

Boundary Detection

Shree K. Nayar

Monograph: FPCV-2-2

Module: Features

Series: First Principles of Computer Vision

Computer Science, Columbia University

June 10, 2022

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Boundary Detection

FPCV-2-2 1

Now that we know how to find the edges in an image, we want to use these edges to produce clean
outlines of the objects in the image. This is the problem of boundary detection. Simply put, we want to
go from edge pixels to continuous object boundaries.

First, we will discuss fitting lines and curves to edges. Given a set of edges, the task is to fit a low-order
polynomial to the edges. We will see how this can be set up as a system of linear equations that can be
solved efficiently. Next, we will talk about active contours, also known as snakes. These are widely used
in computer vision, in particular in fields such as medical imaging. Imagine that we are interested in
finding a specific object in the image. The image, of course, has a variety of other things inside of it. To
guide our detection, we start by sketching a rough outline (contour) of the object. The algorithm then
takes this contour and iteratively modifies it until it latches on, like a rubber band, to the actual boundary
of the object. We refer to this type of an iteratively modified boundary as an active contour.

In boundary detection, a challenging problem is figuring out which edges belong to the boundary that
we are looking for. This is a type of “inlier-outlier” problem. A technique called the Hough transform—
invented in the 1960s — gives us an elegant way of solving this problem. We will describe the Hough
transform and show how it can be used to find simple shapes, such as lines and circles, that can be
described using equations with a small number of parameters. The Hough transform can detect such
shapes robustly even when the image is complex.

We will end with a generalization of the Hough transform. Consider the case where we are not given the
parametric equation for the shape of the object we are looking for; an example would be a hand-drawn
sketch. It turns out that we can generalize the Hough transform to apply it to such complex shapes as
well. We will see how the generalized Hough transform can be implemented and what its limitations are.

1

Boundary Detection

Topic: Boundary Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

We need to find Object Boundaries from Edge Pixels.

Topics:

(1) Fitting Lines and Curves to Edges

(2) Active Contours (Snakes)

(3) The Hough Transform

(4) Generalized Hough Transform

Boundary Detection

First Principles of Computer Vision Boundary Detection

FPCV-2-2 2

Imagine we are given a set of edges in an image and we want to fit either a straight line or a curve to the
edges. Shown here on the top left is an image of a vase for which we want to produce a boundary
detection output that looks like the image in the bottom left corner. This desired output has been
manually sketched by an artist, and hence is very clean with clear boundaries. It is worth stating upfront
that such a high-quality output is only aspirational and would be unrealistic to expect from any algorithm.
First, we will apply edge detection to the input image, yielding an edge map with the strength, or
magnitude, of the edge at each pixel. We can then threshold this edge map to produce a binary edge
image. This image can be processed using the techniques we discussed in binary image processing. For
instance, if we shrink and expand the edges, we end up with the image in the bottom right corner.
Shrinking removes all the isolated edges in the image, after which the remaining edges are expanded
again. Since these edges will probably be a little thicker than we would like, we can apply a thinning
algorithm. Now the challenge is to go from this edge map to boundaries.

Let us consider the simple problem of fitting a line
to the set of edges shown here. In other words, we
want to find the slope m and the intercept c
corresponding to the line that best represents the
set of edges. We will start by setting up an energy,
or cost, function. We can define the energy E as the
average of the square of the vertical distances
between each point (edge) and the line that we are
trying to estimate. The vertical distance for the
point (xi, yi) is simply yi – mxi – c. We then square
this distance for each of the points, sum all of the
distances, and then divide by the number of
points, N, to obtain the average E. To find the “best” line for these edges, we need to find the m and c
that minimize E. We know how to do that — we find the partial derivatives of E with respect to m and c

3

Fitting Lines and Curves

Topic: Boundary Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

4

Preprocessing Edge Images

Thresholding
Edge

Detection

Shrink
& Expand

Thinning
Boundary
Detection

Manually Sketched

5

Fitting Lines to Edges

Minimize: Average Squared Vertical Distance

Given: Edge Points !!, #!
Task: Find $, %

! = !
"
∑# $# −&'# − ($

% = '(+ *

%! − '(! − *

(! , %!

Least Squares Solution:

!"
!# =

$%
& ∑' #' $' − &#' − ' = 0

!"
!(=

$%
& ∑' $' − &#' − ' = 0

First Principles of Computer Vision Boundary Detection

FPCV-2-2 3

and set them equal to 0. Remember that when we find the derivative, we can take the derivative inside
the summation because both are linear operators.

From the two partial derivatives, we get these
closed-form expressions for m and c. We have
therefore found a line that fits the edges.

The above solution, unfortunately, does not
always work well. Imagine using it to fit a line to
the set of points shown here. We can see that the
line we are looking for — the line that best
represents these points — is a more or less vertical
line that passes through the set of points. It turns
out, however, that the line that we end up
computing is actually the horizontal line shown
here. It is virtually perpendicular to the line that we
are looking for! This happened because we were
minimizing an energy that represents the vertical
distance of each point from the line. Note that the
vertical distance from any of these points to the desired vertical line is fairly large. Thus, when we set up
a fitting problem such as this, we need to be careful about how we formulate the energy function. A
more reasonable thing to do is to minimize the average of the perpendicular distances between the
points and the line. For that, it is convenient to use a different parameterization of the straight line — x
sin 𝜃 - y cos 𝜃 + 𝜌 = 0 — which we discussed in the lecture on binary images. Here, 𝜃 is the angle that the
line makes with respect to the horizontal axis, and 𝜌 is the shortest distance from the line to the origin.

