

Face Detection

Shree K. Nayar

Lecture: FPCV-2-5

Module: Features

Series: First Principles of Computer Vision

Computer Science, Columbia University

February, 2025

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Face Detection

FPCV-2-5 1

Today, face detection is a widely used computer vision technology. A typical face detector would place
a window around each face in an image, as shown on the right. We want the detector to be able to find
faces of different sizes because people could be at different distances from the camera. We would also
like it to be able to handle rotations (pose) of the head with respect to the camera. Finally, it should be
insensitive to the lighting of the face. In our discussion, we will keep things simple and assume that
we're looking for frontal faces, where each face is viewed head-on by the camera, as in the image
above.

We'll start by first looking at some important
applications of face detection. Next, we will
discuss what type of features would be good for
face detection. We know how to compute edges,
corners, and SIFT features. However, these
features turn out not to be descriptive enough for
reliably finding faces. Haar features, which are
based on Haar filters, are particularly well-suited
for face detection. In addition to being robust,
they are also efficient to compute. The efficiency
comes from the use of a representation called the
integral image which is computed once for an
image, and enables us to compute Haar features with a minimal number of computations. Interestingly,
the computational cost of a Haar feature is independent of the size of the corresponding Harr filter.

1

Face Detection

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Locate human faces in images

What is Face Detection?

I.5

3

Face Detection

Topics:

(1) Uses of Face Detection

(2) Haar Features for Face Detection

(3) Integral Image

(4) Nearest Neighbor Classifier

(5) Support Vector Machine

Locate human faces in images.

First Principles of Computer Vision Face Detection

FPCV-2-5 2

We now have a feature vector at each pixel in the image, based on which we want to classify a window
around the pixel as a face or a non-face. To solve the classification problem, we first look at nearest
neighbor classifiers, where, given a vector, we want to find the nearest neighbor in feature space and
simply assign the class of that neighbor to the pixel. While this approach is simple, it is computationally
prohibitive as we need to repeat it for every pixel in the image, and there could be millions of pixels. A
significantly more efficient approach is to pre-compute linear decision boundaries in feature space and
use them to classify each feature vector based on which side of the boundary it falls on. The optimal
decision boundaries are computed using an algorithm called the support vector machine. We show how
a support vector machine can be constructed from a large set of feature vectors that correspond to faces
and non-faces. We conclude with the results of applying our face detector to a video.

Let us look at some popular applications of face detection. One of them is the use of face detection in
mobile phone cameras. When we turn on the camera app, we go into a preview mode in which face
detection runs in real-time in the background. Since we typically want faces to be of high quality in
photographs and videos, the parameters of the camera, such as the focus setting, exposure and color
balancing parameters, are adjusted based on the quality of the faces in the image. Higher importance is
typically given to the more prominent (larger) faces.

4

Uses of Face Detection

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

5

Where is Face Detection Used?

Automatic Selection of Camera Settings
(Autofocus, Exposure, Color Balance, etc.)

I.6

First Principles of Computer Vision Face Detection

FPCV-2-5 3

Here we see the application of visual search. In a
search engine, if we run a query such as “gates”,
we will find physical gates and people with the
name Gates. If we are only interested in people,
then we can click the Face button (circled) which
uses face detection to further filter the results.
The end result is images of people with the name
Gates.

On the left is the application of face detection to intelligent marketing. Shown here is a vending machine
on one of the platforms at Shinagawa Station in Japan. When you walk up to it, it estimates your gender
and approximate age from your face, and based on this demographic information, it presents various
products on the display that might be of interest to you.

Face detection is also used in malls to determine where people are spending time and attention. This
information can be used to optimize inventory in a store or determine the price of advertising based on
location. In the context of biometrics and security, shown on the right, face detection and recognition
can be used to control access to spaces and to find suspicious people in public areas.

6

Where is Face Detection Used?

Faces of people named “Gates”

Finding People using Search Engines

Face Detection

7

Where is Face Detection Used?

