

Edge Detection

Shree K. Nayar

Monograph: FPCV-2-1

Module: Features

Series: First Principles of Computer Vision

Computer Science, Columbia University

May 15, 2022

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Edge Detection

FPCV-2-1 1

In this lecture, we will discuss the detection of edges in an image. From the perspective of information
theory, edges are critical to computer vision. An edge can be loosely defined as any location where there
is a rapid change in image intensity along one direction.

We will begin by looking at the physical phenomena that give rise to edges, the attributes of an edge
that we would like to compute, and the performance criteria that a good edge detector should satisfy.
Next, we will develop a theoretical framework for edge detection. We will construct an edge detector
that is based on the gradient operator, which uses the first derivatives of an image. Then, we will look at
edge detection using the Laplacian operator, which uses the second derivatives of the image. We will
examine the advantages and disadvantages of the gradient operator and Laplacian operator. That will
lead us to the widely used Canny edge detector, which uses the best attributes of both of these detectors
to create a reliable and powerful edge detector.

Finally, we will look at the problem of corner detection. A corner is defined as any location where two
edges meet at an angle. We want to be able to find the precise location of the corner without needing
to know the intensity values on either side of the corner or the angle at which the edges meet. We will
describe the Harris corner detector, which is widely used.

1

Edge Detection

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Convert a 2D image into a set of points where
image intensity changes rapidly.

Topics:

(1) What is an Edge?

(2) Edge Detection Using Gradients

(3) Edge Detection Using Laplacian

(4) Canny Edge Detector

(5) Corner Detection

Edge Detection

First Principles of Computer Vision Edge Detection

FPCV-2-1 2

Loosely speaking, we can define an edge as a rapid change in image intensity within a small window in
an image. Let us take a look at why edges are crucial in computer vision. Here is an example from Vic
Nalwa's book. On the left is a photograph of a sculpture by Henry Moore, and on the right is an artist’s
sketch of the sculpture. With just a few strokes, the artist is able to convey essential information about
the sculpture — its three-dimensional structure, its shading, its highlights, and so on. From this example,
we can see that edges, even when sparse in an image, are capable of conveying vital visual information.

Now let us take a look at some of the physical
phenomena in the real world that cause edges in
images. If one object is located in front of another,
there will likely be a sudden change in intensity
along the boundary between the two objects. We
refer to these as edges that result from a
discontinuity in depth. Even if two surfaces are
made of the same material, if they have different
surface orientations where they meet, they will
likely receive different amounts of light from the
light sources in the scene, and hence have
different brightness values. We refer to these
edges as arising from a discontinuity in surface normal. Additionally, if the surface is marked, such as the
letters on the bottle here, it will have surface reflectance (material) discontinuities, that again result in
edges. Finally, we can have shadows, or illumination discontinuities. Here, the bottle casts a sharp
shadow on the background, resulting in a significant difference in the amount of light falling within and
outside the shadow. This, again, gives rise to edges.

3

What is an Edge?

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

4

Rapid change in image intensity within small region

What is an Edge?

I.1

5

Causes of Edges

Depth Discontinuity

Surface Reflectance Discontinuity

Illumination Discontinuity

Surface Normal Discontinuity

I.2

Rapid changes in image intensity are caused
by various physical phenomena.

First Principles of Computer Vision Edge Detection

FPCV-2-1 3

In an image, edges can manifest with many
different profiles, a few of which are shown here.
They include the simple step function, a step edge
with a gradient on either side, a linear gradient on
one side with a non-linear gradient on the other
side, and a roof edge. When you consider the
profile of a line, it can be viewed as being
composed of a rising and a falling edge. For our
purposes here, we need to choose a single model
for the edge that we can use to develop a theory
of edge detection. To this end, we will take the
simplest of these models —the step function.

It would be nice if edges appeared in images like
the very clean step function shown above. That
would make the problem of edge detection a lot
easier. Unfortunately for us, they tend to look like
the function shown here. This is because the edge
profile itself can deviate from the step function,
and the image has noise due to the various factors
we discussed in the lecture on image sensing.

Our edge detector should be able to find the
position of an edge. Note that the exact location
of an edge can lie within a pixel. We therefore
would like to find edges with sub-pixel accuracy.
We also want to measure the magnitude
(strength) of the edge, so that we can decide
whether it is worthy of attention. It is often useful
to know the orientation of the edge as well.
We would like our detector to perform well in a
few different respects. First, it should have a high
detection rate — we want to not only detect all
the edges, but also not detect edges where they
do not exist. We also want it to have good localization, which means it is able to find an edge as close as
possible to where it actually occurs. Finally, we want the detector to be resilient to noise.

6

Types of Edges

Step Edges

Roof Edge Line Edges

[Nalwa 1986]

7

Real Edges

Problems: Noisy Images and Discrete Images

!

