
 

 

 

 

Edge Detection 
 

 

 

 

Shree K. Nayar 

 

Monograph: FPCV-2-1 

Module: Features 

Series: First Principles of Computer Vision 

Computer Science, Columbia University 

 

May 15, 2022 

 

 

FPCV Channel 

FPCV Website 

 

 

 

 
 

 

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/


First Principles of Computer Vision                                                                                                                           Edge Detection 
 

FPCV-2-1 1 

In this lecture, we will discuss the detection of edges in an image. From the perspective of information 
theory, edges are critical to computer vision. An edge can be loosely defined as any location where there 
is a rapid change in image intensity along one direction.  

We will begin by looking at the physical phenomena that give rise to edges, the attributes of an edge 
that we would like to compute, and the performance criteria that a good edge detector should satisfy. 
Next, we will develop a theoretical framework for edge detection. We will construct an edge detector 
that is based on the gradient operator, which uses the first derivatives of an image. Then, we will look at 
edge detection using the Laplacian operator, which uses the second derivatives of the image. We will 
examine the advantages and disadvantages of the gradient operator and Laplacian operator. That will 
lead us to the widely used Canny edge detector, which uses the best attributes of both of these detectors 
to create a reliable and powerful edge detector.  

Finally, we will look at the problem of corner detection. A corner is defined as any location where two 
edges meet at an angle. We want to be able to find the precise location of the corner without needing 
to know the intensity values on either side of the corner or the angle at which the edges meet. We will 
describe the Harris corner detector, which is widely used. 
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Convert a 2D image into a set of points where 
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Loosely speaking, we can define an edge as a rapid change in image intensity within a small window in 
an image. Let us take a look at why edges are crucial in computer vision. Here is an example from Vic 
Nalwa's book. On the left is a photograph of a sculpture by Henry Moore, and on the right is an artist’s 
sketch of the sculpture. With just a few strokes, the artist is able to convey essential information about 
the sculpture — its three-dimensional structure, its shading, its highlights, and so on. From this example, 
we can see that edges, even when sparse in an image, are capable of conveying vital visual information. 
 
 
Now let us take a look at some of the physical 
phenomena in the real world that cause edges in 
images. If one object is located in front of another, 
there will likely be a sudden change in intensity 
along the boundary between the two objects. We 
refer to these as edges that result from a 
discontinuity in depth. Even if two surfaces are 
made of the same material, if they have different 
surface orientations where they meet, they will 
likely receive different amounts of light from the 
light sources in the scene, and hence have 
different brightness values. We refer to these 
edges as arising from a discontinuity in surface normal. Additionally, if the surface is marked, such as the 
letters on the bottle here, it will have surface reflectance (material) discontinuities, that again result in 
edges. Finally, we can have shadows, or illumination discontinuities. Here, the bottle casts a sharp 
shadow on the background, resulting in a significant difference in the amount of light falling within and 
outside the shadow. This, again, gives rise to edges.  
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Rapid change in image intensity within small region

What is an Edge?

I.1

5

Causes of Edges

Depth Discontinuity

Surface Reflectance Discontinuity

Illumination Discontinuity

Surface Normal Discontinuity

I.2

Rapid changes in image intensity are caused 
by various physical phenomena.
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In an image, edges can manifest with many 
different profiles, a few of which are shown here. 
They include the simple step function, a step edge 
with a gradient on either side, a linear gradient on 
one side with a non-linear gradient on the other 
side, and a roof edge. When you consider the 
profile of a line, it can be viewed as being 
composed of a rising and a falling edge.  For our 
purposes here, we need to choose a single model 
for the edge that we can use to develop a theory 
of edge detection. To this end, we will take the 
simplest of these models —the step function. 
 
It would be nice if edges appeared in images like 
the very clean step function shown above. That 
would make the problem of edge detection a lot 
easier. Unfortunately for us, they tend to look like 
the function shown here. This is because the edge 
profile itself can deviate from the step function, 
and the image has noise due to the various factors 
we discussed in the lecture on image sensing.   
 
 
 
 
Our edge detector should be able to find the 
position of an edge. Note that the exact location 
of an edge can lie within a pixel. We therefore 
would like to find edges with sub-pixel accuracy. 
We also want to measure the magnitude 
(strength) of the edge, so that we can decide 
whether it is worthy of attention. It is often useful 
to know the orientation of the edge as well.  
We would like our detector to perform well in a 
few different respects. First, it should have a high 
detection rate — we want to not only detect all 
the edges, but also not detect edges where they 
do not exist. We also want it to have good localization, which means it is able to find an edge as close as 
possible to where it actually occurs. Finally, we want the detector to be resilient to noise.  

6

Types of Edges

Step Edges

Roof Edge Line Edges

[Nalwa 1986]

7

Real Edges

Problems: Noisy Images and Discrete Images 

!