Intelligent Marketing

I.2

8

Where is Face Detection Used?

Biometrics, Surveillance, Monitoring

I.3

First Principles of Computer Vision Face Detection

FPCV-2-5 4

Now let's look at the problem of computing features for face detection. Imagine we wanted to find faces
of a certain size. We would take a window of roughly that size and run it across the image in a raster
scan fashion. At each pixel, we will extract features using the content within the window around it, and
then classify the window as a face or a non-face. If we want to handle multiple scales or face sizes, we
would repeat the above process for windows of different sizes.

Here is a window containing a face. We want to
extract features from this window, to get a feature
vector. Once we have this vector, we want use a
classifier to classify the window as a face or a non-
face.

9

Haar Features for Face Detection

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

10

Face Detection in Computers

Slide windows of different sizes across image.
At each location match window to face model.

I.5

First Principles of Computer Vision Face Detection

FPCV-2-5 5

What are good features for face detection? Edges
and corners will not be that useful as they are not
particularly descriptive. SIFT is an interesting
candidate as it provides a description of the
appearance within a window. While SIFT is very
effective for matching appearances, in our
context, the faces themselves can vary quite a bit
in appearance, and what we are looking for is to
distinguish between faces and non-faces. Another
approach would be to use templates for different
components of the face. That is, we could use
templates for the eyes, the nose, the mouth, etc.,
and perform template matching within the window to detect each of these component. If all the
components are detected, and they appear in a plausible configuration with respect to each other, then
a face can be declared to exist in the window. Such an approach has been tried in the past, but with
limited success.

As mentioned above, we need features that are
good at discriminating between faces and non-
faces. We also require the features to be extremely
efficient to compute. An image could have millions
of pixels and we need to perform feature
extraction at each of these pixels. In one of the
applications we discussed before, which is
automatically adjusting camera parameters for
photography, we need to have face detection
running in the background in real-time. This
requires face detection to be extremely fast.

12

What are Good Features?

Facial Components (Templates)?

Interest Points (Edges, Corners, SIFT)?

I.7

13

Characteristics of Good Features

Discriminate Face/Non-Face

≠

Extremely Fast to Compute
Need to evaluate millions of windows in an image

I.8

First Principles of Computer Vision Face Detection

FPCV-2-5 6

The features that we are going to use are called
Haar features, which are computed using Haar
filters. Haar filters are based on Haar wavelets, or
essentially the square function. Shown here are
the Haar filters for a specific window (face) size.
Each filter is two-valued, which is computationally
advantageous as we will see shortly. The entire set
of filters yields a feature vector. Multiple such
filter sets are used to find faces at different scales.

Shown here is the simplest Haar filter applied to
the same pixel in different images. The output of
the filter is shown below each image. Since the
filter is white (value of 1) on one side and black
(value of -1) on the other it acts much like a large
first-order derivative filter.

Here we have the complete set of Haar filters we
use. Each column of filters corresponds to a
particular scale. Within each column, the first two
filters estimate derivatives in the X and Y
directions, respectively. The third one resembles
a Laplacian filter that finds the second derivative
along the X direction. As we go further down the
column, the filters represent higher order
derivatives of the image. Our goal is to apply the
entire set of filters shown here efficiently.
 16

Detecting Faces of Different Size

⋮⋮⋮⋮

Compute Haar Features at different scales to
detect faces of different sizes.

First Principles of Computer Vision Face Detection

FPCV-2-5 7

Each Haar filter is applied to an image as a
correlation operator. Let us take a closer look at
the computations needed to apply the simplest of
the Haar filters at a pixel. Remember that the
white part of the filter corresponds to a value of 1,
and the black part corresponds to a value of -1. As
a result, we can find the result of the correlation
1 at a pixel without any multiplications.

Essentially, we subtract the sum of the pixel
intensities in the black area from the sum of the
pixel intensities in the white area. Additions and
subtractions are significantly cheaper than
multiplications and divisions, and this is one of the key advantages of using Haar filters.

