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Today, face detection is a widely used computer vision technology. A typical face detector would place 
a window around each face in an image, as shown on the right. We want the detector to be able to find 
faces of different sizes because people could be at different distances from the camera.  We would also 
like it to be able to handle rotations (pose) of the head with respect to the camera. Finally, it should be 
insensitive to the lighting of the face. In our discussion, we will keep things simple and assume that 
we're looking for frontal faces, where each face is viewed head-on by the camera, as in the image 
above.   
 
 
We'll start by first looking at some important 
applications of face detection. Next, we will 
discuss what type of features would be good for 
face detection. We know how to compute edges, 
corners, and SIFT features. However, these 
features turn out not to be descriptive enough for 
reliably finding faces. Haar features, which are 
based on Haar filters, are particularly well-suited 
for face detection.  In addition to being robust, 
they are also efficient to compute. The efficiency 
comes from the use of a representation called the 
integral image which is computed once for an 
image, and enables us to compute Haar features with a minimal number of computations. Interestingly, 
the computational cost of a Haar feature is independent of the size of the corresponding Harr filter.  
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We now have a feature vector at each pixel in the image, based on which we want to classify a window 
around the pixel as a face or a non-face. To solve the classification problem, we first look at nearest 
neighbor classifiers, where, given a vector, we want to find the nearest neighbor in feature space and 
simply assign the class of that neighbor to the pixel. While this approach is simple, it is computationally 
prohibitive as we need to repeat it for every pixel in the image, and there could be millions of pixels. A 
significantly more efficient approach is to pre-compute linear decision boundaries in feature space and 
use them to classify each feature vector based on which side of the boundary it falls on.  The optimal 
decision boundaries are computed using an algorithm called the support vector machine. We show how 
a support vector machine can be constructed from a large set of feature vectors that correspond to faces 
and non-faces. We conclude with the results of applying our face detector to a video.  
 

 
Let us look at some popular applications of face detection. One of them is the use of face detection in 
mobile phone cameras. When we turn on the camera app, we go into a preview mode in which face 
detection runs in real-time in the background. Since we typically want faces to be of high quality in 
photographs and videos, the parameters of the camera, such as the focus setting, exposure and color 
balancing parameters, are adjusted based on the quality of the faces in the image. Higher importance is 
typically given to the more prominent (larger) faces. 
 
 

4

Uses of Face Detection

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

5

Where is Face Detection Used?

Automatic Selection of Camera Settings
(Autofocus, Exposure, Color Balance, etc.)

I.6



First Principles of Computer Vision                                                                                                                           Face Detection 
 
 

FPCV-2-5 3 

Here we see the application of visual search. In a 
search engine, if we run a query such as “gates”, 
we will find physical gates and people with the 
name Gates. If we are only interested in people, 
then we can click the Face button (circled) which 
uses face detection to further filter the results. 
The end result is images of people with the name 
Gates.  
 
 
 
 
 

On the left is the application of face detection to intelligent marketing. Shown here is a vending machine 
on one of the platforms at Shinagawa Station in Japan. When you walk up to it, it estimates your gender 
and approximate age from your face, and based on this demographic information, it presents various 
products on the display that might be of interest to you.  
 
Face detection is also used in malls to determine where people are spending time and attention. This 
information can be used to optimize inventory in a store or determine the price of advertising based on 
location. In the context of biometrics and security, shown on the right, face detection and recognition 
can be used to control access to spaces and to find suspicious people in public areas.  
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Now let's look at the problem of computing features for face detection. Imagine we wanted to find faces 
of a certain size. We would take a window of roughly that size and run it across the image in a raster 
scan fashion. At each pixel, we will extract features using the content within the window around it, and 
then classify the window as a face or a non-face. If we want to handle multiple scales or face sizes, we 
would repeat the above process for windows of different sizes.  
 
 
Here is a window containing a face. We want to 
extract features from this window, to get a feature 
vector. Once we have this vector, we want use a 
classifier to classify the window as a face or a non-
face. 
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What are good features for face detection? Edges 
and corners will not be that useful as they are not 
particularly descriptive. SIFT is an interesting 
candidate as it provides a description of the 
appearance within a window. While SIFT is very 
effective for matching appearances, in our 
context, the faces themselves can vary quite a bit 
in appearance, and what we are looking for is to 
distinguish between faces and non-faces.  Another 
approach would be to use templates for different 
components of the face. That is, we could use 
templates for the eyes, the nose, the mouth, etc., 
and perform template matching within the window to detect each of these component. If all the 
components are detected, and they appear in a plausible configuration with respect to each other, then 
a face can be declared to exist in the window. Such an approach has been tried in the past, but with 
limited success.  
 
