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A key problem in computer vision is recovering the 
3D structure of a scene from its images. For an 
intelligent system, such as a robot, to navigate 
around, or interact with, a scene, we need scene 
reconstruction to be metric, i.e., we want the 
measured coordinates of each scene point to be in 
physical units (e.g., in millimeters) in a fixed world 
coordinate frame. However, in a camera image, 
the projection of each scene point is measured in 
terms of pixels. To go from 2D images to a full 
metric 3D scene reconstruction, we need to know 
the position and orientation of the camera with 
respect the world coordinate frame (i.e., the camera’s external parameters), and we need to know how 
the camera projects points in the scene to its image plane (i.e., the camera’s internal parameters). The 
process of finding the external and internal parameters of a camera is called camera calibration. 
 
 
We are going to develop a calibration method for 
estimating the camera’s internal and external 
parameters. To achieve that, first, we will develop 
a camera model, called the forward imaging 
model, which maps the 3D coordinates of a scene 
point to pixels in the image. We show that this 
camera model is linear in that it is defined by a 
single matrix, called the projection matrix. Then, 
we will develop a camera calibration method that 
can estimate all the elements of the projection 
matrix, from a single image of an object with 
known dimensions. Interestingly, from the 
projection matrix, we can extract both the internal and external parameters of the camera, which are 
given by the intrinsic and extrinsic matrices. Finally, we will show how to use two identical calibrated 
cameras, displaced with respect to each other along one of the two image coordinates, to reconstruct a 
3D scene. We refer to scene recovery using such a two-camera system as simple stereo. 
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Let us now develop a comprehensive model of the 
camera. We will describe the forward imaging 
model, which takes us from the 3D metric 
coordinates of a scene point in a world coordinate 
frame to its 2D image coordinates.  
 
Shown here is a single point 𝑃  in the world 
coordinate frame 𝒲. In this coordinate frame, we 
have a camera defined by its own coordinate 
frame 𝒞, where the 𝑧-axis of 𝒞 is aligned with the 
camera’s optical axis. The effective focal length, 
which is the distance between the effective center 
of projection of the camera and the image plane of the camera, is denoted by 𝑓. If we know the position 
and orientation of the camera frame 𝒞 with respect to the world frame 𝒲, then we can map a point 𝑃 
to its image coordinates. To do this, we first map the 3D world coordinates xw of 𝑃 to its 3D camera 
coordinates xc. Then, we use perspective projection to map xc to the 2D image coordinates xi. This 
complete mapping from 3D world coordinates to 2D image coordinates is called the forward imaging 
model. We will use it to develop a comprehensive linear model for the camera.  
 
 
We first discuss the perspective projection 
component of the forward image model. Shown 
here are the perspective projection equations we 
are familiar with. Consider the image coordinates 
xi of the point 𝑃	with coordinates xc in the camera 
frame. We have 𝑥!  divided by 𝑓  is equal to 𝑥"  
divided by 𝑧" , and 𝑦!  divided by 𝑓  is equal to 𝑦"  
divided by 𝑧" . We can rewrite these to get the 
expressions for 𝑥!  and 𝑦! ,  which are the 
coordinates of the projection of 𝑃 onto the image 
plane.  
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Thus far, we have assumed that the image plane coordinates are expressed in terms of physical units 
(e.g., millimeters), which are the same units used to define the scene point 𝑃 in the camera coordinate 
frame. In reality, however, the image sensor measures a projected point’s coordinates in pixels. Thus, 
we need to account for the mapping from the physical coordinates 𝑥!  and 𝑦!, to pixel coordinates 𝑢 and 
𝑣 . We define 𝑚#  and 𝑚$  to be the pixel densities (pixels per millimeter) in the 𝑥  and 𝑦  directions, 
respectively. Since, in general, pixels don’t have to be square (they could be rectangular), 𝑚# and 𝑚$ do 

not have to be equal. The pixel coordinates 𝑢 and 𝑣 are then given by equations 1  and 2 .  
 