To determine the computational cost of applying
the above filter, assume that the filter is of size N
x M. Then, we need (N x M - 1) additions per pixel,
per scale. While this is cheap, we have a large
number of filters to apply at each pixel. Can we do
even better in terms of computations?

19

Integral Image

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

21

Integral Image

!" ##$ #%# #%& #%% #%!

!! ##$ #%$ ##' ##' #%!

!(#$! #%) ### #%* #*)

!" ##% #*% #$" #%* #**

!(##* #)(#$" #%& #)%

!& ### #'" #%% #*$ #*(

!' #$) #(% #*$ #%' #*$

!" %$" *%!)&) &(' ($&

#!()#('&" "!! ##*(#*!&

%!) '%* !"" #*)$ #($# %$!*

*!% "** #**$ #(!$ %%() %(!!

)"! #$)* #'"(%%&& %"') *&*#

&") #%)! %$'# %(&# *)!$)%!)

'"$ #))! %)** *%&*)##" &$&%

A table that holds the sum of all pixel values
to the left and top of a given pixel, inclusive.

Image * Integral Image **

1

First Principles of Computer Vision Face Detection

FPCV-2-5 8

We use the concept of an integral image to make Haar features significantly more efficient to compute.
On the right, we have an original image and its integral image. In the integral image, the value stored
at a pixel is the sum of the values of the pixels in the original image that are above it and to the left of
it, including itself. This is illustrated by the shaded pixel in the integral image and the shaded region in
the original image used to compute its value.

Shown here is an image and its integral image.
For now, let us assume the integral image is
given to us; we will discuss how it is computed
shortly. To find the sum of the values of pixels
within the shaded box 1 in the original image,
we take the value at P in the integral image and
subtract the values at Q and S. In doing so, we
have subtracted the sum of pixels in the shaded
area 2 in the original image, twice. So, to the
above, we add the integral image value at R.
Hence, we have computed the sum of intensities
within a rectangle in the original image with just
three additions. It is worth noting that this cost is independent of the size of the rectangle.

Now let’s return to our Haar filters. Once again,
we’ll consider the simplest one, with half black
and half white regions. Let’s treat each half as a
separate rectangle. Then, for the white region, we
need the integral image values at O, T, R, and S.
For the black region, we need the values at P, Q,
T, and O. The result of applying the filter is the
sum of intensities in the white region minus the
sum of intensities in the black region 1 . Thus, we
end up with seven additions to compute the filter
output for each pixel. The more sophisticated
filters in our bank will each have more black and
white regions, which would necessitate more computations. Even so, the integral image makes each of
the filters significantly more efficient to compute and this efficiency is independent of the size of the
filter.

25

Haar Response using Integral Image

= (2061– 329 + 98– 584) – (3490– 576 + 329– 2061) = 64

!" ##$ #%# #%& #%% #%!

!! ##$ #%$ ##' ##' #%!

!(#$! #%) ### #%* #*)

!" ##% #*% #$" #%* #**

!(##* #)(#$" #%& #)%

!& ### #'" #%% #*$ #*(

!' #$) #(% #*$ #%' #*$

!" %$" *%!)&) &(' ($&

#!()#('&" "!! ##*(#*!&

%!) '%* !"" #*)$ #($# %$!*

*!% "** #**$ #(!$ %%() %(!!

)"! #$)* #'"(%%&& %"') *&*#

&") #%)! %$'# %(&# *)!$)%!)

'"$ #))! %)** *%&*)##" &$&%

/1

.0

2

3

Computational Cost: Only 7 additions

Image * Integral Image **

= II& − II' + II% − II$ − II" − II# + II' − II&

'! = ∑ 9#:75 #;<7;=#<#7= #; >ℎ#<7 – ∑ 9#:75 #;<7;=#<#7= #; A54BC

1

1

2

First Principles of Computer Vision Face Detection

FPCV-2-5 9

Now, we describe how to compute the integral
image of an image. This is done in a single raster
scan of the image. The image is scanned starting
from the top-left corner, and at each pixel A, we
compute the value of the integral image using the
integral image values at pixels B, C and D, all of
which have already been computed. We simply
add the integral image values at B and C and
subtract the value at D to account for the fact that
the rectangular region corresponding to D in the
original image has been double counted.