 
As mentioned above, we need features that are 
good at discriminating between faces and non-
faces. We also require the features to be extremely 
efficient to compute. An image could have millions 
of pixels and we need to perform feature 
extraction at each of these pixels. In one of the 
applications we discussed before, which is 
automatically adjusting camera parameters for 
photography, we need to have face detection 
running in the background in real-time. This 
requires face detection to be extremely fast.  
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The features that we are going to use are called 
Haar features, which are computed using Haar 
filters. Haar filters are based on Haar wavelets, or 
essentially the square function. Shown here are 
the Haar filters for a specific window (face) size. 
Each filter is two-valued, which is computationally 
advantageous as we will see shortly. The entire set 
of filters yields a feature vector. Multiple such 
filter sets are used to find faces at different scales.  

 
 
 
 
Shown here is the simplest Haar filter applied to 
the same pixel in different images. The output of 
the filter is shown below each image. Since the 
filter is white (value of 1) on one side and black 
(value of -1) on the other it acts much like a large 
first-order derivative filter.  
 
 
 
 
 
 
Here we have the complete set of Haar filters we 
use. Each column of filters corresponds to a 
particular scale. Within each column, the first two 
filters estimate derivatives in the X and Y 
directions, respectively. The third one resembles 
a Laplacian filter that finds the second derivative 
along the X direction. As we go further down the 
column, the filters represent higher order 
derivatives of the image. Our goal is to apply the 
entire set of filters shown here efficiently. 
 16
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Each Haar filter is applied to an image as a 
correlation operator. Let us take a closer look at 
the computations needed to apply the simplest of 
the Haar filters at a pixel. Remember that the 
white part of the filter corresponds to a value of 1, 
and the black part corresponds to a value of -1. As 
a result, we can find the result of the correlation 
1  at a pixel without any multiplications. 

Essentially, we subtract the sum of the pixel 
intensities in the black area from the sum of the 
pixel intensities in the white area. Additions and 
subtractions are significantly cheaper than 
multiplications and divisions, and this is one of the key advantages of using Haar filters.  
 
To determine the computational cost of applying 
the above filter, assume that the filter is of size N 
x M. Then, we need (N x M - 1) additions per pixel, 
per scale. While this is cheap, we have a large 
number of filters to apply at each pixel. Can we do 
even better in terms of computations?  
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Integral Image

!" ##$ #%# #%& #%% #%!

!! ##$ #%$ ##' ##' #%!

!( #$! #%) ### #%* #*)

!" ##% #*% #$" #%* #**

!( ##* #)( #$" #%& #)%

!& ### #'" #%% #*$ #*(

!' #$) #(% #*$ #%' #*$

!" %$" *%! )&) &(' ($&

#!( )#( '&" "!! ##*( #*!&

%!) '%* !"" #*)$ #($# %$!*

*!% "** #**$ #(!$ %%() %(!!

)"! #$)* #'"( %%&& %"') *&*#

&") #%)! %$'# %(&# *)!$ )%!)

'"$ #))! %)** *%&* )##" &$&%

A table that holds the sum of all pixel values 
to the left and top of a given pixel, inclusive.

Image * Integral Image **

1  



First Principles of Computer Vision                                                                                                                           Face Detection 
 
 

FPCV-2-5 8 

We use the concept of an integral image to make Haar features significantly more efficient to compute. 
On the right, we have an original image and its integral image. In the integral image, the value stored 
at a pixel is the sum of the values of the pixels in the original image that are above it and to the left of 
it, including itself. This is illustrated by the shaded pixel in the integral image and the shaded region in 
the original image used to compute its value.   
 
 
Shown here is an image and its integral image. 
For now, let us assume the integral image is 
given to us; we will discuss how it is computed 
shortly. To find the sum of the values of pixels 
within the shaded box 1  in the original image, 
we take the value at P in the integral image and 
subtract the values at Q and S. In doing so, we 
have subtracted the sum of pixels in the shaded 
area 2  in the original image, twice. So, to the 
above, we add the integral image value at R.  
Hence, we have computed the sum of intensities 
within a rectangle in the original image with just 
three additions. It is worth noting that this cost is independent of the size of the rectangle.  
 
 
Now let’s return to our Haar filters. Once again, 
we’ll consider the simplest one, with half black 
and half white regions. Let’s treat each half as a 
separate rectangle. Then, for the white region, we 
need the integral image values at O, T, R, and S. 
For the black region, we need the values at P, Q, 
T, and O. The result of applying the filter is the 
sum of intensities in the white region minus the 
sum of intensities in the black region 1 . Thus, we 
end up with seven additions to compute the filter 
output for each pixel. The more sophisticated 
filters in our bank will each have more black and 
white regions, which would necessitate more computations. Even so, the integral image makes each of 
the filters significantly more efficient to compute and this efficiency is independent of the size of the 
filter. 