"
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Edge Detector

We want an Edge Operator that produces:

• Edge Position

• Edge Magnitude (Strength)

• Edge Orientation (Direction)

Performance Requirements:

• High Detection Rate

• Good Localization

• Low Noise Sensitivity



First Principles of Computer Vision                                                                                                                           Edge Detection 
 

FPCV-2-1 4 

 
The first edge detector we will discuss, the gradient operator, is based on the first derivatives of the 
image. Let us start with a simple example of a 1D signal, 𝑓(𝑥). We know that an edge is a rapid change 
in image intensity within a small region. Shown here is a rising edge on one side and a falling edge on 
the other. Calculus tells us that the derivative of a continuous function represents the amount of change 
in the function, and change is what we are trying to measure. Thus, it makes sense for us to find the first 
derivative of this function and see what that does to both the edges.  
 
 
Here we see the first derivative of 𝑓 with respect to 
𝑥. It has a maximum at the point where the rising 
edge is located. For the falling edge, we have exactly 
the same output, but it is flipped. Thus, the local 
extrema in the first derivative tell you where the 
edges are located. If we take the absolute value of 
the first derivative, the locations of the peaks 
(maxima) correspond to the locations of the edges, 
while the magnitudes of the peaks reveal the 
strengths of the edges.  
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1D Edge Detection

Basic Calculus: Derivative of a continuous function 
represents the amount of change in the function.

!(#):

#

Edge Edge

Edge is a rapid change in image intensity in a small region.
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Edge Detection Using 1st Derivative

First Derivative: 
%!
%#

!(#)

First Derivative
Absolute Value:

%!
%#

Local Extrema
Indicate Edges

Local Maxima
Indicate Edges

Provides Both Location and Strength of an Edge
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How do we apply this idea of using the first 
derivative to two-dimensional images? We know 
from calculus that the partial derivatives of a 2D 
continuous function with respect to its two 
dimensions, 𝑥 and 𝑦, represent the amount of 
change along each of the two dimensions.  
 
 
 
 
 
 
 
That brings us to the gradient operator, also called 
the “del” operator, which produces two numbers as 
a vector. The first is the derivative of the image with 
respect to 𝑥, while the second is the derivative of the 
image with respect to 𝑦. These two numbers tell us 
everything we need to know about the local change 
in intensity. Let us take a look at a few examples. On 
the left we see a vertical edge. In this case, we get a 
non-zero value for the 𝑥 component and zero for the 
𝑦 component as there is no change along the 𝑦 
direction. For the second image, we get zero for the 
𝑥 component and a non-zero value for the 𝑦 
component. Finally, for the third image of a tilted edge, we get non-zero values for both components. 
From just these two numbers at each pixel, we can find both the strength (magnitude) of the edge, as 
well as its orientation (direction).  
 

12

2D Edge Detection

Basic Calculus: Partial Derivatives of a 2D continuous function 
represents the amount of change along each dimension. 

& #, ( :

Edge

Edge
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Gradient (!)
Gradient (Partial Derivatives) represents the direction 
of most rapid change in intensity

#! = )*
)+ , 0 #! = 0, )*), #! = )*

)+ ,
)*
),

!" = $"
$% ,

$"
$' Pronounced as “Del I”

%&
%#

%&
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The equations for magnitude and orientation are 
shown here. The magnitude of an edge is simply the 
square root of the sum of the squares of the partial 
derivatives. The orientation the edge is the inverse 
tangent of the first derivative with respect to 𝑦 
divided by the first derivative with respect to 𝑥. 
 
 
 
 
 
 
 
All of the above was done in continuous domain. 
Now let us see how we might apply our edge 
detector to a discrete image. In the discrete case, we 
know that derivatives are implemented using finite 
differences. Shown here are the finite difference 
approximations for the partial derivatives with 
respect to 𝑥 and 𝑦. To find a difference, we need at 
least two neighboring pixels. So, to find finite 
differences in both directions (𝑥 and 𝑦) we need at 
least two pixels in each direction. Thus, we use a 
window of 2x2 = 4 pixels. Let us assume that the 
physical distance between adjacent pixels is ε. Then, 
the derivative in the 𝑥 direction is the equation on the top, and we have similar equation for the 𝑦 
component.  
 
We can compute the two derivatives using convolutions with the two kernels (filters) shown below. Here, 
the “flips” that are needed for each convolution have already been applied. Even if we do not know the 
physical distance, ε, between adjacent pixels, it does not matter — the resulting derivatives will simply 
be scaled by an unknown factor that is the same for both components and for all pixels in the image. 
Once we have computed the two components of the gradient, we use them to find the magnitude and 
the orientation of the edge as previously discussed.  If ε is unknown, the computed magnitude will simply 
be a scaled version of the true value.  
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Gradient (!) as Edge Detector

Gradient Magnitude ( = !" = $"
$%

!
+ $"

$'
!