The point where the optical axis of the camera pierces the image plane is called the principal point. We 
will assume that we do not know the coordinates (𝑜# , 𝑜$) of the principal point. We can therefore 
update our expressions for 𝑢 and 𝑣 to account for the principal point as shown in equations 3  and 4 . 
 
Our model for perspective projection is given by 
the two equations shown at the top. Since the pixel 
densities 𝑚#	and	𝑚$ and the effective focal length 
𝑓 are all unknown, we can combine them into two 
parameters: 𝑓#  and 𝑓$ . These parameters can be 
seen as effective focal lengths in the 𝑥  and 𝑦 
direction, respectively. Therefore, the perspective 
projection model of the camera has four 
unknowns, 	(𝑓# , 𝑓$ , 𝑜# , 𝑜$),  which are called the 
intrinsic parameters of the camera. Note that this 
projection model is non-linear, since 𝑧"  appears in 
the denominator.  We would like a linear model to 
make the estimation of the intrinsic parameters easier.  

Image Plane to Image Sensor Mapping
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where: ($' , $() = *'$,*($ are the focal lengths in pixels in 
the ' and & directions. 

(%!, %$, *!, *$): Intrinsic parameters of the camera.
They represent the camera’s internal geometry.

It is convenient to express them as linear equations.
Equations for perspective projection are Non-Linear.

1  2  4  3  
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As we have seen before, we can use homogenous coordinates to turn a non-linear model to a linear one. 
Recall that the homogeneous representation of a 2D point 𝒖 is a 3D point 𝒖9 where the third coordinate 
𝑤9  is fictitious—it is used for scaling the other coordinates. As shown on the left, when expressed in their 
homogeneous coordinates, both 𝒖 and 𝒖9 are equivalent. Using the same approach, as shown on the 
right, a 3D point x can be represented as a 4D point 𝒙9.   
 
  
Let us now return to our perspective projection 
model. We can express the pixel coordinates 𝑢 and 
𝑣  using the homogenous coordinates (𝑢, 𝑣, 1) , 
which is equivalent to (𝑢, 𝑣, 1) multiplied by any 
constant. If (𝑢, 𝑣, 1)  is multiplied by 𝑧" , we can 
express the result as the product of a 3 × 4 matrix, 
which includes all the internal parameters of the 
camera ( 𝑓# , 𝑓$ , 𝑜# , 𝑜$ ), and the homogeneous 
coordinates (𝑥" , 𝑦" , 𝑧" , 1) of the scene point in the 
camera coordinate frame. We now have a linear 
model for perspective projection. 11
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Homogenous Coordinates
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The above 3 × 4  matrix is called the intrinsic 
matrix 𝑀!%& . We call the left 3 × 3  submatrix of 
𝑀!%&	the calibration matrix 𝐾,  which is an upper 
right triangular matrix (the elements below the 
diagonal are zero). The intrinsic matrix 𝑀!%&	 is a 
concatenation of 𝐾  with a column of zeros. To 
summarize, 𝑀!%&  maps a scene point 𝒙9"  to its 
image projection 𝒖9. 
 
 
 
 
 
We now have a model that maps a scene point in 
the camera frame to the image. Since our scene 
points are defined in a world frame, we need a 
mapping (3D to 3D) from world coordinates to 
camera coordinates. This mapping is defined by the 
position and orientation of the camera frame 𝒞 
with respect to the world frame 𝒲. Let us denote 
the camera’s position by the vector 𝒄' ,	and its 
orientation by a 3 × 3 rotation matrix 𝑅. The rows 
of 𝑅 correspond to the directions of 𝑥A" , 	𝑦A" , and	�̂�"  
in the world frame. The rotation matrix 𝑅 , by 
definition, is an orthonormal matrix. Let us now 
take a look at the properties of an orthonormal matrix. 
 