The integral image needs to be computed only
once for a given image. Then, we can compute all
the Haar features at each pixel to obtain the
feature vector needed for classification. If we are
interested in multiple scales, we will compute a
feature vector and perform classification for each
scale.

26

Computing Integral Image

Raster
Scanning

Let $4 and $$4 be the values of Image and Integral Image,
respectively, at pixel O.

!
" #
$

$$4 = $$5 + $$6 − $$7 + $4

28

Nearest Neighbor Classifier

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

29

Classifier for Face Detection

Given the features for a window, how to decide
whether it contains a face or not?

!
!

!!

I.5

First Principles of Computer Vision Face Detection

FPCV-2-5 10

Now we are ready to perform classification. To construct our classifier, we will assume that we have
many examples of faces and non-faces. This is what we refer to as training data in our context.

Consider a Haar feature vector which has n elements. We can represent the feature as a point in n-
dimensional space. In slide 32, the training points on the left correspond to faces	 1 ,and the ones on the
right correspond to non-faces 2 . Given a new image window, we compute the feature vector for the
window, which is again a point in n-dimensional space. We can find the closest neighbor in our training
data to the new feature and assign it the class of this neighbor. This is how a nearest neighbor classifier
works. In slide 32, we see that the novel window is that of a face and it is correctly classified as such. In
slide 33, the input is a part of a face, which is not a face, and hence classified as a non-face. In the case
of the cat in slide 34, the image is face-like and hence its nearest neighbor turns out to be a face. We
clearly do not want to classify the cat as a human face. This is referred to as a false positive. Note that
the nearest neighbor in this case is not all that close to the input feature vector. One way to avoid such
errors in classification is to increase our training data. If we substantially increase the non-faces, as in
slide 35, it becomes more likely that such face-like (but not face) images will be classified as non-faces.

1 2

First Principles of Computer Vision Face Detection

FPCV-2-5 11

We have seen that for the detector to perform
well, we will need a large set of face and non-face
examples. The problem with using a nearest
neighbor classifier is the cost of finding the
nearest neighbor. The naïve approach is of course
to compare the input features with each of the
training features. There are smarter ways of
performing the search for the nearest neighbor,
such as the use of K-D trees. However, even these
approaches are expensive given the large number
of pixels and features we are dealing with.

That brings us to decision boundaries. The above
problem becomes much simpler if, somehow, we
can place a boundary between the two clusters—
faces and non-faces. Then, all we need to do to
classify a new window is to check which side of the
boundary its feature lies on.

1

First Principles of Computer Vision Face Detection

FPCV-2-5 12

We now present the concept of a support vector machine (SVM), which uses optimal decision
boundaries to perform classification. SVMs are widely used not just in computer vision but in many
different fields.

Let us assume that our feature vector is two-dimensional. The decision boundary in this case is a line.
In vector form, the equation of a line is the coefficient vector 𝐰 times the feature vector 𝐟 plus a scalar
𝑏	 1 . Now, given a new feature f, we simply plug it into the left side of the equation, and if the left side
it is greater than 0, it is a face, and if it is less than 0, it is not a face.

In a three-dimensional feature space, the linear
decision boundary would be a 2D plane. Once
again, we can write the equation of the plane
using the same form as before	 1 . The parameters
w and b describe the plane. For a new feature f,
the classification test remains the same as before.

Linear decision boundaries of the same form can
be used irrespective of the dimensionality of the
feature space. In an n-dimensional feature space,
we have an (n-1)-dimensional hyperplane. Once
again, the same equation and test can be used for
classification.