6

Fitting Lines to Edges

Solution:

where:

Given: Edge Points !!, #!
Task: Find $, %

'̅ = !
"
∑# '#

(! , %!

& =
∑# '# − '̅ $# − *$

∑# '# − '̅ $ (= *$ −&'̅

*$ = !
"
∑# $#

% = '(+ *

%! − '(! − *

7

Fitting Lines to Edges

Solution: Use a different line equation

Problem: When the points
represent a vertical line.

Line that minimizes E!

(

%

-
.

' sin . − $ cos . + 2 = 0

First Principles of Computer Vision Boundary Detection

FPCV-2-2 4

Note that the expression xi sin 𝜃 - yi cos 𝜃 + 𝜌 is the
perpendicular distance of the point (xi, yi) from the
line. This equation should look familiar since it is
the same as the one we used to find the axis of
minimum second moment of an object in a binary
image. We now know that if we are given a set of
points, we can treat them like points on a binary
object and simply find the axis of minimum second
moment. That axis will be the line that minimizes
the average of the square of the perpendicular
distances of the points from the line.

Now, let us look at the problem of fitting a curve to
a set of points. Let us say the curve we wish to fit
can be described as a third-order polynomial,
although it can be of any order. We want to find
the parameters of the polynomial that best fits
these points. For simplicity, let us return to our
earlier distance metric — the vertical distance.
Then, we can use the energy function shown here,
which is the average of the squared vertical
distance between each point and the polynomial
that we are fitting. To minimize this function, we
take its derivatives with respect to each of the
unknown parameters (a, b, c and d) and set them equal to 0 to get a system of equations. We can then
solve this system of equations to find the parameters a, b, c and d of the polynomial.

The problem here is that, given any polynomial, we will have to find the derivatives to create the system
of equations, and then solve the system to find the parameters of the polynomial. That is quite
cumbersome to do on a case-by-case basis. Is there a more general technique that we can use instead?

8

Fitting Lines to Edges

Minimize: Average Squared Perpendicular Distance

Perpendicular Distance

! =
1
5
6
#

'# sin . − $# cos . + 2 $

Problem: When the points
represent a vertical line.

(See Binary Img. Processing Lecture)

First Principles of Computer Vision Boundary Detection

FPCV-2-2 5

An alternative approach is to construct a system of
linear equations as follows. Let us assume we wish
to fit a third-order polynomial. By simply plugging
each point (xi, yi) into the polynomial we get an
equation. If we have a total of n points, we get the
system of n equations shown here. We wish to
find the four unknowns — a, b, c and d — using
these equations. If the number of points is larger
than the number of unknowns, which is typically
the case, then we have an over-determined linear
system of equations.

Let us take a look at how we can solve such an
over-determined linear system of equations in a
more general setting, where we have m unknowns
and n observations (points). Here, the
observations are denoted as (xij, yi). Note that xij
has two subscripts where i corresponds to the
index of the data point itself — in our case, the
edge —and j represents the power that xi is raised
to in the polynomial equation (see previous slide).
We can rewrite this system in matrix form as Xa =
y, where the matrix Xnxm and the vector ynx1 are
known and we wish to find the coefficient vector
amx1. Our first instinct may be to find the inverse of X, but X is not a square matrix and is therefore not
invertible. We can multiply both sides of the equation with the transpose of X, 	since we know that 𝑋!𝑋
is an m x m matrix — a square matrix. We can therefore find the inverse of 𝑋!𝑋 to solve for a. This
approach to solving an over-determined system of equations is called the pseudo-inverse method,
where the pseudo inverse is 𝑋" =	 (𝑋!𝑋)	#$𝑋! .	This is a general technique for solving any system of
over-determined linear equations.

10

Fitting Curves to Edges

Solving as a Linear System:

Given many !!, #! ’s, this is an over-determined
linear system with four unknowns (), +, %, ,).

% = 0(()

(

%

#$ =)!$" + +!$# + %!$ + ,
#% =)!%" + +!%# + %!% + ,

#! =)!!" + +!!# + %!! + ,

#& =)!&" + +!&# + %!& + ,

⋮

⋮

(! , %!

11

Solving a Linear System
An over-determined linear system with & unknowns)) (+ =
0, … ,&) and / observations #') , $' (0 = 0, … , /) / > & can be
written in a matrix form.

!$$!$% … !$'
!%$!%% … !%'
⋮ ⋮ ⋮ ⋮
!&$!&% … !&'

)$
)%
⋮
)'

=
#$
#%
⋮
#&

Unknown KnownKnown
:4×6 ;6×! <4×!

:; = <

Least Squares Solution:

:7:; = :7< ; = :7: 8!:7<
(Pseudo Inverse)

2*×# is not a square
matrix and hence not

invertible.

MATH PRIMER

⇒ :9 = :7: 8!:7

; = :9<

First Principles of Computer Vision Boundary Detection

FPCV-2-2 6

Next, let us talk about the concept of active contours, also referred to as snakes. This is a powerful tool
for finding the boundaries of objects in an image. Shown here is an image of a coin with a rough initial
contour (dotted curve) drawn around it. This contour could even be sketched by hand. We want this
initial contour to evolve over time so that it finally latches on to the boundary of the coin itself. In other
words, an active contour iteratively deforms an initial contour so that it ends up at the pixels that lie on
the boundary of the object. While implementing this technique, we want to make sure that the final
contour does not have knots and twists in it; it should be smooth. Active contours are popular in many
domains, in particular in the field of medical imaging.