Gradient Orientation * = tan"# $"
$' /

$"
$%

!
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Discrete Gradient (!) Operator

Note: Convolution flips have been applied

&!,#$%

&!,#

&!$%,#$%

&!$%,#
"

'!
'" ≈

1
2+ #!"#,%"# − &!,#$% + #!"#,% − &!,#

'!
'- ≈

1
2+ #!"#,%"# − &!$%,# + #!,%"# − &!,#

'
'" ≈

1
2+

−1 1

1−1

'
'- ≈

1
2+

1 1

−1−1

Finite difference approximations:

Can be implemented as Convolution!
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Based on this approach, a variety of gradient 
operators have been proposed over the last few 
decades, starting with the Roberts operator shown  
on the left. In this case, note that the derivatives 
are being computed in the two diagonal 
directions. This is not a problem as the derivatives 
in any two orthogonal directions can be used to 
find the magnitude and direction of an edge. The 
Prewitt operator appeared around 1965. The 
Sobel operator was popular for a long time. We 
can see that these operators are getting larger as 
we move from left to right. When we have a small 
operator, we can expect very good localization for the edges, as small operators will not be affected by 
image content that is far away from the pixel of interest. On the other hand, a small detector is bound 
to be extremely sensitive to noise. In the case of the Roberts detector, since only four numbers are being 
used to determine whether a point has an edge, if noise corrupts even one of these four numbers, the 
computed derivatives will have large errors. 
 
Looking at the larger operators, we can see that these can be viewed as just the smaller operators 
convolved with a smoothing function like a Gaussian. In effect, smoothing is being incorporated into the 
derivative operators to reduce the effect of noise. Therefore, the larger operators have much better 
noise resilience. However, they have poor localization, because if we are trying to find an edge at a pixel, 
the derivatives computed are going to be influenced by image content that is far from the pixel. This is 
not a problem if the edge continues to be an edge over the entire extent of the operator, but if the edge 
turns into something else, or new information appears, the output of the operator will be affected.  
 
 
Let us take a look at an example. Here, we have the 
gradient operator, specifically the 3x3 Sobel 
operator, applied to an image that is popularly 
known as the Lena image. On the left is the first 
derivative with respect to 𝑥, in the middle is the 
first derivative with respect to 𝑦, and on the right is 
the gradient magnitude computed from both. Now, 
there is one last step: we have the magnitude and 
the orientation at every pixel, but we still need to 
declare each pixel as being an edge or not.  
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Gradient (!) Using Sobel Filter

Image (!)

Gradient Magnitude

I.3

⁄%& %# ⁄%& %(
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Comparing Gradient (!) Operators

!" # "

!$ # $

!" # "

" $ "

# # #

!" !$ !"

Gradient Roberts

!" !$ # $ "

!$ !% # % $

!% !& # & %

!$ !% # % $

!" !$ # $ "

" $ % $ "

$ % & % $

# # # # #

!$ !% !& !% !$

!" !$ !% !$ !"

Good Localization
Noise Sensitive
Poor Detection

Poor Localization
Less Noise Sensitive

Good Detection

Sobel (3x3)Prewitt Sobel (5x5)

%&
%#

%&
%(

!" # "

!" # "

!" # "

" " "

# # #

!" !" !"

" #

# !"

# "
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In other words, we need to threshold the edge 
map. There are essentially two simple ways to do 
this. The first is to use a single threshold — if the 
magnitude is less than some value T it is not an 
edge, and if the magnitude is greater than or equal 
to T, then it is an edge. We can do a bit better than 
this by introducing some hysteresis in the 
thresholding, by using two thresholds. We declare 
no edge if the magnitude is less that the lower 
threshold, and an edge if it is greater than the 
higher threshold. If the magnitude lies between 
the two thresholds, we can make a decision based 
on the how “edgy” the neighboring pixels are.  
 
 
In the bottom right is the final thresholded edge 
map. It is still a scattered set of edges. In the next 
lecture, we will develop methods to go from this 
kind of an edge map to clean boundaries. At first 
glance, that may seem to be a simple step. 
However, there is something a bit deceptive here 
which is worth pointing out. When we look at this 
edge map, we can immediately group edges into 
curves. That is because our brain is doing the work 
for us. For a computer, as we shall see, this task 
can be challenging.  
 
 
 
 
 
 
 
 

18

Edge Thresholding

Standard: (Single Threshold !)

Hysteresis Based: (Two Thresholds !! < !")