1

First Principles of Computer Vision Face Detection

FPCV-2-5 13

The key question is then, what is the optimal
decision boundary to use, given a collection of
faces and non-faces? In the example shown here,
all of the three boundaries partition the face and
non-face data well. However, when given a new
input feature, the classification result can depend
on which of these boundaries we choose.

To evaluate the quality of a decision boundary, we
define what is called a safe zone (shaded region).
The width of the safe zone is called the margin. It
is the width to which we can thicken the decision
boundary until it touches features on both sides.
Here, we’ve extended the safe zone until it hits
two points on one side and the three points on the
other. In general, the margin is therefore the
width that a boundary can be increased by before
it hits at least one feature point on each of the two
sides.

We can see that different decision boundaries will
produce different safe zones. We want to choose
the one that maximizes the margin, and that's
achieved by using the support vector machine.

43

Evaluating a Decision Boundary

Margin or Safe Zone: The width that the boundary
could be increased by, before hitting a feature point.

Margin

44

Evaluating a Decision Boundary

Choose Decision Boundary with Maximum Margin!

Margin I

° °°
°

°° °°

Margin II

° °°
°

°° °°

++

Decision I: Face Decision II: Non-Face

First Principles of Computer Vision Face Detection

FPCV-2-5 14

It is called a support vector machine (SVM)
because, when we are at the maximum margin,
we are touching the points that can be seen as
supporting the safe zone. Interestingly, once we
have computed the support vectors and know
which points lie on the boundary of the safe zone,
we can safely ignore all the other points in our
training set.

Let us now look at how we can compute the
support vectors. We describe the method for a
single scale, noting that each scale requires a
separate classifier. Given a set of training images
{𝐼!, 𝐼", … 𝐼#} we compute their Haar features
{𝐟𝟏, 𝐟𝟐, … 𝐟𝐤}. Since these are training images, we
know their labels {𝜆!, 𝜆", … 𝜆#}, where a label is
+1 for face and -1 for non-face. We want to find
the decision boundary that maximizes the margin
⍴.

For each training sample, if the label is +1, then it
lies to the left of the margin, and if it is -1, it lies to
the right. We can combine both these constraints
into one expression 1 .

45

Support Vector Machine (SVM)

Margin

Classifier optimized to Maximize Margin

Support Vectors: Closest data samples to the boundary

Decision Boundary & Margin depend only on Support Vectors

[Cortes 1995]

46

Support Vector Machine (SVM)
Given:

Decision Boundary P'! + A = 0

with Maximum Margin "

Margin ?

Find:

• # corresponding labels {%", %!, … , %#}, where %$ = +1 if ,$ is a
face and %$ = −1 if ,$ is not a face.

P'! + A = 0

[Cortes 1995]

• # training images ,", ,!, … , ,# and their Haar features
.", .!, … , .# .

47

Finding Decision Boundary (%, #)

For each training sample (.%, %%):

If %% = +1: /&.% + 0 ≥ "/2
If %% = −1: /&.% + 0 ≤ −"/2

%% /&.% + 0 ≥ "/2

Margin ?

P'! + A = S/2

P'! + A > S/2

P'! + A = −S/2

P'! + A < −S/2

P'! + A = 0

1

First Principles of Computer Vision Face Detection

FPCV-2-5 15

Therefore, for a support vector (a vector touching
the safe zone), we get equation 1 . In other
words, support vectors must be exactly a distance
of ⍴/2 from the decision boundary. There are well
known algorithms for finding the parameters 𝐰
and 𝑏 from training data. An example is the
function svmtrain in MATLAB.

Now we can classify a new feature vector f based
on the decision boundary we just computed. We
simply compute the distance d of the feature from
the decision boundary. If d is greater or equal to
⍴/2, it is a face; and if it is less or equal to -⍴/2, it
is not a face. If f lies within the safe zone, we can
classify it as being probably a face or probably not
a face.

In this example provided by Mikhail Hruby, the
above face detector is applied to a clip from the
movie The Matrix. We end up with multiple
windows around each face because there are
several pixels or scales that are close to each other
that produce features that are classified as faces.
One can imagine using something like non-
maximum suppression, which we discussed in the
context of corner detection, to find a single
window to represent each cluster of windows.