One of the powerful features of active contours is
that they can be used to track objects over a video
sequence. For instance, in the case of the sequence
of the moving lips shown here, an active contour is
first used to find the outline of the lips in the first
frame of the sequence. The contour for this frame
can be used as the initial contour for the next
frame. Therefore, we can use an active contour to
effectively track the boundary of an object even as
it deforms over time. Similarly, if we are given the
video of an object that is taken while moving
around the object, such as the car shown here, we
can use an active contour to robustly find the boundary of the object even as its perspective changes
with time. These examples demonstrate why active contours are powerful and have wide ranging
applications.

14

Power of Deformable Contours

Boundaries could deform over time

Boundaries could deform with viewpoint

Boundary Tracking: Use the boundary from the current
image as initial boundary for the next image.

12

Active Contours

Topic: Boundary Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

13

What is an Active Contour?

Iteratively “deform” the initial contour so that:

• It is near pixels with high gradient (edges)

• It is smooth

Active Contour:
Image

Given: Approximate boundary (contour)
around the object

Task: Evolve (move) the contour to fit
exact object boundary

Also called Snakes

[Kass 1987]

First Principles of Computer Vision Boundary Detection

FPCV-2-2 7

We represent the contour as a set of n points,
called the control points. The sampling of the
contour is uniform, such that the distance
between consecutive control points is fixed. We
can therefore view the contour as a set of straight
line segments of equal length linked together.

Let us consider the simple case of finding the
boundary of the coin shown here using an active
contour. Shown as the blue dotted curve is the
initial contour that is sketched by the user. We
need to apply some forces to this initial contour to
draw it closer to the coin. Since the boundary of
any object is likely to have high gradients, it would
make sense to use the gradient of the image to
generate the forces that act on the contour. The
image in the center shows the square of the
magnitude of the gradient of the image. Now the
question is, how do we attract the contour closer
to the object when the gradients are sitting so far away? The trick is to blur the gradients so that they
can influence contour points that are distant. The image on the right shows the square of the magnitude
of the gradient after the gradient has been smoothed using a Gaussian function with standard deviation
𝜎. This image can be viewed as a force field, or a potential field, that acts on the contour. Ultimately, our
goal is to arrive at a contour shape and location for which the sum of the square of the gradient
magnitudes computed over all the control points of the contour is maximum. Maximizing this is
equivalent to minimizing the negative of the summation in 1 . This is referred to as the image term
Eimage. The reason we pose this as a minimization and not a maximization problem is that later we plan
to incorporate additional terms that we want to minimize.

16

Attracting Contours to Edges

Image with
Initial Contour

Maximize Sum of Gradient Magnitude Square

!#6:;< = −∑#=>
48! 3/. ∗ 5 6'

%

≡ Minimize –ve (Sum of Gradient Magnitude Square)

≡ Minimize

Gradient Magnitude
Squared
?@ " ?A# ∗ @ "

Blurred Gradient
Magnitude Squared

15

Representing a Contour

Contour 4: An ordered list of 2D vertices (control
points) connected by straight lines of fixed length

= = ># = '#, $# @ = 0, 1, 2,… , C − 1}

#, , $,

#- , $-

1

First Principles of Computer Vision Boundary Detection

FPCV-2-2 8

Our first algorithm for minimizing Eimage is based on the greedy approach. We are going to move each
contour point, vi, within a small window around it to the position for which Eimage is a minimum. Since it
is a greedy approach, we do this in a sequential manner, one control point at a time. We apply the
algorithm iteratively until the change in Eimage with respect to the previous iteration is less than a
threshold. This simple algorithm works reasonably well, but since it is greedy, it is not guaranteed to
yield the optimal solution. This is especially a problem when the image is noisy, in which case, the
gradient image and the force field it produces is also noisy. The slide on the right shows the final result
of applying the algorithm; the contour does latch on to the boundary of the coin but includes some knots.

We would like to add more constraints to make the
contour behave like a physical object with certain
properties.
One of those properties is elasticity, where the
contour behaves like a rubber band that contracts.
We also want it to be smooth, like a metal strip, so
it is not prone to sudden twists and turns. If we
think about the contour as a physical object made
of some material, imposing the above constraints
— elasticity and smoothness — is equivalent to
minimizing the internal bending energy of the
object. We will refer to the internal bending
energy as Econtour, which is a weighted sum of the elastic term Eelastic and the smoothness term Esmooth.
Next, we will derive these two terms so they can be added to our original image term Eimage. The weights
𝛼	and 𝛽 can be adjusted based on the application to trade off elasticity for smoothness and vice versa.

17

Contour Deformation: Greedy Algorithm

1. For each contour point 5! (6 = 0,… , 7 − 1), move 5! to a
position within a window : where the energy function
!#6:;< for the contour is minimum.

Greedy solution might be suboptimal and slow.

2. If the sum of motions of all the
contour points is less than a
threshold, stop. Else go to Step 1.

19

Making Contours Elastic and Smooth

Minimize Internal Bending Energy of the Contour:

!CD4EDFG = E !<H:IE#C + F !I6DDEJ

Elastic and contracts
like a rubber band

Smooth
like a metal strip

K, L : Control the influence of elasticity and smoothness

First Principles of Computer Vision Boundary Detection

FPCV-2-2 9

Now let us see how we can formulate elasticity and
smoothness. Imagine that we have a contour like
the one shown on the right. We will eventually
discretize it, but for now we will consider it to be
continuous. The contour is denoted as v(s) with
two coordinates x(s) and y(s), where s is the
parameter that represents the length along the
contour and it goes from zero to one. Note that to
minimize elasticity we want to minimize the rate of
change of the contour and to maximize
smoothness we want to minimize the curvature of
the contour. Therefore, for the elastic term we use
is the square of the first derivative of v and for the smoothness terms we use the square of the second
derivative of v. For a discrete contour with control points vi, the above derivatives can be computed
using the finite difference equations shown at the bottom.