#$(&, () ≥ !" Definitely an Edge

#$(&, () < !! Definitely Not an Edge

!! ≤ #$(&, () < !" Is an Edge if a Neighboring Pixel
is Definitely an Edge

#$(&, () ≥ ! Definitely an Edge

#$(&, () < ! Definitely Not an Edge
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Sobel Edge Detector

Image (!) ⁄%& %# ⁄%& %(

Gradient Magnitude Thresholded Edge

I.3
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Now let’s look at how we can use the second derivative of an image to detect edges. That brings us to 
the Laplacian operator. Once again, we will start with our 1D signal, 𝑓(𝑥), and its first derivative, which 
we already know. The question is, what is the derivative of the derivative, which would be the second 
derivative? Let us consider the rising edge shown here. We know that where the first derivative is 
increasing, the second derivative will have positive values, and where the first derivative is decreasing, 
it will have negative values. In between, when the first derivative reaches a peak, the second derivative 
will be zero. Therefore, exactly at the location of the edge, we get a sharp change from positive to 
negative values, called a zero-crossing. In the case of the falling edge on the right, we get exactly the 
flipped version of the second derivative of the rising edge. Therefore, edge detection boils down to 
finding sharp zero-crossings in the second derivative.  
 
 
How do we exploit this property of the second 
derivation in the context of 2D images? That 
brings us to the Laplacian operator, also called the 
“del-squared” operator. The Laplacian is simply 
the sum of the second derivative of the image with 
respect to 𝑥 and the second derivative of the 
image with respect to 𝑦. When we apply the 
Laplacian operator to an image, we are going to 
end up with zero-crossings where the edges lie. 
Note that the Laplacian operator does not provide 
the direction, or the orientation, of the edge.  

20

Edge Detection Using Laplacian
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Edge Detection Using 2nd Derivative

First Derivative: 
%!
%#

!(#)

Second Derivative: %
&!
%#&

Local Extrema
Indicate Edges

Zero-Crossings
Indicate Edges
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Laplacian (!!) as Edge Detector

!!" = $!"
$%! +

$!"
$'!

Laplacian: Sum of Pure Second Derivatives

Pronounced as “Del Square &”

• Edges are “zero-crossings” in Laplacian of image

• Laplacian does not provide directions of edges

[Marr 1980]
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How do we apply the Laplacian operator to a 
discrete image? In terms of finite differences, the 
second derivative is the difference of the 
difference. If we want to find this, we need at least 
three pixels along each of the two dimensions, 𝑥 
and 𝑦. So, we use a 3x3 window like the one shown 
in the top right of the slide. Let us say we want to 
find the output of the Laplacian operator for the 
center pixel (𝑖, 𝑗). The equations for the 𝑥 and 𝑦 
components of the second derivative are shown 
here. To obtain the Laplacian, we simply add these 
two expressions. This implies that to obtain the 
Laplacian at all image pixels we only need to convolve the image with the single mask shown in the 
bottom left of the slide.  Note that the corner pixels of the mask are 0 because we never use these pixels 
in computing the Laplacian.  
 
This operator works fine. However, there is a slight problem that arises from the fact that pixels on an 
image sensor lie on a square grid. We have found the second derivatives with respect to 𝑥 and 𝑦, 
assuming that the distance between adjacent pixels is ε. Now, let us say an edge appears at 45 degrees. 
In that case, we see that we have not taken into account the fact that the distance between pixels in the 
diagonal direction is greater than ε. In order to account for this variability, we can consider edges in a 
few difference orientations, develop convolution masks for each one, and then average the masks to 
end up with the one shown on the right. The output of this operator is less sensitive to the orientation 
of the edge and hence it is widely used.  
 
 
Let us take a look at how the above operator can 
be used to find edges.  Here is the Lena image on 
the left and the output of the Laplacian operator 
in the middle. Since an image cannot be displayed 
with negative values, we use the level 128 for 0, 
such that pixels darker than 128 are negative and 
pixels brighter than 128 are positive, in terms of 
the output of the Laplacian. Wherever there is a 
zero-crossing, the pixel value will be exactly 128, 
with large positive and negative values around it. 
These zero-crossings have been detected to 
produce the final edge map shown on the right. 

23

Discrete Laplacian(!!) Operator
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Laplacian Edge Detector

Image (!) Laplacian
(0 maps to 128)

Laplacian
“Zero Crossings”

I.3
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Let us talk about an important issue that we have 
set aside in our discussion above, which is noise. In 
the beginning of the lecture, we said that noise is 
why edges do not appear perfect in images. So, we 
have to contend with noise. On the top here is a 1D 
example of what noise on an edge looks like. The 
problem with noise is that it is rapidly changing 
everywhere. Since we defined edge detection as the 
problem of finding rapid changes, noise poses a 
major challenge. When we find the first derivative 
of 𝑓(𝑥), we see that the edge is completely lost. 
 