48

Finding Decision Boundary (%, #)

Then for every support vector 5 ∈ 7: %' /&.' + 0 = "/2

Numerical methods exist to find
/, 0 and 4 that maximize "

If 4 is the set of support vectors,

For each training sample (.%, %%):

If %% = +1: /&.% + 0 ≥ "/2
If %% = −1: /&.% + 0 ≤ −"/2

%% /&.% + 0 ≥ "/2

[Cortes 1995]

MATLAB: svmtrain

49

Classification using SVM

Given: Haar features . for an image window and
SVM parameters /, 0, ",4

Classification:

8 > 0 ;<8 8 < ⁄" 2
8 ≥ ⁄" 2

Compute 8 = /&. + 0

8 < 0 ;<8 8 > ⁄−" 2
8 ≤ ⁄−" 2

If:

Face

Not-Face

Probably Face

Probably Not-Face

50

Face Detection Results

I.4

1

First Principles of Computer Vision Face Detection

FPCV-2-5 16

We will conclude with a few remarks related to
face detection. First, while current face detection
systems are not perfect, they work very well. We
know this as they are being widely used today in a
variety of products. Second, one way to handle
non-frontal faces (faces oriented away from the
camera) is to train additional classifiers, each one
tuned to handle a small range of orientations. Face
detection is a highly successful vision technology
that is used in photographic cameras, surveillance,
security, biometrics, and so on. Finally, the
performance of face detection continues to
improve. In fact, if we consider face recognition, for which face detection is a precursor, machines are
beginning to surpass the performance of humans.

 54

Image Credits
I.1 http://dailymail.co.uk/sciencetech/article-1339112/Facebook-facial-recognition-.

software-suggest-friends-tagging-new-photos.html Associated Newspapers Ltd.

I.2 http://www.designboom.com/design/acure-digital-vending-machine/

I.3 https://www.youtube.com/watch?v=meRSKCS0d-A Herta Security.

I.4 M. Hruby. http://mhr3.blogspot.com/2012/03/face-detection-with-opencl.html

Used with permission.

I.5 Purchased from iStock by Getty Images.

I.6 Purchased from iStock by Getty Images.

I.7 Purchased from iStock by Getty Images.

I.8 Purchased from iStock by Getty Images.

52

References and Credits

Topic: Face Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

53

References: Papers

[Burges 1998] C. J. C. Burges. “A Tutorial on Support Vector Machines for
Pattern Recognition”. 1998.

[Freund 1996] Y. Freund and R. E. Schapire. “Experiments with a new boosting
algorithm”. 1996.

[Viola 2004] P. Viola and M. Jones. “Robust real-time face detection”. 2004.

[Cortes 1995] C. Cortes and V. N. Vapnik. "Support-Vector Networks".
Machine Learning 1995.

[Crow 1985] F. Crow. "Summed-area tables for texture mapping" .
SIGGRAPH 1984.

First Principles of Computer Vision Face Detection

FPCV-2-5 17

Acknowledgements: Thanks to Roshan Kenia and Ayush Sharma for their help with transcription, editing
and proofreading.

First Principles of Computer Vision Face Detection

FPCV-2-5

References

[Burges 1998] C. J. C. Burges. “A Tutorial on Support Vector Machines for Pattern Recognition”. 1998.

[Cortes 1995] C. Cortes and V. N. Vapnik. "Support-Vector Networks". Machine Learning 1995.

[Crow 1985] F. Crow. "Summed-area tables for texture mapping" . SIGGRAPH 1984.

[Freund 1996] Y. Freund and R. E. Schapire. “Experiments with a new boosting algorithm”. 1996.

[Viola 2004] P. Viola and M. Jones. “Robust real-time face detection”. 2004.

	Face Detection SN 02 12 2025 COVER
	Face Detection SN 02 12 2025
	References Face

