look at an image with more realistic noise in
it, which means that literally every pixel is affected
by noise. This is the type of noise that typically
appears when an image is taken under low-light
conditions. In this case, we need to use a bigger
median filter. When we do that, the noise is
reduced, but the price that we pay is that the
details on the coins are also lost. If we go to an
even bigger filter, we do better in terms of the
noise reduction, but even more of the details are
gone. Can we come up with a filter for removing
noise that does better than both Gaussian
smoothing and median filtering?

Let us revisit Gaussian smoothing. Shown here is a
grainy image to which we are applying a Gaussian
convolution with a fairly large kernel. In the case of
the flat region shown on the bottom, we do
extremely well. In the case of the other two
regions, however, important details are washed
out.

The reason this happens is because we are using
the same filter at all pixels, independent of the
content around the pixel itself. We want to design
a filter that can change with the local structure of
the image, that is, what the neighborhood of a
pixel looks like. We are essentially willing to create a new filter for each pixel.

45

Median Filtering

Image with Noise Median Filtered
Image (B = 11)

Not Effective when Image Noise is not a Simple
Salt and Pepper Noise.

Larger $ causes blurring of image detail

46

Revisiting Gaussian Smoothing

Same Gaussian kernel is used everywhere.
Blurs across edges.

Input Output

∗

∗

∗

=

=

=I.6

First Principles of Computer Vision Image Processing I

FPCV-1-4 20

Let us say we want to apply Gaussian smoothing,
but we are going apply the Gaussian filter to only
those pixels in the neighborhood of the center
pixel that have intensities that are similar to that
of the center pixel. That is, we ignore pixels in the
neighborhood that are significantly different in
intensity from that of the center pixel. In doing so,
we are only going to use a part of the Gaussian
function. The resulting filters for the three image
patches shown here can be seen in the middle.
When we do this, we need to normalize each filter
to account for the fact that it is being applied to a
smaller set of pixels so that the area under the new filter is one.

This simple modification to Gaussian smoothing yields impressive results. For all the three patches
shown here, we see that the output patches include all the relevant details while the noise is significantly
reduced.

We would like to come up with a principled way of
implementing the above idea of modifying
Gaussian smoothing. That brings us to the bilateral
filter. The expression shown here is just the
convolution of an image with a spatial Gaussian; it
is just Gaussian smoothing. Consider the section of
the input image in the right corner, shown here as
a height map where the height is proportional to
image brightness. It is a step edge that is corrupted
by noise. We would like to remove the noise while
preserving the edge. When the Gaussian filter is
applied to the image patch with its center at the
image pixel (i,j), we see that both the neighborhood pixels shown here (dots) will be multiplied by the
same filter value as they are equidistant from the center pixel. While it makes sense for the
neighborhood pixel on the same side of the edge as the center pixel to be multiplied by a large value,
we would like the pixel on the other side of the edge to contribute less to the final output. The effect of
applying a Gaussian that is independent of the content around the pixel is that, while noise is reduced,
the output image is blurred. On the left we see the output where the edge in the original image is washed
out.

47

Blur Similar Pixels Only

“Bias” Gaussian Kernel such that pixels not similar in
intensity to the center pixel receive a lower weight.

Input Output

∗

∗

∗

=

=

=

48

Bilateral Filter: Start With Gaussian

[J, L]

Input (%)

1
LN
@
;

@
>

! A, B BF"[= − A, > − B]

Spatial Gaussian

'[=, >] =

Gaussian blurs across edges

Gaussian Smoothed
Output (O)

[J, L]

First Principles of Computer Vision Image Processing I

FPCV-1-4 21

We can fix this problem by adding another term
called the brightness Gaussian, which takes the
difference between the brightness of the center
pixel and its neighbor. If the difference is small, it
will have a large value, while if it is large, it will
have a low value. The final filter shown at the
bottom takes the shape of a Gaussian on the side
of edge that the center pixel lies on, but has low
values on the other side. Note that this filter will
vary from one pixel to the next — in effect, the
filter adapts to the image content it is applied to.
The result of applying this filter to the noisy edge
on the right is shown on the left — the noise has been reduced substantially while the edge has been
preserved.

Bilateral filtering is a popular method that is widely used in image processing. It should be noted that it
cannot be implemented as a convolution as the filter must be recomputed for each pixel in the image.

There is an important technicality related to the
bilateral filter we have set aside, which is the
normalization factor Wsb. This factor is crucial
because, irrespective of the shape or complexity of
the filter, we want to make sure that the energy in
the filter is always equal to one. In other words, the
normalization factor Wsb needs to be recomputed
for each pixel in the input image. This is done by
simply taking the sum over the extent of the filter
of the product of the brightness Gaussian and the
spatial Gaussian.