 
We need to have some way of dealing with noise. 
That is, we need to either remove, or at least 
suppress, the noise before we apply the gradient or 
the Laplacian operator. From our lecture on image 
processing, we know that one way to do this is by 
using Gaussian smoothing. Given our noisy signal 
𝑓(𝑥), we can first smooth it with a Gaussian. Note 
that when we do this, most of the noise has been 
removed, and, as expected, the edge has been 
somewhat blurred. Now when we apply our 
gradient operator, we get a nice peak that is located 
at the edge.  
 
There is an interesting observation to be made 
here. Remember that we took the signal 𝑓(𝑥), 
convolved it with a Gaussian to reduce the noise, 
and then found its first derivative. We can achieve 
exactly the same result in a different way. We know 
that the first derivative is a linear operation, and we 
know that Gaussian smoothing is linear as well. 
Therefore, we can find the first derivative of the 
Gaussian, which gives us a new operator (filter) that 
we can convolve our signal with. Comparing the 
results in this slide and the previous one, we see 
that they are exactly the same.  

25

Effects of Noise

/ "

Where is the edge??

#/ "
(Gradient)

26

Solution: Gaussian Smooth First

/

05

05 ∗ /

# 05 ∗ /

Gaussian

27

Derivative of Gaussian (! "" )
…saves us one operation.# 05 ∗ / = # 05 ∗ /

# 05 ∗ /

/

# 05 Derivative of
Gaussian
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We can do the same thing with the Laplacian 
operator as well. Instead of applying the Laplacian 
operator to the input signal after it is smoothed, 
we can apply the Laplacian operator to the 
Gaussian to get what is called a Laplacian of 
Gaussian (LoG) operator, and then simply apply 
that to the input signal. As expected, we end up 
with a strong zero-crossing at the location of the 
edge. 
 
 
 
 
On the left we see the gradient operator in 2D. We 
take the first derivative of the Gaussian with 
respect to	𝑥 and with respect to 𝑦, and then 
convolve the image with both operators to obtain 
two numbers for each pixel. From those two 
numbers, we can calculate the strength and the 
orientation of the edge. Alternatively, we can 
apply the Laplacian to the Gaussian to get the 
operator shown on the right. This operator looks 
like an inverted Mexican hat (sombrero). This 
single operator can be applied to an image and the 
resulting zero-crossings correspond to edges.  
 
Let us compare the properties of the gradient 
operator and the Laplacian operator. While the 
gradient operator gives us the location, magnitude 
and direction of the edge, the Laplacian operator 
just gives us the location of the edge. The gradient 
operator does require some form of thresholding 
to identify an edge. The threshold is chosen based 
on the needs of the application. In contrast, with 
the Laplacian operator, we are just looking for 
zero-crossings. In practice, however, we need to 
threshold each zero-crossing in some way to 
determine how rapid it is. Finally, the gradient 
operator requires two convolutions followed by a nonlinear operation for finding the magnitude and the 

28

Laplacian of Gaussian (!!"" or !!#)
…saves us one operation.

/

#1 05 ∗ / = #1 05 ∗ /

#1 05 ∗ /

#1 05 Laplacian of
Gaussian

Laplacian of
Gaussian

29

Gradient      vs.     Laplacian
Laplacian of Gaussian (6&7)Derivative of Gaussian (67)

Inverted “Sombrero” 
(Mexican Hat)

%
%# 8(

%
%( 8(

%&
%&& '' + %&

%)& ''
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Gradient      vs.     Laplacian

Provides location, magnitude 
and direction of the edge.

Provides only location of the 
edge.

Non-linear operation. 
Requires two convolutions.

Linear Operation.
Requires only one convolution.

Detection using Maxima 
Thresholding.

Detection based on 
Zero-Crossing.

An operator that has the best of both?
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orientation, whereas the Laplacian operator is a single convolution which is a linear operation. These 
differences between the two operators are subtle and may not be critical in most applications. The more 
important question is whether we can come up with an edge detector that exploits the best 
characteristics of both of these operators and works better than either one of them. 
  
The Canny edge detector is probably the most 
widely used edge detector in computer vision. It 
uses the best attributes of both the gradient 
operator and the Laplacian operator. Let us take a 
look at how it works. 
 
 
 
 
 
 
 

First, we smooth the input image with a Gaussian of width 𝜎. Then, we apply the gradient operator (for 
instance, the 3x3 Sobel operator) to the smoothed image to get two numbers at each pixel — the 
derivatives in the 𝑥 and 𝑦 directions. From these, we can compute the magnitude and the orientation of 
the gradient at each pixel. The magnitude is what is being shown in the image here; the brighter the 
point, the greater the magnitude.  
Next, at each pixel, a 1D Laplacian (second derivative) is applied along the gradient direction at the pixel. 
If a zero-crossing is detected, then an edge is declared at the location of the zero-crossing. The advantage 
of applying a 1D Laplacian along the gradient direction is that it is less effected by pixels that are 
unrelated to the edge. In the image in the slide on the right, the highlighted pixels correspond to the 
detected zero-crossings (edges).  