Here are the elastic and smoothness terms computed over the entire contour. These are combined using
the weights alpha and beta to get the internal bending energy, which we refer to as the contour term,
Econtour. The contour term is added to the image term Eimage to get the total energy Etotal. It is this total
energy that we wish to minimize.

20

Elasticity and Smoothness

For point 0 ≤ < ≤ 1 on continuous contour 4 < = ! < , #(<) :

7/0123'(=
89

8:

%

Discrete approximations at control point =#:

7/0123'(9' =
89

8:

%
≈ 9'45 − 9' % = #'45 − #' % + $'45 − $' %

72#6637 9' =
8%9
8:%

%
≈ 9'45 − 9' − 9' − 9'$5 %

= #'45 − 2#' + #'$5 % + $'45 − 2$' + $'$5 %

M = 0

M = 1

P(M)

72#6637 =
8%9
8:%

%

22

Combining the Forces

Total Energy of Active Contour:

Internal Energy, !CD4EDFG: Measure of elasticity and
smoothness

!EDE:H = !#6:;< + !CD4EDFG

Image Energy, !#6:;<: Measure of how well the contour
latches on to edges

Minimize the Total Energy

21

Elasticity and Smoothness

Internal bending energy along the entire contour:

.()*+,!- ==
!.$

&/%
!!0% − !! # + #!0% − #! #

.+'11,2 ==
!.$

&/%
!!0% − 2!! + !!/% # + #!0% − 2#! + #!/% #

!CD4EDFG = E !<H:IE#C + F !I6DDEJ

where:

First Principles of Computer Vision Boundary Detection

FPCV-2-2 10

To minimize the total energy Etotal, we will once
again use a greedy approach. We first uniformly
sample the contour to get n contour points. In
order to ensure that the algorithm works well, we
need to uniformly sample the contour after each
iteration of the algorithm. In each iteration, for
each control point, we find the point within a small
window for which the total energy is a minimum,
and move the control point to that point. We
repeat this for all the control points to obtain the
new contour. If we find that the sum of the
displacements of all the control points with respect
to the previous iteration is small, we terminate the algorithm. Else, we return to step 1 and run another
iteration of the algorithm.

Shown here is the performance of the above
algorithm. In this case, the image includes two coins
and noise in the background. In the bottom row are
shown two results, one with a large value for alpha
and the other for a small value. When alpha is large,
as expected, the elastic term has a stronger
influence and the contour behaves like a stiffer
rubber band. When alpha is low, the image term
dominates and draws the contour closer to the
edges of the coins in the region between the two
coins.

23

Contour Deformation: Greedy Algorithm

2. For each contour point 5! 6 = 0,… , 7 − 1 , move 5! to a
position within a window W where the energy function
!EDE:H for the entire contour is minimum.

3. If the sum of motions of all the
contour points is less than a
threshold, stop. Else go to Step 1.

!EDE:H = !#6:;< + !CD4EDFG

1. Uniformly sample the contour to get 7 contour points.

First Principles of Computer Vision Boundary Detection

FPCV-2-2 11

Now let us discuss a few issues related to active
contours. Firstly, we can modify the above
formulation in many different ways. For example,
we could add an extra term that penalizes the
deviation of the contour from a prior model of the
shape of the object. In this case, the final result we
end up with will not only seek to satisfy all the
previous constraints—the image, elastic and
smoothness constraints — but also try to make
the final contour similar in shape to the prior
shape model.

One issue with contours is that they require good initialization. If our starting contour is really far away
from the real object, it is going to be difficult to create a force field that is able to draw it to the object.
In this case, it is likely that it will instead latch on to other objects in the image. Finally, in our current
formulation, the contour energy term, in effect, applies forces on the contour that make it contract like
a rubber band. Instead, we could formulate the contour energy so that it is subjected to ballooning forces
that make it expand. In this case, we can define an initial contour inside the object of interest and have
it expand until it latches on to the boundary of the object.

Let us take a look at a couple of examples. On the left is a scan of a skull. Despite the complex boundary
of the skull the contour (shown in red) is able to find it quite well. Contours have also been used to
develop interactive image segmentation, such as the magnetic lasso tool in Photoshop. On the right a
user is able to use this tool to find the boundary of the flower by roughly tracing it on the screen.

26

Active Contours: Comments

• Additional energy constraints can be added
- Penalize deviation from prior model of shape

• Requires good initialization
- Edges cannot attract contours that are far away

• Elasticity makes contour contract
- Replace contracting force with ballooning force to expand

First Principles of Computer Vision Boundary Detection

FPCV-2-2 12

One of the key problems with boundary detection is knowing which edges in an image actually
correspond to the boundary that we are looking for. If we knew that, then the problem would already
be half-solved, and we can use one of the methods we have discussed above to find the boundary. Shown
on the right is an image and its edge map. Imagine that we want to find the two wheels of the bicycle,
which can be described as circles. Indeed, we can see the circles in the edge map, but we also see lots of
other stuff. So, one challenge here is to be able to find the circles while being unaffected by all the other
edges in the image. Another challenge is that of incomplete data. In the case of the bicycle, not all edges
on the two wheels have been detected, creating some large gaps between the detected edges. In fact,
the incomplete data problem could be even worse if the wheels are partially occluded by other objects
in the scene. Finally, we have noise — some of the edges on the wheel may be detected away from the
wheel, and there may be other edges close to the wheel that do not correspond to the wheel. The Hough
transform, which was invented in the early 1960s, gives us a powerful way to deal with these three
problems in one shot. It works very well for simple shapes that can be described using a small number
of parameters.