"

8

Edge Detector

We want an Edge Operator that produces:

• Edge Position

• Edge Magnitude (Strength)

• Edge Orientation (Direction)

Performance Requirements:

• High Detection Rate

• Good Localization

• Low Noise Sensitivity

First Principles of Computer Vision Edge Detection

FPCV-2-1 4

The first edge detector we will discuss, the gradient operator, is based on the first derivatives of the
image. Let us start with a simple example of a 1D signal, 𝑓(𝑥). We know that an edge is a rapid change
in image intensity within a small region. Shown here is a rising edge on one side and a falling edge on
the other. Calculus tells us that the derivative of a continuous function represents the amount of change
in the function, and change is what we are trying to measure. Thus, it makes sense for us to find the first
derivative of this function and see what that does to both the edges.

Here we see the first derivative of 𝑓 with respect to
𝑥. It has a maximum at the point where the rising
edge is located. For the falling edge, we have exactly
the same output, but it is flipped. Thus, the local
extrema in the first derivative tell you where the
edges are located. If we take the absolute value of
the first derivative, the locations of the peaks
(maxima) correspond to the locations of the edges,
while the magnitudes of the peaks reveal the
strengths of the edges.

9

Edge Detection Using Gradients

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

10

1D Edge Detection

Basic Calculus: Derivative of a continuous function
represents the amount of change in the function.

!(#):

#

Edge Edge

Edge is a rapid change in image intensity in a small region.

11

Edge Detection Using 1st Derivative

First Derivative:
%!
%#

!(#)

First Derivative
Absolute Value:

%!
%#

Local Extrema
Indicate Edges

Local Maxima
Indicate Edges

Provides Both Location and Strength of an Edge

First Principles of Computer Vision Edge Detection

FPCV-2-1 5

How do we apply this idea of using the first
derivative to two-dimensional images? We know
from calculus that the partial derivatives of a 2D
continuous function with respect to its two
dimensions, 𝑥 and 𝑦, represent the amount of
change along each of the two dimensions.

That brings us to the gradient operator, also called
the “del” operator, which produces two numbers as
a vector. The first is the derivative of the image with
respect to 𝑥, while the second is the derivative of the
image with respect to 𝑦. These two numbers tell us
everything we need to know about the local change
in intensity. Let us take a look at a few examples. On
the left we see a vertical edge. In this case, we get a
non-zero value for the 𝑥 component and zero for the
𝑦 component as there is no change along the 𝑦
direction. For the second image, we get zero for the
𝑥 component and a non-zero value for the 𝑦
component. Finally, for the third image of a tilted edge, we get non-zero values for both components.
From just these two numbers at each pixel, we can find both the strength (magnitude) of the edge, as
well as its orientation (direction).

12

2D Edge Detection

Basic Calculus: Partial Derivatives of a 2D continuous function
represents the amount of change along each dimension.

& #, (:

Edge

Edge

13

Gradient (!)
Gradient (Partial Derivatives) represents the direction
of most rapid change in intensity

#! =)*
)+ , 0 #! = 0,)*), #! =)*

)+ ,
)*
),

!" = $"
$% ,

$"
$' Pronounced as “Del I”

%&
%#

%&
%(

First Principles of Computer Vision Edge Detection

FPCV-2-1 6

The equations for magnitude and orientation are
shown here. The magnitude of an edge is simply the
square root of the sum of the squares of the partial
derivatives. The orientation the edge is the inverse
tangent of the first derivative with respect to 𝑦
divided by the first derivative with respect to 𝑥.

All of the above was done in continuous domain.
Now let us see how we might apply our edge
detector to a discrete image. In the discrete case, we
know that derivatives are implemented using finite
differences. Shown here are the finite difference
approximations for the partial derivatives with
respect to 𝑥 and 𝑦. To find a difference, we need at
least two neighboring pixels. So, to find finite
differences in both directions (𝑥 and 𝑦) we need at
least two pixels in each direction. Thus, we use a
window of 2x2 = 4 pixels. Let us assume that the
physical distance between adjacent pixels is ε. Then,
the derivative in the 𝑥 direction is the equation on the top, and we have similar equation for the 𝑦
component.

We can compute the two derivatives using convolutions with the two kernels (filters) shown below. Here,
the “flips” that are needed for each convolution have already been applied. Even if we do not know the
physical distance, ε, between adjacent pixels, it does not matter — the resulting derivatives will simply
be scaled by an unknown factor that is the same for both components and for all pixels in the image.
Once we have computed the two components of the gradient, we use them to find the magnitude and
the orientation of the edge as previously discussed. If ε is unknown, the computed magnitude will simply
be a scaled version of the true value.

14

Gradient (!) as Edge Detector

Gradient Magnitude (= !" = $"
$%

!
+ $"

$'
!

Gradient Orientation * = tan"# $"
$' /

$"
$%

!

15

Discrete Gradient (!) Operator

Note: Convolution flips have been applied

&!,#$%

&!,#

&!$%,#$%

&!$%,#
"

'!
'" ≈

1
2+ #!"#,%"# − &!,#$% + #!"#,% − &!,#

'!
'- ≈

1
2+ #!"#,%"# − &!$%,# + #!,%"# − &!,#

'
'" ≈

1
2+

−1 1

1−1

'
'- ≈

1
2+

1 1

−1−1

Finite difference approximations:

Can be implemented as Convolution!