31
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Canny Edge Detector
• Smooth Image with 2D Gaussian: 

• Compute Image Gradient using Sobel Operator:

• Find Gradient Orientation at each Pixel:

05 ∗ !

23 = #05 ∗ !
#05 ∗ !

*+

• Compute Laplacian along the Gradient 
Direction *+ at each pixel

#05 ∗ !

[Canny 1986]

#05 ∗ !

'1 05 ∗ !
'231

• Find Gradient Magnitude at each pixel: #05 ∗ !

33

Canny Edge Detector
• Smooth Image with 2D Gaussian: 

• Compute Image Gradient using Sobel Operator:

• Find Gradient Orientation at each Pixel:

05 ∗ !

23 = #05 ∗ !
#05 ∗ !

• Compute Laplacian along the Gradient 
Direction *+ at each pixel

#05 ∗ !

#05 ∗ !

'1 05 ∗ !
'231

• Find Gradient Magnitude at each pixel: #05 ∗ !

• Find Zero Crossings in Laplacian to find 
the edge location [Canny 1986]
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Now, let us take a closer look at the effect of the 
smoothing parameter, 𝜎. If we start with a very 
small 𝜎 of 1, we end up with many edges after 
applying the Canny detector. If we increase 𝜎	to	2, 
we see that the number of edges decreases. If we 
increase 𝜎 further to 4, we see that we get even 
fewer edges. This phenomenon is related to the 
“scale space” associated with an image, where 
scale represents the resolution of the image.  
 
Imagine that we had an image of a brick wall. If the 
image is of very high resolution, the edges would 
include not only the borders of the bricks, but also the fine pores inside each brick. As we smooth this 
image to lower its resolution, the details of the pores begin to fade and we get edges that mainly 
correspond to the borders of the bricks. So, when we talk about edges, they can exist at many different 
scales of resolution. What the Canny detector allows us to do is to simply change one parameter, 𝜎, and 
extract the edges corresponding to the specific scale that is of interest to us. 
 
Next, let us take a look at a couple of illusions associated with edges. Below is the Hering Illusion. We 
can all agree that, in the slide on the left, the two horizontal lines appear to be bulging out. Now, if we 
remove all of the other lines in the image (right slide), we see that the two lines are perfectly straight 
and parallel to each other. The reason this happens is that when there are acute angles in an image, the 
human visual system tends to see these as less acute angles. As a result, the acute angles made by these 
two lines with respect to the other lines (spokes) in the original image (left slide) are overestimated such 
that the error increases with the acuteness of the angle.  This bias makes us believe that the two 
horizontal lines are curved lines when they are not.   

 
 

34

Canny Edge Detector Results

Image , = 1

, = 2 , = 4

35

Edge Illusions: Hering Illusion

Ewald Hering, 1861

EYE AND BRAIN

I.4

36

Edge Illusions: Hering Illusion

Ewald Hering, 1861

EYE AND BRAIN

I.4



First Principles of Computer Vision                                                                                                                           Edge Detection 
 

FPCV-2-1 15 

Here is another interesting illusion called the Cafe 
Wall illusion. Here, the horizontal gray lines appear 
tilted with respect to each other.  
 
 
 
 
 
 
 
 
 
If we simply remove the black tiles on the wall, we 
see that the lines are perfectly parallel. This is 
because the human visual system tends to see 
black patches as being slightly smaller than they 
actually are. We do not fully understand the 
reasons for this. However, this bias causes the black 
tiles in the original image to appear smaller than 
they are. Consequently, the lines appear to be 
tilted, when they are not. 
 
 
 

Let us now talk about how we can find corners in an image. On the right, we see three image regions – 
a flat region, an edge region and a corner region. A corner is essentially a point where two edges meet. 
Unlike an edge where we have a rapid change in image intensity along one direction, in this case, if we 

37

Edge Illusions: Café Wall Illusion

I.5

Gregory and Heard, 1979

EYE AND BRAIN
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Edge Illusions: Café Wall Illusion

I.5

Gregory and Heard, 1979

EYE AND BRAIN
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Corner Detection

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

40

Corners

“Flat” Region “Edge” Region “Corner” Region

Corner: Point where Two Edges Meet. i.e., Rapid Changes 
of Image Intensity in Two Directions within a Small Region
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place a window around the corner, we are going to see a rapid change in image intensity along two 
directions. As in the case of edge detection, we are going to use the derivatives of the image to perform 
corner detection.  
 