25

Haar Response using Integral Image
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Now, we describe how to compute the integral 
image of an image. This is done in a single raster 
scan of the image. The image is scanned starting 
from the top-left corner, and at each pixel A, we 
compute the value of the integral image using the 
integral image values at pixels B, C and D, all of 
which have already been computed. We simply 
add the integral image values at B and C and 
subtract the value at D to account for the fact that 
the rectangular region corresponding to D in the 
original image has been double counted.  
 
 
The integral image needs to be computed only 
once for a given image. Then, we can compute all 
the Haar features at each pixel to obtain the 
feature vector needed for classification. If we are 
interested in multiple scales, we will compute a 
feature vector and perform classification for each 
scale. 
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Computing Integral Image

Raster
Scanning

Let $4 and $$4 be the values of Image and Integral Image, 
respectively, at pixel O.

!
" #
$

$$4 = $$5 + $$6 − $$7 + $4
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Now we are ready to perform classification. To construct our classifier, we will assume that we have 
many examples of faces and non-faces. This is what we refer to as training data in our context. 

Consider a Haar feature vector which has n elements. We can represent the feature as a point in n-
dimensional space. In slide 32, the training points on the left correspond to faces	 1 ,and the ones on the 
right correspond to non-faces 2 . Given a new image window, we compute the feature vector for the 
window, which is again a point in n-dimensional space. We can find the closest neighbor in our training 
data to the new feature and assign it the class of this neighbor. This is how a nearest neighbor classifier 
works. In slide 32, we see that the novel window is that of a face and it is correctly classified as such. In 
slide 33, the input is a part of a face, which is not a face, and hence classified as a non-face. In the case 
of the cat in slide 34, the image is face-like and hence its nearest neighbor turns out to be a face. We 
clearly do not want to classify the cat as a human face. This is referred to as a false positive.  Note that 
the nearest neighbor in this case is not all that close to the input feature vector. One way to avoid such 
errors in classification is to increase our training data. If we substantially increase the non-faces, as in 
slide 35, it becomes more likely that such face-like (but not face) images will be classified as non-faces.  

1  2  
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We have seen that for the detector to perform 
well, we will need a large set of face and non-face 
examples. The problem with using a nearest 
neighbor classifier is the cost of finding the 
nearest neighbor. The naïve approach is of course 
to compare the input features with each of the 
training features. There are smarter ways of 
performing the search for the nearest neighbor, 
such as the use of K-D trees. However, even these 
approaches are expensive given the large number 
of pixels and features we are dealing with.  
 
 
That brings us to decision boundaries. The above 
problem becomes much simpler if, somehow, we 
can place a boundary between the two clusters— 
faces and non-faces. Then, all we need to do to 
classify a new window is to check which side of the 
boundary its feature lies on.  
 
 
 
 
 
 
 

1  
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We now present the concept of a support vector machine (SVM), which uses optimal decision 
boundaries to perform classification.  SVMs are widely used not just in computer vision but in many 
different fields.  
 
Let us assume that our feature vector is two-dimensional. The decision boundary in this case is a line. 
In vector form, the equation of a line is the coefficient vector 𝐰 times the feature vector 𝐟 plus a scalar 
𝑏	 1 . Now, given a new feature f, we simply plug it into the left side of the equation, and if the left side 
it is greater than 0, it is a face, and if it is less than 0, it is not a face.  
 
 
In a three-dimensional feature space, the linear 
decision boundary would be a 2D plane. Once 
again, we can write the equation of the plane 
using the same form as before	 1 . The parameters 
w and b describe the plane. For a new feature f, 
the classification test remains the same as before. 
 
 
  
 
 
 
Linear decision boundaries of the same form can 
be used irrespective of the dimensionality of the 
feature space. In an n-dimensional feature space, 
we have an (n-1)-dimensional hyperplane. Once 
again, the same equation and test can be used for 
classification.  
 
 
 
 
 
 
 

1  
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The key question is then, what is the optimal 
decision boundary to use, given a collection of 
faces and non-faces? In the example shown here, 
all of the three boundaries partition the face and 
non-face data well. However, when given a new 
input feature, the classification result can depend 
on which of these boundaries we choose.  
 
 
 
 
 
 
To evaluate the quality of a decision boundary, we 
define what is called a safe zone (shaded region). 
The width of the safe zone is called the margin. It 
is the width to which we can thicken the decision 
boundary until it touches features on both sides. 
Here, we’ve extended the safe zone until it hits 
two points on one side and the three points on the 
other. In general, the margin is therefore the 
width that a boundary can be increased by before 
it hits at least one feature point on each of the two 
sides. 
 