First Principles of Computer Vision Edge Detection

FPCV-2-1 7

Based on this approach, a variety of gradient
operators have been proposed over the last few
decades, starting with the Roberts operator shown
on the left. In this case, note that the derivatives
are being computed in the two diagonal
directions. This is not a problem as the derivatives
in any two orthogonal directions can be used to
find the magnitude and direction of an edge. The
Prewitt operator appeared around 1965. The
Sobel operator was popular for a long time. We
can see that these operators are getting larger as
we move from left to right. When we have a small
operator, we can expect very good localization for the edges, as small operators will not be affected by
image content that is far away from the pixel of interest. On the other hand, a small detector is bound
to be extremely sensitive to noise. In the case of the Roberts detector, since only four numbers are being
used to determine whether a point has an edge, if noise corrupts even one of these four numbers, the
computed derivatives will have large errors.

Looking at the larger operators, we can see that these can be viewed as just the smaller operators
convolved with a smoothing function like a Gaussian. In effect, smoothing is being incorporated into the
derivative operators to reduce the effect of noise. Therefore, the larger operators have much better
noise resilience. However, they have poor localization, because if we are trying to find an edge at a pixel,
the derivatives computed are going to be influenced by image content that is far from the pixel. This is
not a problem if the edge continues to be an edge over the entire extent of the operator, but if the edge
turns into something else, or new information appears, the output of the operator will be affected.

Let us take a look at an example. Here, we have the
gradient operator, specifically the 3x3 Sobel
operator, applied to an image that is popularly
known as the Lena image. On the left is the first
derivative with respect to 𝑥, in the middle is the
first derivative with respect to 𝑦, and on the right is
the gradient magnitude computed from both. Now,
there is one last step: we have the magnitude and
the orientation at every pixel, but we still need to
declare each pixel as being an edge or not.

17

Gradient (!) Using Sobel Filter

Image (!)

Gradient Magnitude

I.3

⁄%& %# ⁄%& %(

16

Comparing Gradient (!) Operators

!" # "

!$ # $

!" # "

" $ "

#

!" !$!"

Gradient Roberts

!" !$ # $ "

!$!% # % $

!% !& # & %

!$!% # % $

!" !$ # $ "

" $ % $ "

$ % & % $

#

!$!% !& !% !$

!" !$!% !$!"

Good Localization
Noise Sensitive
Poor Detection

Poor Localization
Less Noise Sensitive

Good Detection

Sobel (3x3)Prewitt Sobel (5x5)

%&
%#

%&
%(

!" # "

!" # "

!" # "

" " "

#

!" !" !"

" #

!"

"

!" #

First Principles of Computer Vision Edge Detection

FPCV-2-1 8

In other words, we need to threshold the edge
map. There are essentially two simple ways to do
this. The first is to use a single threshold — if the
magnitude is less than some value T it is not an
edge, and if the magnitude is greater than or equal
to T, then it is an edge. We can do a bit better than
this by introducing some hysteresis in the
thresholding, by using two thresholds. We declare
no edge if the magnitude is less that the lower
threshold, and an edge if it is greater than the
higher threshold. If the magnitude lies between
the two thresholds, we can make a decision based
on the how “edgy” the neighboring pixels are.

In the bottom right is the final thresholded edge
map. It is still a scattered set of edges. In the next
lecture, we will develop methods to go from this
kind of an edge map to clean boundaries. At first
glance, that may seem to be a simple step.
However, there is something a bit deceptive here
which is worth pointing out. When we look at this
edge map, we can immediately group edges into
curves. That is because our brain is doing the work
for us. For a computer, as we shall see, this task
can be challenging.

18

Edge Thresholding

Standard: (Single Threshold !)

Hysteresis Based: (Two Thresholds !! < !")

#$(&, () ≥ !" Definitely an Edge

#$(&, () < !! Definitely Not an Edge

!! ≤ #$(&, () < !" Is an Edge if a Neighboring Pixel
is Definitely an Edge

#$(&, () ≥ ! Definitely an Edge

#$(&, () < ! Definitely Not an Edge

19

Sobel Edge Detector

Image (!) ⁄%& %# ⁄%& %(

Gradient Magnitude Thresholded Edge

I.3

First Principles of Computer Vision Edge Detection

FPCV-2-1 9

Now let’s look at how we can use the second derivative of an image to detect edges. That brings us to
the Laplacian operator. Once again, we will start with our 1D signal, 𝑓(𝑥), and its first derivative, which
we already know. The question is, what is the derivative of the derivative, which would be the second
derivative? Let us consider the rising edge shown here. We know that where the first derivative is
increasing, the second derivative will have positive values, and where the first derivative is decreasing,
it will have negative values. In between, when the first derivative reaches a peak, the second derivative
will be zero. Therefore, exactly at the location of the edge, we get a sharp change from positive to
negative values, called a zero-crossing. In the case of the falling edge on the right, we get exactly the
flipped version of the second derivative of the rising edge. Therefore, edge detection boils down to
finding sharp zero-crossings in the second derivative.

How do we exploit this property of the second
derivation in the context of 2D images? That
brings us to the Laplacian operator, also called the
“del-squared” operator. The Laplacian is simply
the sum of the second derivative of the image with
respect to 𝑥 and the second derivative of the
image with respect to 𝑦. When we apply the
Laplacian operator to an image, we are going to
end up with zero-crossings where the edges lie.
Note that the Laplacian operator does not provide
the direction, or the orientation, of the edge.