29

Hough Transform

Topic: Boundary Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

30

Difficulties for the Fitting Approach

• Extraneous Data: Which points to fit to?

• Incomplete Data: Only part of the model is visible.

• Noise

Solution: Hough Transform

I.4

First Principles of Computer Vision Boundary Detection

FPCV-2-2 13

Let us take a look at how the Hough transform
works for the simplest of all shapes: the straight
line. Shown here are a set of edges in an image and
embedded in the set are points (dark dots) that lie
on a straight line (dotted line). Our goal is to find
the straight line from the complete set of points.
The equation of the straight line is y = mx + c,
where m is the slope and c is the y-intercept. If we
consider one point on the straight line, for example
(xi, yi), we can write yi = mxi + c. Since xi and yi are
known, we can rewrite this as a straight line
equation in m-c space, that is, c = - mxi + yi. This
allows us to look at the problem in two spaces. One is the image space, which is the x-y space, and the
other is the parameter space, which is the m-c space.

Now let us consider a line (shown as dotted) in
image space and one point (xi, yi) that lies exactly
on the line. We know this point corresponds to the
straight line c = - mxi + yi in parameter space. This
line in parameter space corresponds to all the lines
that pass through the point (xi, yi) in image space.
If we take another point in image space, it will give
us another line in parameter space. Note that the
two lines in parameter space intersect at a single
point (m, c) which corresponds to the slope and
intercept of the dotted line that passes through
the two points in image space. In fact, if we take
more points in image space that lie on the same straight line, we are going to get more lines in parameter
space, but they are all going to intersect at the same point (m, c) since that is the only straight line that
passes through all of them in image space.

31

Hough Transform: Line Detection

Consider point !!, #!

[Hough 1962]

(

%
% = '(+ *

(! , %!

Given: Edge Points !!, #!
Task: Detect line

= $! + %

$# = &'# + ((= −&'# + $#

32

Parameter SpaceImage Space

Hough Transform: Concept

$# = &'# + ((= −&'# + $#

(

%

'

*

#' , $' &, '

First Principles of Computer Vision Boundary Detection

FPCV-2-2 14

If we take a point that does not lie on the dotted
line in image space, it too will create a line in
parameter space. However, that line is not going
to pass through (m, c) because the image point
does not lie on the straight line with parameters
(m, c). This relationship between image space and
parameter space is interesting. A point in image
space maps to a line in parameter space, while a
line in image space ends up as a point in parameter
space. Based on this observation, we can create an
algorithm to detect straight lines.

Detailed here is the Hough transform algorithm for
line detection. Shown on the right is a very simple
example image with just three points that lie on a
line. First, we discretize our parameter space (m,c)
using a resolution that suits our application. Next,
we define a two-dimensional array of memory,
called the accumulator array, to represent the
discrete parameter space. The accumulator array is
initialized with zeros. Now let us consider one of
the edges in the image, (xi, yi), and plug it into the
line equation to get c = - mxi + yi, which we know is
a line in the parameter space. Next, we increment
every cell in the accumulator array that falls on this line. In effect, for each point in image space, we
“vote” for points in parameter space. So, for our first image point, we get a line of 1’s in the accumulator
array. We repeat this process of voting for the second image point. Where the two lines in parameter
space intersect, we will get a 2 in the accumulator array, and all other cells in the array will be either a 0
or a 1. Finally, we take our third point, and vote along another line in the accumulator array. Note that
the maximum value of 3 in the accumulator array corresponds to the m and c values of the line in image
space we are looking for. If we have multiple lines in the image, we will get several local maxima in the
accumulator array. The last step of line detection then is to simply find all the local maxima in the
accumulator array.

? &, '

&

'
000 0 0

0 0000

000 0 0

0 000 0

0 000 0

Step 1. Quantize parameter space &, '

Step 2. Create accumulator array ? &, '

Step 3. Set ? &, ' = 0 for all &, '

Step 4. For each edge point #' , $' ,

Step 5. Find local maxima in ? &, '

Image

if &, ' lies on the line: ' = −&#' + $'

? &, ' = ? &, ' + 1 1

1

1

1

1

1

1

1

2

(#' , $')

111 31

1

Line Detection Algorithm

3

34

33

Hough Transform: Concept

(

%

'

*

#' , $'

Point Line

PointLine

&, '

Parameter SpaceImage Space

$# = &'# + ((= −&'# + $#

First Principles of Computer Vision Boundary Detection

FPCV-2-2 15

In the example shown here, we have four line
segments, which results in four intersections in
parameter space. Note that the Hough transform
allows us to find these four lines without giving
care to which point in image space belongs to
which line. We simply repeat our voting process
for each point in image space and if a strong
maximum emerges in parameter space, we know
there are a significant number of edges in the
image that lie on a line. This demonstrates the
power of the Hough transform.

When we use y = mx + c as the line equation, we
know that m can range from negative infinity to
positive infinity. This poses a practical problem; if
we are interested in lines of all orientations, we
would need a massive accumulator array. The
solution is to use a different parametrization of the
straight line, which we have used before. Here, the
line parameters are 𝜃 and 𝜌, where 𝜃 must lie
between 0 and 2𝜋, and 𝜌 cannot be bigger than
the size of the image itself, as it is the distance of
the line from the origin of the image.

Consider a single point in image space. With our
new line parameterization, the point is going to
map to a sinusoid in parameter space. Now, if we
take another point in image space, it will map to
another sinusoid in parameter space. The
intersection of these sinusoids yields the
parameters of the straight line on which the two
image points lie. We see that we get two
intersections here, where one of them
corresponds to 𝜃 and the other one corresponds
to 𝜃 + 𝜋, which is essentially the same straight line.
So, in this case, the Hough transform uses an
accumulator array with the parameters 𝜌 and 𝜃, and voting is done along sinusoids.