Here we see the three regions once again. We are 
now going to find the derivative of each image with 
respect to the 𝑥-direction (middle row) and the 𝑦-
direction (bottom row). For each image, we are 
going to normalize it so that white corresponds to 
a strong positive value, black corresponds to a 
strong negative value, and shades of gray are 
values in between. For the flat region, as expected, 
we have mostly gray all over because we have low 
gradients in 𝑥  and 𝑦, except for those produced by 
the noise in the image. In the edge case, we again 
get low gradients on both sides of the edge, but 
very strong, positive gradients in the 𝑥 and 𝑦 directions along, or close to, the edge. In the case of the 
corner, we see something interesting. We get low values pretty much everywhere, but we get strong 
positive values along one edge and strong negative values along the other for the gradient in the 𝑥-
direction. We see the same for the 𝑦-gradient, except that the signs are reversed.  
 
Let us now construct a 2D space whose dimensions 
correspond to the 𝑥  and 𝑦 image gradients, 𝐼! and 
𝐼". For each of the three image regions, we will 
plot the gradient values at each pixel in this space. 
For the flat region, as expected, we get a very 
compact cluster close to the origin. In fact, if the 
region did not have any noise, the cluster would 
shrink to a single point, namely, the origin. When 
we look at the edge region, we once again get a 
compact cluster because there are significant flat 
regions on both sides of the edge, but we also get 
a thin and long cluster. This cluster corresponds to 
the large gradient values obtained at or near the edge. In the case of the corner, we again get a compact 
cluster because of the flat regions, but we get two additional clusters, one for each of the two edges that 
make up the corner. Our goal is to quantify the structure of the distribution of points in this gradient 
space with a simple model that can be described using a small number of parameters. Then, we can use 
these parameters to classify each local image region as being flat, an edge, or a corner.  

41

Image Gradients
Flat Region Edge Region Corner Region

!

!+ =
'!
'"

!, =
'!
'-

42

Distribution of Image Gradients
Flat Region Edge Region Corner Region

&)

&*

&)

&*

&)

&*

Distribution of #( and #) is different for all three regions.
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To do this, we will fit an ellipse to the distribution, 
which is centered at the origin. Based on the 
lengths of the major and minor axes of the ellipse, 
we will classify the region.  
 
 
 
 
 
 
 
 
 
How do we fit an ellipse to a distribution? This 
takes us back to our lecture on binary images. 
Given a binary object, we know how to find the 
axis of minimum second moment. Perpendicular 
to this axis is the axis of maximum second 
moment. Let us say we want to find the ellipse that 
best fits the binary object. We will say that the 
length 𝜆#  of the semi-major axis of the ellipse is 
equal to maximum second moment Emax, and the 
length 𝜆$  of the semi-minor axis is equal to 
minimum second moment Emin.  
 
 
We will apply the same technique to quantity the 
structure of our distribution in gradient space. In 
other words, we are going to treat our distribution 
like a binary object, where each point in the 
distribution is a 1. We use the points in the 
distribution to compute the second moments, a, 
b, and c. From these three numbers, we can 
compute the maximum second moment Emax, and 
the minimum second moment Emin, which 
correspond to the semi-major axis 𝜆# and semi-
minor axis 𝜆$ of the ellipse that best fits the 
distribution.  

43

Fitting Elliptical Disk to Distribution
Flat Region Edge Region Corner Region

&)

&*

&)

&*

&)

&*

9%: Length of Semi-Major Axis 9&: Length of Semi-Minor Axis

1& 1# 1&1#
1&

1#

44

Fitting an Elliptical Disk

( 0,0 )

Length of Semi-Major Axis = 1#= 2*+(
Length of Semi-Minor Axis = 1&= 2*!,

Axis of Minimum
Moment of Inertia

Axis of Maximum
Moment of Inertia

Maximum Moment of Inertia = :+,*
Minimum Moment of Inertia = :+!-

(See lecture on Binary Images)

1&

1#

45

Fitting an Elliptical Disk

1# = 2*+( =
1
2 3 + 4 + 5& + 3 − 4 &

Second Moments for a Region:

Ellipse Axes Lengths:

1& = 2*!, =
1
2 3 + 4 − 5& + 3 − 4 &

3 = ∑ #(!&
! ∈ #

5 = 2∑ #(!#)!! ∈ #

4 = ∑ #)!
&

! ∈ #

&)

&*

1&1#W: Window centered at pixel

(See lecture on Binary Images)
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For the flat region, as expected, we are going to 
get small values for 𝜆# and 𝜆$, as it is a compact 
cluster. In the case of an edge, 𝜆# is large and 𝜆$ is 
small, and in the case of a corner, both are large. 
The Harris corner detector uses 𝜆# and 𝜆$ to 
classify local image regions to detect corners.  
 