20

Edge Detection Using Laplacian

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

21

Edge Detection Using 2nd Derivative

First Derivative:
%!
%#

!(#)

Second Derivative: %
&!
%#&

Local Extrema
Indicate Edges

Zero-Crossings
Indicate Edges

22

Laplacian (!!) as Edge Detector

!!" = $!"
$%! +

$!"
$'!

Laplacian: Sum of Pure Second Derivatives

Pronounced as “Del Square &”

• Edges are “zero-crossings” in Laplacian of image

• Laplacian does not provide directions of edges

[Marr 1980]

First Principles of Computer Vision Edge Detection

FPCV-2-1 10

How do we apply the Laplacian operator to a
discrete image? In terms of finite differences, the
second derivative is the difference of the
difference. If we want to find this, we need at least
three pixels along each of the two dimensions, 𝑥
and 𝑦. So, we use a 3x3 window like the one shown
in the top right of the slide. Let us say we want to
find the output of the Laplacian operator for the
center pixel (𝑖, 𝑗). The equations for the 𝑥 and 𝑦
components of the second derivative are shown
here. To obtain the Laplacian, we simply add these
two expressions. This implies that to obtain the
Laplacian at all image pixels we only need to convolve the image with the single mask shown in the
bottom left of the slide. Note that the corner pixels of the mask are 0 because we never use these pixels
in computing the Laplacian.

This operator works fine. However, there is a slight problem that arises from the fact that pixels on an
image sensor lie on a square grid. We have found the second derivatives with respect to 𝑥 and 𝑦,
assuming that the distance between adjacent pixels is ε. Now, let us say an edge appears at 45 degrees.
In that case, we see that we have not taken into account the fact that the distance between pixels in the
diagonal direction is greater than ε. In order to account for this variability, we can consider edges in a
few difference orientations, develop convolution masks for each one, and then average the masks to
end up with the one shown on the right. The output of this operator is less sensitive to the orientation
of the edge and hence it is widely used.

Let us take a look at how the above operator can
be used to find edges. Here is the Lena image on
the left and the output of the Laplacian operator
in the middle. Since an image cannot be displayed
with negative values, we use the level 128 for 0,
such that pixels darker than 128 are negative and
pixels brighter than 128 are positive, in terms of
the output of the Laplacian. Wherever there is a
zero-crossing, the pixel value will be exactly 128,
with large positive and negative values around it.
These zero-crossings have been detected to
produce the final edge map shown on the right.

23

Discrete Laplacian(!!) Operator

"
&!,#$%

&!,#

&!$%,#$%

&!$%,#

&!,#'% &!$%,#'%

&!'%,#$%

&!'%,#

&!'%,#'%

Finite difference approximations:

Convolution Mask:

,#$
,&# ≈

1
/# $$%",' − 2$$,' + $$(",'

,#$
,(# ≈

1
/# $$,'%" − 2$$,' + $$,'("

##$ = ,#$
,&# +

,#$
,(#

#1 ≈ 1
+1

01

−4

0

0

0 1

11 #1 ≈ 1
6+1

14

−20

1

1

1 4

44OR (More
Accurate)

24

Laplacian Edge Detector

Image (!) Laplacian
(0 maps to 128)

Laplacian
“Zero Crossings”

I.3

First Principles of Computer Vision Edge Detection

FPCV-2-1 11

Let us talk about an important issue that we have
set aside in our discussion above, which is noise. In
the beginning of the lecture, we said that noise is
why edges do not appear perfect in images. So, we
have to contend with noise. On the top here is a 1D
example of what noise on an edge looks like. The
problem with noise is that it is rapidly changing
everywhere. Since we defined edge detection as the
problem of finding rapid changes, noise poses a
major challenge. When we find the first derivative
of 𝑓(𝑥), we see that the edge is completely lost.

We need to have some way of dealing with noise.
That is, we need to either remove, or at least
suppress, the noise before we apply the gradient or
the Laplacian operator. From our lecture on image
processing, we know that one way to do this is by
using Gaussian smoothing. Given our noisy signal
𝑓(𝑥), we can first smooth it with a Gaussian. Note
that when we do this, most of the noise has been
removed, and, as expected, the edge has been
somewhat blurred. Now when we apply our
gradient operator, we get a nice peak that is located
at the edge.

There is an interesting observation to be made
here. Remember that we took the signal 𝑓(𝑥),
convolved it with a Gaussian to reduce the noise,
and then found its first derivative. We can achieve
exactly the same result in a different way. We know
that the first derivative is a linear operation, and we
know that Gaussian smoothing is linear as well.
Therefore, we can find the first derivative of the
Gaussian, which gives us a new operator (filter) that
we can convolve our signal with. Comparing the
results in this slide and the previous one, we see
that they are exactly the same.

25

Effects of Noise

/ "

Where is the edge??

