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Now that we know how to find the edges in an image, we want to use these edges to produce clean 
outlines of the objects in the image. This is the problem of boundary detection. Simply put, we want to 
go from edge pixels to continuous object boundaries.  
 
First, we will discuss fitting lines and curves to edges. Given a set of edges, the task is to fit a low-order 
polynomial to the edges. We will see how this can be set up as a system of linear equations that can be 
solved efficiently. Next, we will talk about active contours, also known as snakes. These are widely used 
in computer vision, in particular in fields such as medical imaging. Imagine that we are interested in 
finding a specific object in the image. The image, of course, has a variety of other things inside of it. To 
guide our detection, we start by sketching a rough outline (contour) of the object. The algorithm then 
takes this contour and iteratively modifies it until it latches on, like a rubber band, to the actual boundary 
of the object. We refer to this type of an iteratively modified boundary as an active contour. 
  
In boundary detection, a challenging problem is figuring out which edges belong to the boundary that 
we are looking for. This is a type of “inlier-outlier” problem. A technique called the Hough transform—
invented in the 1960s — gives us an elegant way of solving this problem. We will describe the Hough 
transform and show how it can be used to find simple shapes, such as lines and circles, that can be 
described using equations with a small number of parameters. The Hough transform can detect such 
shapes robustly even when the image is complex.  
 
We will end with a generalization of the Hough transform. Consider the case where we are not given the 
parametric equation for the shape of the object we are looking for; an example would be a hand-drawn 
sketch. It turns out that we can generalize the Hough transform to apply it to such complex shapes as 
well. We will see how the generalized Hough transform can be implemented and what its limitations are. 
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We need to find Object Boundaries from Edge Pixels. 
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Imagine we are given a set of edges in an image and we want to fit either a straight line or a curve to the 
edges. Shown here on the top left is an image of a vase for which we want to produce a boundary 
detection output that looks like the image in the bottom left corner. This desired output has been 
manually sketched by an artist, and hence is very clean with clear boundaries. It is worth stating upfront 
that such a high-quality output is only aspirational and would be unrealistic to expect from any algorithm. 
First, we will apply edge detection to the input image, yielding an edge map with the strength, or 
magnitude, of the edge at each pixel. We can then threshold this edge map to produce a binary edge 
image. This image can be processed using the techniques we discussed in binary image processing. For 
instance, if we shrink and expand the edges, we end up with the image in the bottom right corner. 
Shrinking removes all the isolated edges in the image, after which the remaining edges are expanded 
again. Since these edges will probably be a little thicker than we would like, we can apply a thinning 
algorithm. Now the challenge is to go from this edge map to boundaries. 
 
Let us consider the simple problem of fitting  a line 
to the set of edges shown here. In other words, we 
want to find the slope m and the intercept c 
corresponding to the line that best represents the 
set of edges. We will start by setting up an energy, 
or cost, function. We can define the energy E as the 
average of the square of the vertical distances 
between each point (edge) and the line that we are 
trying to estimate. The vertical distance for the 
point (xi, yi) is simply yi – mxi – c. We then square 
this distance for each of the points, sum all of the 
distances, and then divide by the number of 
points, N, to obtain the average E. To find the “best” line for these edges, we need to find the m and c 
that minimize E. We know how to do that — we find the partial derivatives of E with respect to m and c 
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Fitting Lines to Edges

Minimize: Average Squared Vertical Distance  

Given: Edge Points !!, #!
Task: Find $, %
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and set them equal to 0. Remember that when we find the derivative, we can take the derivative inside 
the summation because both are linear operators. 
 
 
From the two partial derivatives, we get these 
closed-form expressions for m and c. We have 
therefore found a line that fits the edges. 
 
 
 
 
 
 
 
 
 
 
 
The above solution, unfortunately, does not 
always work well. Imagine using it to fit a line to 
the set of points shown here. We can see that the 
line we are looking for — the line that best 
represents these points — is a more or less vertical 
line that passes through the set of points. It turns 
out, however, that the line that we end up 
computing is actually the horizontal line shown 
here. It is virtually perpendicular to the line that we 
are looking for! This happened because we were 
minimizing an energy that represents the vertical 
distance of each point from the line. Note that the 
vertical distance from any of these points to the desired vertical line is fairly large. Thus, when we set up 
a fitting problem such as this, we need to be careful about how we formulate the energy function. A 
more reasonable thing to do is to minimize the average of the perpendicular distances between the 
points and the line. For that, it is convenient to use a different parameterization of the straight line — x 
sin 𝜃 - y cos 𝜃 + 𝜌 = 0 — which we discussed in the lecture on binary images. Here, 𝜃 is the angle that the 
line makes with respect to the horizontal axis, and 𝜌 is the shortest distance from the line to the origin. 
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Fitting Lines to Edges

Solution:

where:

Given: Edge Points !!, #!
Task: Find $, %
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Fitting Lines to Edges

Solution: Use a different line equation

Problem: When the points 
represent a vertical line.

Line that minimizes E!

(

%

-
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Note that the expression xi sin 𝜃 - yi cos 𝜃 + 𝜌 is the 
perpendicular distance of the point (xi, yi) from the 
line. This equation should look familiar since it is 
the same as the one we used to find the axis of 
minimum second moment of an object in a binary 
image. We now know that if we are given a set of 
points, we can treat them like points on a binary 
object and simply find the axis of minimum second 
moment. That axis will be the line that minimizes 
the average of the square of the perpendicular 
distances of the points from the line.  
 