Two vectors u and v are orthonormal if and only if 
the dot product of the two vectors is equal to zero 
(i.e., uTv = 0) and both are unit vectors. An 
orthonormal matrix is a square matrix where the 
row vectors (or column vectors) are orthonormal. 
Our rotation matrix 𝑅 is therefore an orthonormal 
matrix. Any orthonormal matrix has the property 
that its inverse is equal to its transpose.  
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Intrinsic Matrix
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Extrinsic Parameters

#"
Camera
Coordinate
Frame "

World Coordinate 
Frame 1

%&$

%'$
"̂$

#%
!

(%

%&!

%'!

"̂!

Position <* and Orientation = of the camera in the world 
coordinate frame ; are the camera’s Extrinsic Parameters.

< =
=// =/0 =/1
=0/ =00 =01
=1/ =10 =11

Row 1: Direction of #$! in world coordinate frame 

Row 2: Direction of #%! in world coordinate frame 

Row 3: Direction of '̂! in world coordinate frame 

Orientation/Rotation Matrix = is Orthonormal

15

Orthonormal Vectors and Matrices

MATH PRIMER

Orthonormal Vectors: Two vectors . and > are orthonormal 
if and only if:

012 +, 4 = +24 = 0
(Orthogonality)

and +2+ = 424 = 1
(Unit length)

Example: The $-, (- and &-axes of ℝ% Euclidean space

Orthonormal Matrix: A square matrix 6 whose row (or 
column) vectors are orthonormal. For such a matrix:

A Rotation Matrix is an Orthonormal Matrix

634 = 62 626 = 662 = 7
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We can now model the transformation from world 
coordinates to camera coordinates using the 
rotation matrix 𝑅 and the camera position vector 
𝑐' . In the world frame, the vector xc can be 
expressed as xw	–	cw. Now, xc can be found in the 
camera frame by multiplying xw	 –	 cw by the 
rotation matrix 𝑅. Therefore, xc equals the rotation 
matrix 𝑅 times xw	plus a vector 𝐭, which is called 
the translation vector. In matrix form, (𝑥" , 𝑦" , 𝑧") 
in the camera frame equals the rotation matrix 𝑅 
times the world coordinates (𝑥' , 𝑦' , 𝑧') plus the 
translation vector (𝑡# , 𝑡$ , 𝑡().  
 
We would like to represent the above mapping 
using a single matrix. To achieve this, we can 
rewrite our world-to-camera mapping using 
homogenous coordinates, as shown here. Now, we 
have a mapping from the homogeneous 
coordinates (𝑥' , 𝑦' , 𝑧' , 1) of xw to the 
homogeneous coordinates (𝑥" , 𝑦" , 𝑧" , 1)	 of 
xc 	 through a single 4 × 4  matrix M)*+  which 
includes both the rotation matrix 𝑅  and the 
translation vector 𝐭 . M)*+  is called the extrinsic 
matrix. 
 
 
Now, we have all the components necessary to 
model the mapping of a point in the world frame 
to pixels in the image.  
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World-to-Camera Transformation

Given the extrinsic parameters <, ($ of the camera, the 
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Extrinsic Matrix
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The extrinsic matrix 𝑀,#& maps a world point to 
the camera frame, and the intrinsic matrix 𝑀!%& 
maps the point in the camera frame to pixel 
coordinates in the image. We can multiply these 
two matrices to get a single 3 × 4 matrix, called 
the projection matrix 𝑃 , which directly maps a 
point in the world frame to its pixel coordinates. 
To calibrate the camera, we need to find the 
projection matrix P.  
 
 
 
  

 
We can estimate the projection matrix P of a camera by using an object of known geometry, such as the 
cube shown on the right. Assume that we know the dimensions of the cube and the locations of all the 
features (say, the corners of the checkerboard pattern). First, we choose our world frame to be aligned 
with one of the corners of the cube.  
 