#/ "
(Gradient)

26

Solution: Gaussian Smooth First

/

05

05 ∗ /

05 ∗ /

Gaussian

27

Derivative of Gaussian (! "")
…saves us one operation.# 05 ∗ / = # 05 ∗ /

05 ∗ /

/

05 Derivative of
Gaussian

First Principles of Computer Vision Edge Detection

FPCV-2-1 12

We can do the same thing with the Laplacian
operator as well. Instead of applying the Laplacian
operator to the input signal after it is smoothed,
we can apply the Laplacian operator to the
Gaussian to get what is called a Laplacian of
Gaussian (LoG) operator, and then simply apply
that to the input signal. As expected, we end up
with a strong zero-crossing at the location of the
edge.

On the left we see the gradient operator in 2D. We
take the first derivative of the Gaussian with
respect to	𝑥 and with respect to 𝑦, and then
convolve the image with both operators to obtain
two numbers for each pixel. From those two
numbers, we can calculate the strength and the
orientation of the edge. Alternatively, we can
apply the Laplacian to the Gaussian to get the
operator shown on the right. This operator looks
like an inverted Mexican hat (sombrero). This
single operator can be applied to an image and the
resulting zero-crossings correspond to edges.

Let us compare the properties of the gradient
operator and the Laplacian operator. While the
gradient operator gives us the location, magnitude
and direction of the edge, the Laplacian operator
just gives us the location of the edge. The gradient
operator does require some form of thresholding
to identify an edge. The threshold is chosen based
on the needs of the application. In contrast, with
the Laplacian operator, we are just looking for
zero-crossings. In practice, however, we need to
threshold each zero-crossing in some way to
determine how rapid it is. Finally, the gradient
operator requires two convolutions followed by a nonlinear operation for finding the magnitude and the

28

Laplacian of Gaussian (!!"" or !!#)
…saves us one operation.

/

#1 05 ∗ / = #1 05 ∗ /

#1 05 ∗ /

#1 05 Laplacian of
Gaussian

Laplacian of
Gaussian

29

Gradient vs. Laplacian
Laplacian of Gaussian (6&7)Derivative of Gaussian (67)

Inverted “Sombrero”
(Mexican Hat)

%
%# 8(

%
%(8(

%&
%&& '' + %&

%)& ''

30

Gradient vs. Laplacian

Provides location, magnitude
and direction of the edge.

Provides only location of the
edge.

Non-linear operation.
Requires two convolutions.

Linear Operation.
Requires only one convolution.

Detection using Maxima
Thresholding.

Detection based on
Zero-Crossing.

An operator that has the best of both?

First Principles of Computer Vision Edge Detection

FPCV-2-1 13

orientation, whereas the Laplacian operator is a single convolution which is a linear operation. These
differences between the two operators are subtle and may not be critical in most applications. The more
important question is whether we can come up with an edge detector that exploits the best
characteristics of both of these operators and works better than either one of them.

The Canny edge detector is probably the most
widely used edge detector in computer vision. It
uses the best attributes of both the gradient
operator and the Laplacian operator. Let us take a
look at how it works.

First, we smooth the input image with a Gaussian of width 𝜎. Then, we apply the gradient operator (for
instance, the 3x3 Sobel operator) to the smoothed image to get two numbers at each pixel — the
derivatives in the 𝑥 and 𝑦 directions. From these, we can compute the magnitude and the orientation of
the gradient at each pixel. The magnitude is what is being shown in the image here; the brighter the
point, the greater the magnitude.
Next, at each pixel, a 1D Laplacian (second derivative) is applied along the gradient direction at the pixel.
If a zero-crossing is detected, then an edge is declared at the location of the zero-crossing. The advantage
of applying a 1D Laplacian along the gradient direction is that it is less effected by pixels that are
unrelated to the edge. In the image in the slide on the right, the highlighted pixels correspond to the
detected zero-crossings (edges).

31

Canny Edge Detector

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

32

Canny Edge Detector
• Smooth Image with 2D Gaussian:

• Compute Image Gradient using Sobel Operator:

• Find Gradient Orientation at each Pixel:

05 ∗ !

23 = #05 ∗ !
#05 ∗ !

*+

• Compute Laplacian along the Gradient
Direction *+ at each pixel

#05 ∗ !

[Canny 1986]

#05 ∗ !

'1 05 ∗ !
'231

• Find Gradient Magnitude at each pixel: #05 ∗ !

33

Canny Edge Detector
• Smooth Image with 2D Gaussian:

• Compute Image Gradient using Sobel Operator:

• Find Gradient Orientation at each Pixel:

05 ∗ !

23 = #05 ∗ !
#05 ∗ !

• Compute Laplacian along the Gradient
Direction *+ at each pixel

#05 ∗ !

#05 ∗ !

'1 05 ∗ !
'231

• Find Gradient Magnitude at each pixel: #05 ∗ !

• Find Zero Crossings in Laplacian to find
the edge location [Canny 1986]

First Principles of Computer Vision Edge Detection

FPCV-2-1 14

Now, let us take a closer look at the effect of the
smoothing parameter, 𝜎. If we start with a very
small 𝜎 of 1, we end up with many edges after
applying the Canny detector. If we increase 𝜎	to	2,
we see that the number of edges decreases. If we
increase 𝜎 further to 4, we see that we get even
fewer edges. This phenomenon is related to the
“scale space” associated with an image, where
scale represents the resolution of the image.