35

Parameter SpaceImage Space

Multiple Line Detection

(

%

'

*

36

Issue: Slope of the line −∞ ≤ $ ≤ ∞
• Large Accumulator

• More Memory and Computation

Better Parameterization

Solution: Use ' sin . − $ cos . + 2 = 0

• Orientation @ is finite: 0 ≤ @ < B
• Distance C is finite

37

'

$

2
.

Better Parameterization

' sin . − $ cos . + 2 = 0

2

.

Parameter SpaceImage Space

' sin . − $ cos . + 2 = 0

For images: 0 ≤ . < I and 2 ≤ Image Diagonal

!
! + #

First Principles of Computer Vision Boundary Detection

FPCV-2-2 16

Let us discuss some issues related to the Hough
transform. The first is determining how big the
cells of the accumulator array should be.
Remember that if we make it a very low-resolution
accumulator array (large cells), we could have a lot
of votes falling within a cell, because there could
be many lines with similar parameters that can
pass through the same cell. Conversely, if the cells
are too small, then, in the presence of noise,
quantization, and other effects on the image side,
we may not have any cell that gets a high enough
number of votes to be declared a maximum. The
second issue is related to finding the maxima after the voting process. After voting, we can expect the
peaks in the array to be somewhat blurred due to image noise and the finite resolution of the array. To
this end, we need to use some sort of a peak-finding algorithm, such as the non-maximal suppression
method we used to find corners. Finally, since lines in the image are not expected to be perfectly straight,
we are better off not voting for just a single cell at a time as we traverse a line in the accumulator array.
Instead, it would make sense to vote for a small patch of cells, where the strength of the vote is maximum
at the center and tapers off as we go to the edge of the patch.

Let us take a look at how the Hough transform
works on real images. Consider the original image
on the upper left. To its right are the edge strength
and a thresholded edge map. Here, we have used
the 𝜌 − 𝜃 parametrization; note the sinusoidal
streaks in the accumulator array. The array has two
strong peaks, which correspond to the two strong
lines (shown in red) overlaid on the original image
in the bottom right.

39

Line Detection Results

Original Image

Hough Transform Q -, .

Gradient Edge (Threshold)

Detected Lines

38

Hough Transform Mechanics

• How big should the accumulator cells be?
- Too big, and different lines may be merged
- Too small, and noise causes lines to be missed

• How many lines?
– Count the peaks in the accumulator array

• Handling inaccurate edge locations:
- Increment patch in accumulator rather than single
point

First Principles of Computer Vision Boundary Detection

FPCV-2-2 17

Here is a more complex image and its thresholded
edge map. In this case, we get several strong peaks
in the accumulator array. The detected lines are
again overlaid on the original image in the bottom-
right corner. We see that we detect some lines
that are close to each other. This is because, in the
presence of quantization and noise, we are going
to end up detecting some peaks that are very close
to each other.

We have seen how we can find lines using the
Hough transform. Now let’s take it up a notch and
talk about how we can find circles. Here we have a
set of points in the image. Below, is the general
equation of a circle where the point (a,b)
corresponds to the center of the circle and r is its
radius. Given a set of edges, the three parameters
we are interested in finding are a, b, and r.

Let us make the problem easier by assuming that
we know the radius r of the circle we are trying to
find. In this case, we have a parameter space
(accumulator array) with only two parameters, a
and b. By rewriting the equation of the circle, we
see that, given any image point (xi, yi), we get the
equation of a circle of radius r in the a-b
parameter space. What that means is that each
point in the image will map to a circle in
parameter space.

40

Line Detection Results

Original Image

Hough Transform Q -, .

Gradient Edge (Threshold)

Detected Lines

41

Hough Transform: Circle Detection

Equation of Circle:

(

%

)

A B

'# − 7 $ + $# − 8 $ = J$

42

Hough Transform: Circle Detection

If radius D is known: Accumulator Array: E), +

'# − 7 $ + $# − 8 $ = J$ 7 − '# $ + 8 − $# $ = J$

Parameter SpaceImage Space

(

%

R

S

(! , %!

First Principles of Computer Vision Boundary Detection

FPCV-2-2 18

Consider this set of image points that lie on a circle
of known radius. Each point will produce a circle in
parameter space. All these circles will intersect at
a single point which corresponds to the a and b
values of the circle in the image that passes
through all the image points. To find circles of a
given radius therefore, we would vote along circles
in the accumulator array. After the voting is done,
peaks in the accumulator array would correspond
to centers of detected circles of radius r in the
image.

Now, let us take a look at a real image to which we
will apply circle detection. The image includes
three quarters and a penny. The penny, of course,
has a different radius than the quarter. We apply
edge detection to the image and the thresholded
edges are seen in the second image. The last two
images show the accumulator arrays after voting
for circles with the radius of the penny and the
quarter, respectively. Note that the strong peaks
(in the red circles) in these two images do indeed
correspond to the locations of the penny and the
three quarters.