We capture a single image of this cube. Consider a single point on the cube, with world coordinates 
(𝑥' , 𝑦' , 𝑧') = (0, 3, 4) inches. In the image, this point has the 2D coordinates (𝑢, 𝑣) = (56, 115) pixels. 
The correspondences between points in the world and in the image can be established either manually, 
or automatically by using an algorithm that can uniquely identify scene points in the image based on 
their features and/or locations within a known spatial configuration. In the end, we get a set of 
correspondences between 3D scene points and their 2D image coordinates.  
 
 

Camera Calibration Procedure

Step 2: Identify correspondences between 3D scene points and 
image points.
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Combining the above two equations, we get the full
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For each corresponding pair 𝑖, we can multiply our 
unknown projection matrix 𝑃  with the known 
scene point to get the known image point. Upon 
expanding this matrix form, we get the two 
equations at the bottom—one for 𝑢 and one for 𝑣.  
 
 
 
 
 
 
 
 
We can rewrite the above equations for 𝑢 and 𝑣 
for the entire set of corresponding pairs, as shown 
here. The elements of the matrix 𝐴 are functions 
of all the known coordinates, and the vector p has 
the 12 unknown elements of the projection matrix 
𝑃. Our goal is to solve for the vector p. 
 
 
 
 
 
 

22

Camera Calibration Procedure

Step 3: For each corresponding point E in scene and image:
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Camera Calibration Procedure

Step 4: Rearranging the terms

$"# %"# '"# 1 0 0 0 0 −*#$"# −*#%"# −*#'"# −*#
0 0 0 0 $"# %"# '"# 1 −+#$"# −+#%"# −+#'"# −+#
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
$"$ %"$ '"$ 1 0 0 0 0 −*$$"$ −*$%"$ −*$'"$ −*$
0 0 0 0 $"$ %"$ '"$ 1 −+$$"$ −+$%"$ −+$'"$ −+$
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

$"% %"% '"% 1 0 0 0 0 −*%$"% −*%%"% −*%'"% −*%
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=

0
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0

9
:

9 : = ;
Step 5: Solve for G

Unknown
Known
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Scale of Projection Matrix

Projection matrix acts on homogenous coordinates. 

0!
0'
/1
≡ F

0!
0'
/1

G++ G+, G+% G+&
G,+ G,, G,% G,&
G%+ G%, G%% G%&

$*
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1

≡ F
G++ G+, G+% G+&
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G%+ G%, G%% G%&

$*
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1

We know that:

That is:

Therefore, Projection Matrices E and FE produce the same 
homogenous pixel coordinates.

(H ≠ 0 is any constant)

Projection Matrix > is defined only up to a scale.
25

Scale of Projection Matrix

Scaling projection matrix, implies simultaneously scaling 
the world and camera, which does not change the image.

Scale = -#

Scale = -&

Set projection matrix to some arbitrary scale!
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Before solving for the vector p, let us discuss an important property of the projection matrix 𝑃. Recall 
that homogenous coordinates are scale invariant, meaning that multiplying a homogenous coordinate 
by a non-zero factor 𝑘 results in an equivalent coordinate. Therefore, the projection matrices 𝑃 and 𝑘𝑃 
produce the same homogenous pixel coordinates. In other words, the projection matrix is only defined 
up to a scale factor.  
 
What does this scale ambiguity mean in terms of imaging? Imagine first taking an image of a scene. Now, 
if we double the size of the scene and the camera, the resulting image would be identical to the first one. 
Therefore, we can take the liberty of arbitrarily fixing the scale of the projection matrix.   
 
 
How do we fix the scale of the projection matrix? 
One way is to set one of the 12 elements of p to be 
equal to 1. Or, we could just set the square of the 
magnitude of the vector p equal to one, which is 
what we do. Thus, we want 𝐴p	= 0	and ‖p‖- = 1. 
In other words, we want to find the p that 
minimizes ‖𝐴p‖-  such that ‖p‖- = 1.	This is the 
classical constrained least squares problem of the 
type we solved to estimate the homography matrix 
in the lecture on image stitching. To solve for p, we 
define the loss function 𝐿 shown here. 
 