49

Bilateral Filter: Add Bias to Gaussian

[J, L]

Input (%)

Combined Kernel

Multiply

Bilateral Filtered
Output (O)

'[=, >] =
1
LNP

@
;

@
>

! A, B BF" = − A, > − B BF# ! A, B − ! =, >

Spatial Gaussian Brightness Gaussian

50

Bilateral Filter: Summary

'[=, >] = @
;

@
>

! A, B BF"[= − A, > − B]BF# ! A, B − ! =, >
1
LNP

Where:

LNP =@
;

@
>

BF" = − A, > − B BF# ! A, B − ! =, >

BF"[A, B] =
1

2MFN6
J/

5
6
;!G>!
F!* BF# N =

1
2MFP

J/
5
6
Q!
F!+

Non-linear Operation
(Cannot be implemented using convolution)

First Principles of Computer Vision Image Processing I

FPCV-1-4 22

Let us take a look at how the bilateral filter
performs on real images. The original image on the
left has some noise in it. We want to remove this
noise without losing the details of important
features, such as the eyes and the hair. If we apply
Gaussian smoothing with a sigma equal to 2, we
see that the result is a slightly blurred image in
which the noise has not been entirely removed.
Now, if we use a bilateral filter with a sigma for the
spatial Gaussian of 2 and a sigma for the brightness
Gaussian of 10, we get a very nice result. Virtually
all of the noise has been removed and, at the same
time, the spatial features have been well preserved.

Now, let’s see what happens when we change the
two sigma values of the bilateral filter. If we
increase the spatial sigma to 4, we get a much
blurrier image in the case of Gaussian smoothing,
while we still get a fairly sharp image in the case of
bilateral filtering.

If we increase the spatial sigma even further to 8,
we see that we start to get a “painterly” effect
where the shaded regions start to get flatter. This
adds a watercolor-like look to the final image,
which is especially apparent in the hair region. Still,
the output from bilateral filtering is much nicer
than that from just pure Gaussian smoothing with
the same spatial sigma value.

51

Gaussian vs. Bilateral Filtering: Example

Gaussian
4% = 2

Bilateral
4% = 2, 4& = 10

Original
I.8

52

Gaussian vs. Bilateral Filtering: Example

Gaussian
4% = 4

Bilateral
4% = 4, 4& = 10

Original

53

Gaussian vs. Bilateral Filtering: Example

Bilateral
4% = 8, 4& = 10

Gaussian
4% = 8

Original

First Principles of Computer Vision Image Processing I

FPCV-1-4 23

So far, we have kept the brightness sigma constant
at a value of 10. What happens when we change
this value? With a spatial sigma of 6 and a
brightness sigma of 10, we get the image on the
left. If we increase the brightness sigma to 20, we
get the image shown in the center. This image has
a bit more blurring. However, when we increase
the brightness sigma to a very large value, the
brightness Gaussian within the bilateral filter
becomes flat which means all pixels within the
neighborhood of the center pixel have the same
importance. At that point, bilateral filtering is
reduced to just Gaussian smoothing.

Next, let us discuss the problem of template matching, where we are given a template — an image patch
with a pattern that is relevant to the application — and the goal is to find all the locations in an image
where the template appears.
Consider the example shown in the slide on the right. Our goal is to find the template (the face of the
king) on the right in the image of the card on the left. A natural way to solve this problem is to slide the
template over the image and for each position of the template find the difference between the template
and the image region it overlaps. We can mathematically define the difference E(i,j) between the
template and the underlying image region for the template location (i,j) as the sum of the squared
differences (SSD) between the pixels in the template and the image region. When this difference is small,
we have found the template in the image. If we expand E(i,j), we get this expression 1 . Note that
maximizing E(i,j) is equivalent to minimizing the last of the three terms of E(i,j).

55

Template Matching by Correlation

Topic: Image Processing I, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

56

Template Matching

How do we locate the template in the image?

Template

=[?, @] = B
'
B
(
(% C, D − E C − ?, D − @)$

=[?, @] = B
'
B
(
(%$ C, D + E$ C − ?, D − @ − 2% C, D E C − ?, D − @)

Minimize:

Maximize

1

54

Bilateral Filtering: Changing !!

Bilateral
4% = 6, 4& = 10

Bilateral
4% = 6, 4& = 20

Bilateral
4% = 6, 4& = ∞

(Gaussian Smoothing)

First Principles of Computer Vision Image Processing I

FPCV-1-4 24

Here we show the last term mentioned above, which is called cross-correlation. Notice that it looks
similar to the expression for convolution. The difference is that while in convolution one of the two
functions needs to flipped before computing the integral (or summation), in this case neither of the two
functions is flipped. This appears to be a trivial difference but, in fact, it has mathematical implications
that result in convolution and correlation having different properties.