 
We can see that different decision boundaries will 
produce different safe zones. We want to choose 
the one that maximizes the margin, and that's 
achieved by using the support vector machine.  
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Evaluating a Decision Boundary

Margin or Safe Zone: The width that the boundary 
could be increased by, before hitting a feature point.

Margin
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It is called a support vector machine (SVM) 
because, when we are at the maximum margin, 
we are touching the points that can be seen as 
supporting the safe zone. Interestingly, once we 
have computed the support vectors and know 
which points lie on the boundary of the safe zone, 
we can safely ignore all the other points in our 
training set.  
 
 
 
 
Let us now look at how we can compute the 
support vectors. We describe the method for a 
single scale, noting that each scale requires a 
separate classifier. Given a set of training images 
{𝐼!, 𝐼", … 𝐼#} we compute their Haar features 
{𝐟𝟏, 𝐟𝟐, … 𝐟𝐤}. Since these are training images, we 
know their labels {𝜆!, 𝜆", … 𝜆#}, where a label is 
+1 for face and -1 for non-face. We want to find 
the decision boundary that maximizes the margin 
⍴.  
 
  
 
For each training sample, if the label is +1, then it 
lies to the left of the margin, and if it is -1, it lies to 
the right. We can combine both these constraints 
into one expression 1 .  
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Support Vector Machine (SVM)

Margin

Classifier optimized to Maximize Margin

Support Vectors: Closest data samples to the boundary

Decision Boundary & Margin depend only on Support Vectors 

[Cortes 1995]
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Support Vector Machine (SVM)
Given:

Decision Boundary P'! + A = 0

with Maximum Margin "

Margin ?

Find:

• # corresponding labels {%", %!, … , %#}, where %$ = +1 if ,$ is a 
face and %$ = −1 if ,$ is not a face.

P'! + A = 0

[Cortes 1995]

• # training images ,", ,!, … , ,# and their Haar features 
.", .!, … , .# .
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Finding Decision Boundary (%, #)

For each training sample (.%, %%):

If %% = +1: /&.% + 0 ≥ "/2
If %% = −1: /&.% + 0 ≤ −"/2

%% /&.% + 0 ≥ "/2

Margin ?

P'! + A = S/2

P'! + A > S/2

P'! + A = −S/2

P'! + A < −S/2

P'! + A = 0

1  
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Therefore, for a support vector (a vector touching 
the safe zone), we get equation 1 . In other 
words, support vectors must be exactly a distance 
of ⍴/2 from the decision boundary. There are well 
known algorithms for finding the parameters 𝐰 
and 𝑏 from training data. An example is the 
function svmtrain in MATLAB.  

 
 
 
 
 
Now we can classify a new feature vector f based 
on the decision boundary we just computed. We 
simply compute the distance d of the feature from 
the decision boundary. If d is greater or equal to 
⍴/2, it is a face; and if it is less or equal to -⍴/2, it 
is not a face. If f lies within the safe zone, we can 
classify it as being probably a face or probably not 
a face.  
 
 
 
 
In this example provided by Mikhail Hruby, the 
above face detector is applied to a clip from the 
movie The Matrix.  We end up with multiple 
windows around each face because there are 
several pixels or scales that are close to each other 
that produce features that are classified as faces. 
One can imagine using something like non-
maximum suppression, which we discussed in the 
context of corner detection, to find a single 
window to represent each cluster of windows.  
 
 
 

48

Finding Decision Boundary (%, #)

Then for every support vector 5 ∈ 7: %' /&.' + 0 = "/2

Numerical methods exist to find 
/, 0 and 4 that maximize "

If 4 is the set of support vectors,

For each training sample (.%, %%):

If %% = +1: /&.% + 0 ≥ "/2
If %% = −1: /&.% + 0 ≤ −"/2

%% /&.% + 0 ≥ "/2

[Cortes 1995]

MATLAB: svmtrain
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Classification using SVM

Given: Haar features . for an image window and
SVM parameters /, 0, ",4

Classification:

8 > 0 ;<8 8 < ⁄" 2
8 ≥ ⁄" 2

Compute 8 = /&. + 0

8 < 0 ;<8 8 > ⁄−" 2
8 ≤ ⁄−" 2

If:

Face

Not-Face

Probably Face

Probably Not-Face
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Face Detection Results
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We will conclude with a few remarks related to 
face detection. First, while current face detection 
systems are not perfect, they work very well. We 
know this as they are being widely used today in a 
variety of products. Second, one way to handle 
non-frontal faces (faces oriented away from the 
camera) is to train additional classifiers, each one 
tuned to handle a small range of orientations. Face 
detection is a highly successful vision technology 
that is used in photographic cameras, surveillance, 
security, biometrics, and so on. Finally, the 
performance of face detection continues to 
improve. In fact, if we consider face recognition, for which face detection is a precursor, machines are 
beginning to surpass the performance of humans.  
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