 
To find the p that minimizes  𝐿,	we compute the 
derivative of 𝐿 with respect to p and set it equal to 
zero 1 . Finding the p that minimizes 𝐿 is therefore 
equivalent to solving the eigenvalue problem. In 
other words, the optimal p is the eigenvector 
corresponding to the smallest eigenvalue of 𝐴.𝐴. 
Once we have found p, we can rearrange its 
elements to get our projection matrix 𝑃. 

26

Least Squares Solution for !

We want JG as close to 0 as possible and G 0 = 1:

min7 9: 8 such that : 8 = 1

Set scale so that:  G 0 = 1Option 2: 

Option 1: Set scale so that: @14 = 1

Define Loss function H(I, J):

H I, J = I1K1KI − J(I1I − 1)

min7 :2929: such that  :2: = 1

(Similar to Solving Homography in Image Stitching)

27

Constrained Least Squares Solution

Eigenvalue Problem

Taking derivatives of ? G, K w.r.t :: 

929: =@:

Eigenvector : with smallest eigenvalue @ of matrix 929
minimizes the loss function ?(:).

2929: − 2@: = ;

Rearrange solution : to form the projection matrix 8.

1  
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The above calibration method allows us to estimate the projection matrix of a camera. We can go one 
step further and decompose the projection matrix into the intrinsic matrix 𝑀!%& , which includes all the 
internal parameters of the camera, and the extrinsic matrix 𝑀,#&, which has all the external parameters 
of the camera. Consider the 3 × 3  submatrix of 𝑃 outlined at the top. This submatrix is the product of 
the calibration matrix 𝐾 in slide 12, which includes all the internal parameters of the camera, and the 
rotation matrix 𝑅 . We know that 𝐾  is an upper right triangular matrix, and the rotation matrix is 
orthonormal. If a matrix is the product of an upper right triangular matrix and an orthonormal matrix, 
we can use a linear algebra method called QR factorization to compute the two matrices from their 
product. Therefore, from our estimated 𝑃 we can compute 𝐾 and 𝑅.   
 
 
We have yet to find the translation vector t. The 
last column of 𝑃,  outlined at the top, equals 𝐾 
times the translation vector t. Therefore, we can 
find the translation vector by computing the 
product of 𝐾/0 with the last column of 𝑃. At this 
point, our camera is fully calibrated—we have 
found all its internal and external parameters. 
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Extracting Intrinsic/Extrinsic Parameters

We know that:

That is:
G++ G+, G+%
G,+ G,, G,%
G%+ G%, G%%

=
%! 0 *!
0 %$ *$
0 0 1

B++ B+, B+%
B,+ B,, B,%
B%+ B%, B%%

= :=

Given that 9 is an Upper Right Triangular matrix and < is an 
Orthonormal matrix, it is possible to uniquely “decouple” 9
and < from their product using “QR factorization”.

E =
G++ G+, G+% G+&
G,+ G,, G,% G,&
G%+ G%, G%% G%&

=
%! 0 *! 0
0 %$ *$ 0
0 0 1 0

B++ B+, B+% C!
B,+ B,, B,% C$
B%+ B%, B%% C-
0 0 0 1

:2'.:#-.
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Extracting Intrinsic/Extrinsic Parameters

We know that:

That is:
G+&
G,&
G%&

=
%! 0 *!
0 %$ *$
0 0 1

C!
C$
C-

= :A

Therefore:

A = :2+
G+&
G,&
G%&

E =
G++ G+, G+% G+&
G,+ G,, G,% G,&
G%+ G%, G%% G%&

=
%! 0 *! 0
0 %$ *$ 0
0 0 1 0

B++ B+, B+% C!
B,+ B,, B,% C$
B%+ B%, B%% C-
0 0 0 1
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Intrinsic and Extrinsic Matrices 