Now let’s apply cross-correlation to a simple one-
dimensional example of template matching.
Consider the template shown on the left. We wish
to find the best matching signal among the three
shown on the right. Clearly, our hope is that cross-
correlation would give us a maximum value for the
signal A. However, the cross-correlation with the
template is actually highest for C, then B, and lastly
A. The reason is that the intensity values in C and
B are larger than in A. As a result, even though the
template does not match these signals, the cross-
correlations are higher than in the case of A. This
simple example highlights a problem with the direct use of cross-correlation for template matching.

57

Template Matching

F)*[?, @] = B
'
B
(
% C, D E[C − ?, D − @] = E⨂%

Maximize:

(Cross-Correlation)

How do we locate the template in the image?

Template

58

Convolution vs. Correlation

F)*[?, @] = B
'
B
(
% C, D E[C − ?, D − @] = E⨂%

Convolution:

Correlation:

![?, @] = B
'
B
(
% C, D E[? − C, @ − D] = E ∗ %

No Flipping in Correlation

59

Problem with Cross-Correlation

ORS[=, >] =@
;
@
>
! A, B P[A − =, B − >] = P⨂!

P:

I J K

!:

ORS S > ORS T > ORS U

We need ORS U to be the maximum!

First Principles of Computer Vision Image Processing I

FPCV-1-4 25

The above problem with cross-correlation is
remedied by dividing the cross-correlation with
the denominator shown here. The denominator
includes two terms that correspond to the
energies in the template and the image region that
the template overlaps. This normalization of
cross-correlation makes it insensitive to the overall
brightness of the image region it is being applied
to. At the bottom, we see the result of applying
normalized cross-correlation to our example
problem. We see that the normalized cross-
correlation of the template is now highest for A,
which is the result we want.

Here is the result of normalized cross-correlation
applied to a two-dimensional template matching
problem. We are trying to find the king’s face (the
template) in the image of the playing card. The
image on the right shows the correlation value for
each pixel in the original image (the playing card).
In this correlation image, the brighter the pixel, the
higher the correlation value. Note that the
maximum value is indeed at the location of the
king’s face in the card.

60

Normalized Cross-Correlation

Account for energy differences

VRS[=, >] =
∑;∑> ! A, B P[A − =, B − >]

∑;∑> !6[A, B] ∑;∑> P6[A − =, B − >]

P:

I J K

!:

VRS U > VRS T > VRS S

61

Normalized Cross-Correlation

Account for energy differences

VRS[=, >] =
∑;∑> ! A, B P[A − =, B − >]

∑;∑> !6[A, B] ∑;∑> P6[A − =, B − >]

⊗ =

First Principles of Computer Vision Image Processing I

FPCV-1-4 26

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription,
editing and proofreading.

63

References and Credits

Topic: Image Processing I, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

64

References: Textbooks

Robot Vision (Chapter 6 and 7)
Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 7)
Forsyth, D and Ponce, J., Prentice Hall

Digital Image Processing (Chapter 3)
González, R and Woods, R., Prentice Hall

Computer Vision: Algorithms and Applications (Chapter 3)
Szeliski, R., Springer

65

References: Papers

[Tomasi 1998] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in Proceedings of the IEEE International Conference
on Computer Vision, 1998.

66

Image Credits

I.1 https://commons.wikimedia.org/wiki/File:Ansel_Adams_and_camera.jpg.

Public Domain.

I.2 Wilson J. Pugh. Used with permission.

I.5 Purchased from iStock by Getty Images.

I.6 Purchased from iStock by Getty Images.

I.7 Purchased from iStock by Getty Images.

I.8 Purchased from iStock by Getty Images.

First Principles of Computer Vision Image Processing I

FPCV-1-4

References

[Szeliski 2022] Computer Vision: Algorithms and Applications, Szeliski, R., Springer, 2022.

[Forsyth and Ponce 2003] Computer Vision: A Modern Approach, Forsyth, D and Ponce, J., Prentice Hall,

2003

[Horn 1986] Robot Vision, Horn, B. K. P., MIT Press, 1986.

[González and Woods 2009] Digital Image Processing, González, R and Woods, R., Prentice Hall, 2009.

[Tomasi 1998] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings

of the IEEE International Conference on Computer Vision, 1998.

[Nayar 2022B] Image Formation, Nayar, S. K., Monograph FPCV-1-1, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022C] Image Sensing, Nayar, S. K., Monograph FPCV-1-2, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022D] Binary Images, Nayar, S. K., Monograph FPCV-1-3, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

	Image Processing 1 FPCV-1-4
	Image Processing 1 FPCV-1-4
	Image Processing 1 SN 03-15-2022 COVER
	Image Processing 1 SN 03-15-2022 FINAL

	References Processing 1