Imagine that we had an image of a brick wall. If the
image is of very high resolution, the edges would
include not only the borders of the bricks, but also the fine pores inside each brick. As we smooth this
image to lower its resolution, the details of the pores begin to fade and we get edges that mainly
correspond to the borders of the bricks. So, when we talk about edges, they can exist at many different
scales of resolution. What the Canny detector allows us to do is to simply change one parameter, 𝜎, and
extract the edges corresponding to the specific scale that is of interest to us.

Next, let us take a look at a couple of illusions associated with edges. Below is the Hering Illusion. We
can all agree that, in the slide on the left, the two horizontal lines appear to be bulging out. Now, if we
remove all of the other lines in the image (right slide), we see that the two lines are perfectly straight
and parallel to each other. The reason this happens is that when there are acute angles in an image, the
human visual system tends to see these as less acute angles. As a result, the acute angles made by these
two lines with respect to the other lines (spokes) in the original image (left slide) are overestimated such
that the error increases with the acuteness of the angle. This bias makes us believe that the two
horizontal lines are curved lines when they are not.

34

Canny Edge Detector Results

Image , = 1

, = 2 , = 4

35

Edge Illusions: Hering Illusion

Ewald Hering, 1861

EYE AND BRAIN

I.4

36

Edge Illusions: Hering Illusion

Ewald Hering, 1861

EYE AND BRAIN

I.4

First Principles of Computer Vision Edge Detection

FPCV-2-1 15

Here is another interesting illusion called the Cafe
Wall illusion. Here, the horizontal gray lines appear
tilted with respect to each other.

If we simply remove the black tiles on the wall, we
see that the lines are perfectly parallel. This is
because the human visual system tends to see
black patches as being slightly smaller than they
actually are. We do not fully understand the
reasons for this. However, this bias causes the black
tiles in the original image to appear smaller than
they are. Consequently, the lines appear to be
tilted, when they are not.

Let us now talk about how we can find corners in an image. On the right, we see three image regions –
a flat region, an edge region and a corner region. A corner is essentially a point where two edges meet.
Unlike an edge where we have a rapid change in image intensity along one direction, in this case, if we

37

Edge Illusions: Café Wall Illusion

I.5

Gregory and Heard, 1979

EYE AND BRAIN

38

Edge Illusions: Café Wall Illusion

I.5

Gregory and Heard, 1979

EYE AND BRAIN

39

Corner Detection

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

40

Corners

“Flat” Region “Edge” Region “Corner” Region

Corner: Point where Two Edges Meet. i.e., Rapid Changes
of Image Intensity in Two Directions within a Small Region

First Principles of Computer Vision Edge Detection

FPCV-2-1 16

place a window around the corner, we are going to see a rapid change in image intensity along two
directions. As in the case of edge detection, we are going to use the derivatives of the image to perform
corner detection.

Here we see the three regions once again. We are
now going to find the derivative of each image with
respect to the 𝑥-direction (middle row) and the 𝑦-
direction (bottom row). For each image, we are
going to normalize it so that white corresponds to
a strong positive value, black corresponds to a
strong negative value, and shades of gray are
values in between. For the flat region, as expected,
we have mostly gray all over because we have low
gradients in 𝑥 and 𝑦, except for those produced by
the noise in the image. In the edge case, we again
get low gradients on both sides of the edge, but
very strong, positive gradients in the 𝑥 and 𝑦 directions along, or close to, the edge. In the case of the
corner, we see something interesting. We get low values pretty much everywhere, but we get strong
positive values along one edge and strong negative values along the other for the gradient in the 𝑥-
direction. We see the same for the 𝑦-gradient, except that the signs are reversed.

Let us now construct a 2D space whose dimensions
correspond to the 𝑥 and 𝑦 image gradients, 𝐼! and
𝐼". For each of the three image regions, we will
plot the gradient values at each pixel in this space.
For the flat region, as expected, we get a very
compact cluster close to the origin. In fact, if the
region did not have any noise, the cluster would
shrink to a single point, namely, the origin. When
we look at the edge region, we once again get a
compact cluster because there are significant flat
regions on both sides of the edge, but we also get
a thin and long cluster. This cluster corresponds to
the large gradient values obtained at or near the edge. In the case of the corner, we again get a compact
cluster because of the flat regions, but we get two additional clusters, one for each of the two edges that
make up the corner. Our goal is to quantify the structure of the distribution of points in this gradient
space with a simple model that can be described using a small number of parameters. Then, we can use
these parameters to classify each local image region as being flat, an edge, or a corner.

41

Image Gradients
Flat Region Edge Region Corner Region

!

!+ =
'!
'"

!, =
'!
'-

42

Distribution of Image Gradients
Flat Region Edge Region Corner Region

&)

&*

&)

&*

&)

&*

Distribution of #(and #) is different for all three regions.

First Principles of Computer Vision Edge Detection

FPCV-2-1 17

To do this, we will fit an ellipse to the distribution,
which is centered at the origin. Based on the
lengths of the major and minor axes of the ellipse,
we will classify the region.