 
 
 
 
 
 
Harris has designed a simple expression, called the 
response function, that maps 𝜆# and 𝜆$ to a single 
number R. R is being plotted here on the right as a 
function of 𝜆# and 𝜆$. If we now apply a threshold 
to R, the threshold corresponds to a curve (white 
line) in (𝜆#, 𝜆$) space. If R is above the threshold, 
then both 𝜆# and 𝜆$ are large, and it is likely a 
corner. Conversely, if R is less than the threshold, 
the image region is either flat or includes an edge.  
 
 
 
 
Here we have a very simple image to which we 
apply the Harris corner detector. One of the 
problems with feature detection, in general, is 
that the detector is likely to produce large 
responses not only at the exact location of the 
feature but also close to it. We see the same 
phenomenon with the Harris detector — the 
magnified image regions show large R values at 
and around each of the corners in the image. To 
find the exact locations of the corners, we need to 
detect the peak of each of these clusters in the 
response image.  
 

46

&)

&*

&)

&*

1& 1#
1&

1#

Interpretation of $# and $!
Flat Region Edge Region Corner Region

4"~ 4#
Both are Large

4" ≫ 4#
4" is Large
4# is Small

4"~ 4#
Both are Small

&)

&*

1&1#
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Harris Corner Response Function

Corner: 9%~ 9&
9% and 9& are large.

Edge: 9% ≫ 9&

Edge:
9& ≫ 9%

Flat: 9%~ 9&
9% and 9& are small.

41

4=

41

4=
5 = 4=41 − 7 4= + 41 1

5 > 9

5 < 9

[Harris 1988]

where: 0.04 ≤ @ ≤ 0.06
(Designed Empirically)

48

Harris Corner Detection Example

Image Corner Response "

Thresholded Corner Response
" > $

min

max

How to determine the actual corner pixel?
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This peak-finding problem is one that appears in 
many different detection and classification tasks, 
and the method we are going to describe is a 
general one that is widely applicable. It is called 
non-maximal suppression. In our case, we wish to 
find peaks in the Harris response image R. We take 
a small window and slide it over the entire 
response image. At each pixel, if its value happens 
to be the maximum value within the window, we 
retain it. If it is not the maximum value, which 
means that one or more pixels within the window 
have larger values, then it is either suppressed 
(reduced in value), or eliminated completely (set to zero). If suppression is used, the method will need 
to be applied repeatedly until the peaks are the only locations with non-zero values.  
 
Applying this method to our simple BBC image, we 
can see that the corners are more or less in all the 
right places. We do see some corners detected 
that may or may not be deemed to be corners, but 
we know that these were detected at locations 
where the letters in the image have high 
curvature. That is, they are features that are 
corner-like.  
 
 
 
 
Let us now apply the corner detector to a more 
challenging image. This is a printed circuit board 
with many weak and strong corners.  Once again, 
we have our R image, which is thresholded to 
obtain the bottom left image. Note that this is not 
a binary image but rather one in which the original 
R value are retained if they are above the 
threshold. We then applied non-maximal 
suppression to get the corners shown in the 
bottom right image. If we take a close look at the 
detected corners, we see that most of the corners 
in the original image were successfully detected.   

49

Non-Maximal Suppression

Used for finding Local Extrema (Maxima/Minima)

1. Slide a window of size 7 over the image.

2. At each position, if the pixel at the center is the 
maximum value within the window, label it as 
positive (retain it). Else label it as negative 
(suppress it).

RetainSuppressSuppress

50

Harris Corner Detection Example

Image Corner Response "

Thresholded Corner Response
" > $ ($ = 5.1×10()

min

max

Detected Corners
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Harris Corner Detection Example

Image Corner Response "

Thresholded Corner Response
" > $ ($ = 5.1×10()

Detected Corners

I.6
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Since we are talking about corners, let us end with 
an illusion that is related to corners. In this image, 
the checkerboard pattern appears to bulge in the 
center.  Note the tiny white and black squares 
close to the corners of the checkerboard pattern. 
 
 
 
 
 
 
 
 
 
If we remove the tiny black and white squares, we 
see that we actually have a perfect checkerboard 
pattern. All the lines are either parallel or 
perpendicular to each other; there is no bulge. It 
turns out that by placing tiny squares close to the 
intersections in the checkerboard pattern, we are 
biasing the human visual system to believe that 
the corners are at slightly different locations from 
where they actually are. This is yet another bias in 
the human visual system that leads us to perceive 
something — the bulge — that does not exist. 
Once again, the punchline is: we are not perfect! 
 
 
  

52

Corner Illusion: The Bulge

I.7

Kitaoka, 1998
EYE AND BRAIN
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Corner Illusion: The Bulge

I.7

Kitaoka, 1998
EYE AND BRAIN
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