Topic: Camera Calibration, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar

Columbia University
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It is important to note that our linear camera 
model given by the projection matrix 𝑃 does not 
account for some of the effects that may be found 
in real imaging systems. As discussed in our lecture 
on image formation, a lens could exhibit a variety 
of aberrations. For instance, if the lens has radial 
distortion, the projection model is no longer 
perspective.  The image projection of each scene 
point has an additional displacement away from 
the center of the image, and this displacement 
increases with the distance of the scene point 
from the optical axis. In the case of tangential 
distortion, the imaged points are subjected to a twisting effect. Our camera model would require 
additional terms to account for these distortions.   
 
Now, we will present simple stereo—a widely used 
method for recovering the 3D structure of a scene 
using two identical calibrated cameras that are 
displaced with respect to each other.  
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Other Intrinsic Parameters

Radial Distortion Tangential Distortion

Actual

Ideal

Actual

Ideal

ObjectImage ObjectImage

Pinholes do not exhibit image distortions. But, lenses do!

The intrinsic model of the camera will need to include 
the distortion coefficients. We ignore distortions here.
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Backward Projection: From 2D to 3D

'̂

#%

#$

Image
Plane

Scene

Projection of an image point back 
into the scene results in an 

outgoing ray.

Given a calibrated camera, can we find the 3D scene 
point from a single 2D image?

*, +

Camera/World
Coordinate
Frame /

(0,0,0)
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Computing 2D-to-3D Outgoing Ray

'̂

#%

#$

Image
Plane

! = %!
$#
&#
+ *!

' = %$
(#
&#
+ *$

3D-to-2D:

2D-to-3D:
$ = L& %! ! − *!

( = L& %$ ' − *$

& > 0

(Point)

(Ray)

*, +

Camera/World
Coordinate
Frame /

(0,0,0)

Scene
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Simple Stereo

Topic: Camera Calibration, Module: Reconstruction II

First Principles of Computer Vision

Shree K. Nayar
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We know that we cannot find the 3D coordinates of a scene point from its 2D image coordinates. All we 
know is that the 3D point must lie on the ray that emanates from the image point and passes through 
the center of projection of the camera.  Given a calibrated camera, we know the equation of this ray, 
which is given in the slide on the right.  
 
To find the 3D coordinates of a scene point, we 
need more information. To this end, we take two 
images of the scene using two cameras that are 
displaced with respect to each other. Here, the 
right camera is identical to the left one but 
displaced along the horizontal direction by a 
distance 𝑏,  called the baseline. This system is 
called a simple stereo or simple binocular system.  
It is similar in its working principle to the way we 
humans use two eyes to perceive depth.   
 
Let us assume that the world frame is located at 
the center of projection of the left camera with its 𝑧 −axis aligned with the optical axis. A scene point 
(𝑥, 𝑦, 𝑧) is projected to the point (𝑢1 , 𝑣1) in the left camera and the point (𝑢2 , 𝑣2) in the right camera. 
Let us assume that by some means of feature matching, we know that (𝑢1 , 𝑣1) and (𝑢2 , 𝑣2) correspond 
to the same scene point. Then, we have four equations—the perspective projection equations for the 
left and right cameras.  Note that the equation for 𝑢2  has 𝑥 − 𝑏  instead of 𝑥 , because of the 
displacement of the right camera. In these equations, the parameters 𝑓# , 𝑓$ , 𝑜# , 𝑜$ , 𝑏 are all known to us 
since our cameras are calibrated.   
 
Given these four equations, we can solve for the 
scene point (𝑥, 𝑦, 𝑧), where 𝑧 is referred to as the 
depth of the scene point. Note that the 
denominators of the expressions for 𝑥, 𝑦, and	𝑧  
contain the term (𝑢1 − 𝑢2). This is the difference 
in the 𝑢 coordinates of a scene point in the left and 
right images, and is called the disparity.  
 