How do we fit an ellipse to a distribution? This
takes us back to our lecture on binary images.
Given a binary object, we know how to find the
axis of minimum second moment. Perpendicular
to this axis is the axis of maximum second
moment. Let us say we want to find the ellipse that
best fits the binary object. We will say that the
length 𝜆# of the semi-major axis of the ellipse is
equal to maximum second moment Emax, and the
length 𝜆$ of the semi-minor axis is equal to
minimum second moment Emin.

We will apply the same technique to quantity the
structure of our distribution in gradient space. In
other words, we are going to treat our distribution
like a binary object, where each point in the
distribution is a 1. We use the points in the
distribution to compute the second moments, a,
b, and c. From these three numbers, we can
compute the maximum second moment Emax, and
the minimum second moment Emin, which
correspond to the semi-major axis 𝜆# and semi-
minor axis 𝜆$ of the ellipse that best fits the
distribution.

43

Fitting Elliptical Disk to Distribution
Flat Region Edge Region Corner Region

&)

&*

&)

&*

&)

&*

9%: Length of Semi-Major Axis 9&: Length of Semi-Minor Axis

1& 1# 1&1#
1&

1#

44

Fitting an Elliptical Disk

(0,0)

Length of Semi-Major Axis = 1#= 2*+(
Length of Semi-Minor Axis = 1&= 2*!,

Axis of Minimum
Moment of Inertia

Axis of Maximum
Moment of Inertia

Maximum Moment of Inertia = :+,*
Minimum Moment of Inertia = :+!-

(See lecture on Binary Images)

1&

1#

45

Fitting an Elliptical Disk

1# = 2*+(=
1
2 3 + 4 + 5& + 3 − 4 &

Second Moments for a Region:

Ellipse Axes Lengths:

1& = 2*!, =
1
2 3 + 4 − 5& + 3 − 4 &

3 = ∑ #(!&
! ∈ #

5 = 2∑ #(!#)!! ∈ #

4 = ∑ #)!
&

! ∈ #

&)

&*

1&1#W: Window centered at pixel

(See lecture on Binary Images)

First Principles of Computer Vision Edge Detection

FPCV-2-1 18

For the flat region, as expected, we are going to
get small values for 𝜆# and 𝜆$, as it is a compact
cluster. In the case of an edge, 𝜆# is large and 𝜆$ is
small, and in the case of a corner, both are large.
The Harris corner detector uses 𝜆# and 𝜆$ to
classify local image regions to detect corners.

Harris has designed a simple expression, called the
response function, that maps 𝜆# and 𝜆$ to a single
number R. R is being plotted here on the right as a
function of 𝜆# and 𝜆$. If we now apply a threshold
to R, the threshold corresponds to a curve (white
line) in (𝜆#, 𝜆$) space. If R is above the threshold,
then both 𝜆# and 𝜆$ are large, and it is likely a
corner. Conversely, if R is less than the threshold,
the image region is either flat or includes an edge.

Here we have a very simple image to which we
apply the Harris corner detector. One of the
problems with feature detection, in general, is
that the detector is likely to produce large
responses not only at the exact location of the
feature but also close to it. We see the same
phenomenon with the Harris detector — the
magnified image regions show large R values at
and around each of the corners in the image. To
find the exact locations of the corners, we need to
detect the peak of each of these clusters in the
response image.

46

&)

&*

&)

&*

1& 1#
1&

1#

Interpretation of $# and $!
Flat Region Edge Region Corner Region

4"~ 4#
Both are Large

4" ≫ 4#
4" is Large
4# is Small

4"~ 4#
Both are Small

&)

&*

1&1#

47

Harris Corner Response Function

Corner: 9%~ 9&
9% and 9& are large.

Edge: 9% ≫ 9&

Edge:
9& ≫ 9%

Flat: 9%~ 9&
9% and 9& are small.

41

4=

41

4=
5 = 4=41 − 7 4= + 41 1

5 > 9

5 < 9

[Harris 1988]

where: 0.04 ≤ @ ≤ 0.06
(Designed Empirically)

48

Harris Corner Detection Example

Image Corner Response "

Thresholded Corner Response
" > $

min

max

How to determine the actual corner pixel?

First Principles of Computer Vision Edge Detection

FPCV-2-1 19

This peak-finding problem is one that appears in
many different detection and classification tasks,
and the method we are going to describe is a
general one that is widely applicable. It is called
non-maximal suppression. In our case, we wish to
find peaks in the Harris response image R. We take
a small window and slide it over the entire
response image. At each pixel, if its value happens
to be the maximum value within the window, we
retain it. If it is not the maximum value, which
means that one or more pixels within the window
have larger values, then it is either suppressed
(reduced in value), or eliminated completely (set to zero). If suppression is used, the method will need
to be applied repeatedly until the peaks are the only locations with non-zero values.

Applying this method to our simple BBC image, we
can see that the corners are more or less in all the
right places. We do see some corners detected
that may or may not be deemed to be corners, but
we know that these were detected at locations
where the letters in the image have high
curvature. That is, they are features that are
corner-like.