44

Circle Detection Results

Original Image Edge (Threshold)

Penny (T = T1)

Hough Transform
Q1(R, S)

Quarter (T = T2)

Hough Transform
Q2(R, S)

I.5

43

Hough Transform: Circle Detection

If radius D is known: Accumulator Array: E), +

'# − 7 $ + $# − 8 $ = J$ 7 − '# $ + 8 − $# $ = J$

Parameter SpaceImage Space

(

%

R

S

First Principles of Computer Vision Boundary Detection

FPCV-2-2 19

With the Hough transform, if we are willing to do
more work in image space, we have less work to
do in parameter space, and vice versa. To illustrate
this, let’s again consider the problem of finding
circles of known radius, r. This time, though, we
are given not only the location of each edge in the
image, but also its direction, 𝜑%. Now, if we
consider a single point in the image, we know that,
if it lies on a circle of radius r, the center (a,b) of
that circle must lie along the edge direction. We do
not know on which side of the edge it lies, just that
it lies along the edge direction at a distance r from
the point itself. So, in parameter space, we no longer need to vote along an entire circle, we only have
to vote at two points on either side of the edge. Thus, we only need to increment two points in the
accumulator array, which is computationally a major saving. In other words, by doing the extra work of
finding accurate edge directions in image space, we are able to significantly lower the work we need to
do in parameter space.

Now let us take a look at a more interesting case,
where the radius of the circle is not known. We are
also going to assume that we do not know the
direction of each edge. Now, we have three
unknowns in our equation for the circle — a, b, and
r — and so our parameter space, and hence the
accumulator array, will have to be three-
dimensional. For any given edge location (xi, yi) we
will need to vote over an entire surface in the
three-dimensional accumulator array. If we take a
close look at the equation of the surface shown on
the right, we see that it is the equation of a cone.
So, for each point we need to vote along a cone, and when we are done voting for all image edges, we
look for the maxima in the array. This simple example illustrates that the work that needs to be done in
parameter space increases exponentially with the number of unknown parameters. In short, as the
parametric shape we are looking for increases in complexity, the Hough transform becomes less and less
practical.

46

Using Gradient Information

'# − 7 $ + $# − 8 $ = J$

Parameter SpaceImage Space

(

%

R

S

7 = '# ± J cosL#
8 = $# ± J sinL#

Need to increment only TWO points in E), +

Given: Edge Location !!, #! , Edge Direction F! and Radius D

47

Hough Transform: Circle Detection
If radius D is NOT known: Accumulator Array: E), +, D

7 − '# $ + 8 − $# $ = J$

Parameter Space

'# − 7 $ + $# − 8 $ = J$

Image Space

(

%

R

T

S

First Principles of Computer Vision Boundary Detection

FPCV-2-2 20

We have seen how we can use the Hough transform to find simple shapes that can be described with a
small number of parameters. Now let us take a look at how we can generalize the Hough transform to
find more complex shapes that cannot be described using an equation. This is called the Generalized
Hough Transform (GHT). Given a shape such as the one shown above, the first thing we are going to do
is define a reference point (xc, yc) for the shape. It turns out that when we apply the GHT to find an
object, we are going to be voting for the location of its reference point. In other words, our accumulator
array is two-dimensional and has the parameters xc and yc. If we get a strong peak in the array, then we
have found the object and its location in the image is determined by the location of its reference point.

The first step is to create a model of the object that can be used by the Hough transform. This step is
done off-line. For each point on the object’s boundary, we are going to assume that we have both the
edge location and the edge direction, 𝜙. Then, for each point boundary point, we represent it using the
vector 𝑟, which includes the distance 𝑟 of the point from the reference point and the angle 𝛼 the edge
makes with respect to the horizontal axis.

We use the above approach to create a model of
the object in the form of a table, called the 𝜙-
table. The index to the table is the edge direction

𝜙% 	and the entry is a list of the vectors 𝑟&555⃑
%

corresponding to all the points on the object’s
boundary that have that edge direction 𝜙% . This
table is the model that we will use to perform
Hough transform and find the object in an image.
Note that the assumption here is that the object
should appear in the image with the same
orientation and scale. It can, however, appear

48

Generalized Hough Transform

Topic: Boundary Detection, Module: Features and Boundaries

First Principles of Computer Vision

Shree K. Nayar

Columbia University

49

Generalized Hough Transform
Find shapes that cannot be described by Equations

Reference point:

Edge direction:

Edge location:

[Ballard 1981]

#(, $(

'C, $C

J!#
J$#

M# 0 ≤ M# < 2I

J⃑V
= JV#, EV#

M#

E!#

M#

E$#

50

Hough Model

C-Table:

#(, $(
J!#

J$# M#

E!#

M#

E$#

!"#$%&'($)*'+, r⃗ = r, α
C5 B⃗55 , B⃗%5 , B⃗85

C% B⃗5% , B⃗%%

⋮ ⋮
C* B⃗5* , B⃗%* , B⃗8* , B⃗9*

First Principles of Computer Vision Boundary Detection

FPCV-2-2 21

anywhere in the image, have missing boundary data, or even be partially occluded.

Here is an outline of how the generalized Hough
transform uses the above object model to find it
in an image. In the image shown here, we can see
that points belonging to the above object are
present, along with other points. Our goal is to
find the location of the reference point (xc, yc) if,
indeed, the object lies in the image. We begin by
creating an accumulator array, A(xc,yc), and
initialize it to zero. Remember that for each point,
we have both the location and the direction of the
edge at that point. So, we use the edge direction
𝜙% 	of the point as an index into our 𝜙-table to find

all the vectors 𝑟&555⃑
% 	associated with it. We use the vectors to vote for the reference point in the

accumulator array. Once we have voted using all the edges in the image, if a strong peak emerges in
accumulator array, we have found an instance of the object such that the location of the reference point
corresponds to the peak.

Let us see the result of applying the GHT to some
simple images. Shown on the left are images of the
objects — a leaf and a cat — we are interested in
detecting. We use these images to create 𝜙-tables
for each of the two objects. Then, we apply the
GHT to the cluttered images shown in the middle
column. On the right we see the strong peaks
(highlighted by the red circles) in the accumulator
array. For each strong peak, the outline of the
object is overlaid to show that the objects and their
locations are correctly detected. Note that in the
case of the leaf, GHT is able to find it even when it
is partially occluded.