Disparity is inversely proportional to the depth 𝑧 of 
the scene point. Therefore, the farther a point is 
from the stereo system, the smaller its disparity. As 
the point approaches infinity, its disparity 
approaches zero. Furthermore, disparity is directly proportional to the baseline of the stereo system. 
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Triangulation using Two Cameras

'̂

#%

#$

(2, 0,0)*' , +'

*( , +(

Left
Camera

Right
Camera

($, %, ')

Stereo System

(0,0,0)

(Binocular Vision)

17 = $'
'
"
+ +'

07 = $(
&
"
+ +(

18 = $'
' − M
"

+ +'

08 = $(
&
"
+ +(

9" , 9# , :, *" , *#
are known.
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Simple Stereo: Depth and Disparity

17 , 07 = $'
'
"
+ +' , $(

&
"
+ +( 18 , 08 = $'

' − M
"

+ +' , $(
&
"
+ +(

' =
M 17 − +'
17 − 18

& =
M$' 07 − +(
$( 17 − 18

" =
M$'

17 − 18

From perspective projection:

Solving for ', &, " :

where 17 − 18 is called Disparity.

Depth $ is inversely proportional to Disparity.

Disparity is proportional to Baseline.
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Since we are dealing with discrete images with finite resolution, the accuracy of depth estimation 
increases with baseline. Therefore, while designing a stereo system, it makes sense to use the largest 
baseline the application permits.  
 
 
Here is an example of a simple stereo camera from 
Fuji Corp. Stereo camera systems are also 
commonly found in smartphones today. Scene 
depth computed by these systems is used for 
various photographic effects. One example is the 
use of the depth map to modify a photo of the 
scene to make it appear like it was shot with a lens 
with a narrower depth of field.  
 
 
 
 
 
There is one key step in the stereo pipeline that we 
have yet to discuss—finding the correspondence 
between points in the left and right images. This 
process is known as stereo matching. Shown on the 
left is one of the two stereo images of a scene, and 
on the right is a precise disparity map of the scene 
computed using an active illumination method. In 
this map, the brighter the point is, the greater its 
disparity. This disparity map is used as ground truth 
while evaluating the accuracy of a stereo system.  
 
Now let us discuss the problem of stereo matching. 
Note that since in our stereo system the right camera is displaced in the horizontal direction with respect 
to the left camera, the disparity between corresponding points is only in the horizontal (𝑢) direction. In 
other words, there is no disparity in the vertical (𝑣) direction, as evidenced by the expressions for 
𝑣1 	and	𝑣2  shown at the bottom. That means that corresponding image points must lie on the same 
horizontal line in the left and right images. This is called scan-line correspondence and it can be used to 
reduce the search space when finding stereo matches.  
 

37

A Simple Stereo Camera

Fujifilm FinePix REAL 3D W3

I.2

38

Stereo Matching: Finding Disparities

Goal: Find the disparity between left and right stereo pairs.

Left/Right Camera Images Disparity Map (Ground Truth)

07 = 08 = $(
&
"
+ +(From perspective projection:

Corresponding scene points lie on the same horizontal scan line.

I.3
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Consider a small window in the left image. We can 
find its matching window in the right image using 
template matching. Thanks to the scan-line 
correspondence discussed above, we do not have 
to search for the matching window in the entire 
right image. We only need to look for it along the 
same horizontal line in the right image. The 
coordinates 𝑢1 	and	𝑢2  of the original window in the 
left image and its best match in the right image are 
used to compute disparity. Using this disparity, we 
can compute the depth 𝑧  as well as the 𝑥  and 𝑦 
coordinates, using the expressions in slide 36. 
 