Let us now apply the corner detector to a more
challenging image. This is a printed circuit board
with many weak and strong corners. Once again,
we have our R image, which is thresholded to
obtain the bottom left image. Note that this is not
a binary image but rather one in which the original
R value are retained if they are above the
threshold. We then applied non-maximal
suppression to get the corners shown in the
bottom right image. If we take a close look at the
detected corners, we see that most of the corners
in the original image were successfully detected.

49

Non-Maximal Suppression

Used for finding Local Extrema (Maxima/Minima)

1. Slide a window of size 7 over the image.

2. At each position, if the pixel at the center is the
maximum value within the window, label it as
positive (retain it). Else label it as negative
(suppress it).

RetainSuppressSuppress

50

Harris Corner Detection Example

Image Corner Response "

Thresholded Corner Response
" > $ ($ = 5.1×10()

min

max

Detected Corners

51

Harris Corner Detection Example

Image Corner Response "

Thresholded Corner Response
" > $ ($ = 5.1×10()

Detected Corners

I.6

First Principles of Computer Vision Edge Detection

FPCV-2-1 20

Since we are talking about corners, let us end with
an illusion that is related to corners. In this image,
the checkerboard pattern appears to bulge in the
center. Note the tiny white and black squares
close to the corners of the checkerboard pattern.

If we remove the tiny black and white squares, we
see that we actually have a perfect checkerboard
pattern. All the lines are either parallel or
perpendicular to each other; there is no bulge. It
turns out that by placing tiny squares close to the
intersections in the checkerboard pattern, we are
biasing the human visual system to believe that
the corners are at slightly different locations from
where they actually are. This is yet another bias in
the human visual system that leads us to perceive
something — the bulge — that does not exist.
Once again, the punchline is: we are not perfect!

52

Corner Illusion: The Bulge

I.7

Kitaoka, 1998
EYE AND BRAIN

53

Corner Illusion: The Bulge

I.7

Kitaoka, 1998
EYE AND BRAIN

First Principles of Computer Vision Edge Detection

FPCV-2-1 21

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription,
editing and proofreading.

54

References and Credits

Topic: Edge Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

55

References: Textbooks

Robot Vision (Chapter 8)
Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 8)
Forsyth, D and Ponce, J., Prentice Hall

Digital Image Processing (Chapter 3)
González, R and Woods, R., Prentice Hall

A Guided Tour of Computer Vision (Chapter 3)
Nalwa, V., Addison-Wesley Pub

56

References: Papers

[Canny 1986] Canny, J., A Computational Approach To Edge Detection,
IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986.

[Harris 1988] Harris, C. and Stephens, M., A combined corner and edge
detector. Proceedings of the 4th Alvey Vision Conference. pp. 147–151.

[Marr 1980] Marr, D. and Hildreth, E., “Theory of Edge Detection,” Proc.
R. Soc. London,B 207, 187-217, 1980.

[Nalwa 1986] Nalwa, V. S. and Binford, T. O., “On detecting edges,”
IEEE Trans. Pattern Analysis and Machine Intelligence, 1986.

57

Image Credits
I.1 A Guided Tour of Computer Vision. V. Nalwa. Addison-Wesley, 1993. Used with

permission.

I.2 A Guided Tour of Computer Vision. V. Nalwa. Addison-Wesley, 1993. Used with

permission.

I.3 Lena. Dwight Hooker, 1973.

I.4 commons.wikimedia.org/wiki/File:hering_illusion.svg Licensed under CC BY SA 3.0.

I.5 en.wikipedia.org/wiki/File:Café_wall.svg Licensed under CC BY SA 3.0.

I.6 https://www.mathworks.com/help/vision/ug/detect-lines-in-images.html.

Mathworks.

I.7 A. Kitaoka. Used with permission.

First Principles of Computer Vision Edge Detection

FPCV-2-1

References

[Nalwa 1994] A Guided Tour of Computer Vision, Nalwa, V., Addison-Wesley, 1993.

[Horn 1986] Robot Vision, Horn, B. K. P., MIT Press, 1986.

[Forsyth and Ponce 2003] Computer Vision: A Modern Approach, Forsyth, D and Ponce, J., Prentice Hall,

2003

[González and Woods 2009] Digital Image Processing, González, R and Woods, R., Prentice Hall, 2009.

[Canny 1986] Canny, J., A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and

Machine Intelligence, 8(6):679–698, 1986.

[Harris 1988] Harris, C. and Stephens, M., A combined corner and edge detector. Proceedings of the 4th

Alvey Vision Conference. pp. 147–151.

[Marr 1980] Marr, D. and Hildreth, E., “Theory of Edge Detection,” Proc. R. Soc. London,B 207, 187-217,

1980.

[Nalwa 1986] Nalwa, V. S. and Binford, T. O., “On detecting edges,” IEEE Trans. Pattern Analysis and

Machine Intelligence, 1986.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

[Nayar 2022I] SIFT Detector, Nayar, S. K., Monograph FPCV-2-3, First Principles of Computer Vision,

Columbia University, New York, August 2022.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

	Edge Detection FPCV-2-1
	Edge Detection FPCV-2-1
	Edge Detection SN 05-15-2022 COVER
	Edge Detection SN 05-15-2022 FINAL

	References Edge Detection