54

Results

Model Model Detected Hough Transform $(&' , (')

52

Generalized Hough Algorithm

? #(, $(

$(

#(

• Create accumulator array ? #(, $(

• Set ? #(, $(= 0 for all #(, $(

• For each edge point #' , $' , C' ,

• Find local maxima in ? #(, $(

Image

O 'C, $C = O 'C, $C + 1

(! , %! , W!

000 0 0

0 0100

000 2 0

2 010 0

0 010 44

For each entry C' → B⃑:
' in C − table,

'C = '# ± JV# cos EV#

$C = $# ± JV# sin EV#

($, %$

First Principles of Computer Vision Boundary Detection

FPCV-2-2 22

Could we modify the above algorithm so that it can
detect the objects in arbitrary scale and rotation?
In principle, this is possible. As shown here, we can
simply incorporate the unknown scale and rotation
by adding them as parameters to our accumulator
array. In doing so, we go from a two-dimensional
accumulator array to a four-dimensional array.
Given an edge in the image we can use the
modified equations here to vote in the
accumulator array. Each strong peak in the array
corresponds not only to the existence of the object
in the image, but also reveals its scale and rotation.
However, the memory required for the four-dimensional array and the computational cost of voting
within it makes such an approach impractical in most real-world applications.

We will conclude with a few remarks related to the
Hough transform. First, the Hough transform is
very attractive as it works on disconnected edges;
as long as we have enough edges that actually lie
on the boundary of the object, we are not going to
be affected by noise in the image, extraneous
edges, or even partial occlusion of the object. It
works extremely well for simple shapes with a
small number of parameters, such as lines and
circles. It can also work on complex shapes using
the generalized Hough transform, but it requires
the edges of the object to be detected with high
accuracy in terms of both location and direction. Finally, there is a trade-off between the work that we
are doing in our image space and the work that we need to do in our parameter space. As we showed
earlier, if edge orientation can be computed with high accuracy, we can significantly reduce the number
of votes needed in parameter space.

In summary, the Hough transform is an elegant and useful technique for detection problems that involve
shapes that can be well-described with a small number of parameters.

55

Handling Scale And Rotation

Huge Memory and Computationally Expensive!

Use Accumulation Array: O 'C, $C, P, .

Scale: :

Rotation: J

J

'C = '# ± JV#. P cos EV# + .

$C = $# ± JV#. P sin EV# + .

O 'C, $C, P, . = O 'C, $C, P, . + 1

56

Hough Transform: Comments

• Works on disconnected edges

• Relatively insensitive to occlusion and noise

• Effective for simple shapes (lines, circles, etc.)

• Complex Shapes: Generalized Hough Transform

• Trade-off between work in image space and

parameter space

First Principles of Computer Vision Boundary Detection

FPCV-2-2 23

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription,
editing and proofreading.

57

References and Credits

Topic: Boundary Detection, Module: Features

First Principles of Computer Vision

Shree K. Nayar

Columbia University

58

References: Papers

[Duda and Hart 1975] R. O. Duda and P. E. Hart. “Use of the Hough
Transform to Detect Lines and Curves in Pictures”. Comm. ACM, vol.15, 1975.

[Hough 1962] P. V. C. Hough. Method and Means for Recognizing Complex
Patterns. U.S. Patent 3069654, 1962.

[Ballard 1981] D. H. Ballard.“Generalizing the Hough Transform to Detect
Arbitrary Shapes”. Pattern Recognition, vol. 13, no.2, 1981.

[Kass 1987] M. Kass, A. Witkin and D. Terzopoulos. “Snakes: Active
Contour Models”, IJCV, 1987.

[Xu 1997] C. Xu and J. Prince. "Gradient Vector Flow: A New external force
for Snakes”, CVPR, 1997.

59

Image Credits
I.1 Tolga Birdal. Used with permission.

I.4 Purchased from iStock by Getty Images.

I.5 Vivek Kwatra. Used with permission.

First Principles of Computer Vision Boundary Detection

FPCV-2-2

References

[Nalwa 1994] A Guided Tour of Computer Vision, Nalwa, V., Addison-Wesley, 1993.

[Ballard 1981] D. H. Ballard. “Generalizing the Hough Transform to Detect Arbitrary Shapes”. Pattern

Recognition, vol. 13, no.2, 1981.

[Duda and Hart 1975] R. O. Duda and P. E. Hart. “Use of the Hough Transform to Detect Lines and Curves

in Pictures”. Comm. ACM, vol.15, 1975.

[Hough 1962] P. V. C. Hough. Method and Means for Recognizing Complex Patterns. U.S. Patent

3069654, 1962.

[Kass 1987] M. Kass, A. Witkin and D. Terzopoulos. “Snakes: Active Contour Models”, IJCV, 1987.

[Xu 1997] C. Xu and J. Prince. "Gradient Vector Flow: A New external force for Snakes”, CVPR, 1997.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022F] Image Processing II, Nayar, S. K., Monograph FPCV-1-5, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022G] Edge Detection, Nayar, S. K., Monograph FPCV-2-1, First Principles of Computer Vision,

Columbia University, New York, May 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

[Nayar 2025M] Image Segmentation, Nayar, S. K., Monograph FPCV-5-2, First Principles of Computer
Vision, Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

	Boundary Detection FPCV-2-2
	Boundary Detection FPCV-2-2
	Boundary Detection SN 06-05-22 COVER
	Boundary Detection SN 06-05-22 FINAL

	References Boundary Detection