As discussed in previous lectures, there are several 
similarity metrics that can be used during template 
matching. These include the sum of absolute 
differences (SAD), the sum of squared differences 
(SSD), and the normalized cross-correlation (NCC). 
Note that normalized cross-correlation is 
particularly effective when the two images have 
radiometric differences due to factors such as 
vignetting and camera gain. 
 
 
 
 
Let’s discuss a few important issues related to 
stereo matching. First, consider the texture-less 
sheet of paper shown on the left. Its left and right 
images will be texture-less as well. Note that a 
texture-less window in the left image will match all 
texture-less windows in the right image equally 
well, making stereo matching impossible in this 
case. Therefore, for stereo to work, the scene must 
be textured. In addition, the texture must be non-
repetitive. Consider the repetitive pattern shown 
on the right. In this case, each window in the left 
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Similarity Metrics for Template Matching

Find pixel H, N ∈ P with Minimum Sum of Absolute Differences:

Find pixel H, N ∈ P with Minimum Sum of Squared Differences:

Find pixel H, N ∈ P with Maximum Normalized Cross-Correlation:

OKP F, Q = R
(",7)∈1

S3 T, U − S4(T + F, U + Q)

OOP F, Q = R
(",7)∈1

S3 T, U − S4(T + F, U + Q) ,

VWW F, Q =
∑(",7)∈1S3 T, U S4 T + F, U + Q

∑(",7)∈1S3 T, U
,∑(",7)∈1S4(T + F, U + Q)

,
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Issues with Stereo Matching

• Surface must have (non-repetitive) texture

L R

• Foreshortening effect makes matching challenging

Window Based Methods

Template Window ! Search Scan Line "

Left Camera Image !!

Determine Disparity using Template Matching

Right Camera Image !"

Disparity:  ! = #! − #" Depth: ! = #$!
%" − %#

I.3
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image will match multiple windows in the right image, each match resulting in a different scene depth.  
 
Finally, there is the issue of foreshortening, which is an inherent problem in stereo. In order to find a 
match, we need to use a window of finite size since a single pixel intensity is not a unique enough feature 
for matching. Note that a window in the left image corresponds to a patch in the scene. Unless this patch 
is planar and parallel to the image planes of the two cameras, it will be projected differently in the left 
and right images. In other words, we are almost always trying to match differently distorted versions of 
each scene patch. For this reason, some stereo matching algorithms incorporate warping techniques to 
make the matching process more robust.  
 
A key question during matching is how large the 
window should be, irrespective of similarity metric. 
A small window results in good localization but a 
greater probability of finding incorrect matches, 
because the smaller the window, the less unique 
the pattern within it. The result of using a small 
window size (5 pixels) is shown on the left, and can 
be seen to be noisy. In contrast, on the right, a large 
window (30 pixels) is used which produces more 
robust matches but poorer localization. As a result, 
the disparity map is more blurred, especially 
around the edges of objects. One approach to 
addressing this issue with window size is called the adaptive window method. It uses multiple window 
sizes for matching, and for each point in the left image, the window size that provides the best match is 
chosen.  
 
Here are some results using different window-
based matching methods. Using the sum of 
squared difference metric with a window size of 
21, we get the disparity map on the bottom left, 
which may be good enough for some applications. 
The adaptive window technique produces the 
slightly improved disparity map shown in the 
middle. Recently, significant advances have been 
made with respect to stereo matching. The 
disparity map produced by a state of art method is 
shown on the right and is seen to be very close to 
the ground truth in slide 38. 
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How Large Should Window Be?

Adaptive Window Method Solution: For each point, match using 
windows of multiple sizes and use the disparity that is a result of the 
best similarity measure (minimize SSD per pixel).

Window size = 5 pixels
(Sensitive to noise)

Window size = 30 pixels
(Poor localization)
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Window Based Methods: Results

Left Image Right Image

SSD – Adaptive Window State of the Art

Ground Truth

SSD  (Window size=21)

I.4

http://vision.middlebury.edu/stereo
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