 
Now, let us look at the problem of fitting a curve to 
a set of points. Let us say the curve we wish to fit 
can be described as a third-order polynomial, 
although it can be of any order. We want to find 
the parameters of the polynomial that best fits 
these points. For simplicity, let us return to our 
earlier distance metric — the vertical distance. 
Then, we can use the energy function shown here, 
which is the average of the squared vertical 
distance between each point and the polynomial 
that we are fitting. To minimize this function, we 
take its derivatives with respect to each of the 
unknown parameters (a, b, c and d) and set them equal to 0 to get a system of equations. We can then 
solve this system of equations to find the parameters a, b, c and d of the polynomial. 
 
The problem here is that, given any polynomial, we will have to find the derivatives to create the system 
of equations, and then solve the system to find the parameters of the polynomial. That is quite 
cumbersome to do on a case-by-case basis. Is there a more general technique that we can use instead? 
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Fitting Lines to Edges

Minimize: Average Squared Perpendicular Distance

Perpendicular Distance

! =
1
5
6
#

'# sin . − $# cos . + 2 $

Problem: When the points 
represent a vertical line.

(See Binary Img. Processing Lecture)
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An alternative approach is to construct a system of 
linear equations as follows. Let us assume we wish 
to fit a third-order polynomial. By simply plugging 
each point (xi, yi) into the polynomial we get an 
equation. If we have a total of n points, we get the 
system of n equations shown here.  We wish to 
find the four unknowns — a, b, c and d — using 
these equations. If the number of points is larger 
than the number of unknowns, which is typically 
the case, then we have an over-determined linear 
system of equations.  
 
 
Let us take a look at how we can solve such an 
over-determined linear system of equations in a 
more general setting, where we have m unknowns 
and n observations (points). Here, the 
observations are denoted as (xij, yi). Note that xij 
has two subscripts where i corresponds to the 
index of the data point itself — in our case, the 
edge —and j represents the power that xi is raised 
to in the polynomial equation (see previous slide).  
We can rewrite this system in matrix form as Xa = 
y, where the matrix Xnxm and the vector ynx1 are 
known and we wish to find the coefficient vector 
amx1. Our first instinct may be to find the inverse of X, but X is not a square matrix and is therefore not 
invertible. We can multiply both sides of the equation with the transpose of X, 	since we know that 𝑋!𝑋 
is an m x m matrix — a square matrix. We can therefore find the inverse of 𝑋!𝑋 to solve for a. This 
approach to solving an over-determined system of equations is called the pseudo-inverse method, 
where the pseudo inverse is 𝑋" =	 (𝑋!𝑋)	#$𝑋! .	This is a general technique for solving any system of 
over-determined linear equations. 
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Fitting Curves to Edges

Solving as a Linear System:

Given many !!, #! ’s, this is an over-determined 
linear system with four unknowns (), +, %, ,).

% = 0(()

(

%
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⋮

⋮

(! , %!
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Solving a Linear System
An over-determined linear system with & unknowns )) ( + =
0, … ,&) and / observations #') , $' (0 = 0, … , /) / > & can be 
written in a matrix form.

!$$ !$% … !$'
!%$ !%% … !%'
⋮ ⋮ ⋮ ⋮
!&$ !&% … !&'
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⋮
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=
#$
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⋮
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Unknown KnownKnown
:4×6 ;6×! <4×!
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Least Squares Solution:

:7:; = :7< ; = :7: 8!:7<
(Pseudo Inverse)

2*×# is not a square 
matrix and hence not 

invertible.

MATH PRIMER
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; = :9<
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Next, let us talk about the concept of active contours, also referred to as snakes. This is a powerful tool 
for finding the boundaries of objects in an image. Shown here is an image of a coin with a rough initial 
contour (dotted curve) drawn around it. This contour could even be sketched by hand. We want this 
initial contour to evolve over time so that it finally latches on to the boundary of the coin itself. In other 
words, an active contour iteratively deforms an initial contour so that it ends up at the pixels that lie on 
the boundary of the object. While implementing this technique, we want to make sure that the final 
contour does not have knots and twists in it; it should be smooth. Active contours are popular in many 
domains, in particular in the field of medical imaging.  
 
 
One of the powerful features of active contours is 
that they can be used to track objects over a video 
sequence. For instance, in the case of the sequence 
of the moving lips shown here, an active contour is 
first used to find the outline of the lips in the first 
frame of the sequence. The contour for this frame 
can be used as the initial contour for the next 
frame. Therefore, we can use an active contour to 
effectively track the boundary of an object even as 
it deforms over time. Similarly, if we are given the 
video of an object that is taken while moving 
around the object, such as the car shown here, we 
can use an active contour to robustly find the boundary of the object even as its perspective changes 
with time. These examples demonstrate why active contours are powerful and have wide ranging 
applications. 
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Power of Deformable Contours

Boundaries could deform over time

Boundaries could deform with viewpoint

Boundary Tracking: Use the boundary from the current 
image as initial boundary for the next image.
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Active Contours
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What is an Active Contour?

Iteratively “deform” the initial contour so that:

• It is near pixels with high gradient (edges)

• It is smooth

Active Contour: 
Image

Given: Approximate boundary (contour) 
around the object

Task: Evolve (move) the contour to fit 
exact object boundary

Also called Snakes

[Kass 1987]
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We represent the contour as a set of n points, 
called the control points. The sampling of the 
contour is uniform, such that the distance 
between consecutive control points is fixed. We 
can therefore view the contour as a set of straight 
line segments of equal length linked together.   
 
 
 
 
 
 
 
Let us consider the simple case of finding the 
boundary of the coin shown here using an active 
contour. Shown as the blue dotted curve is the 
initial contour that is sketched by the user. We 
need to apply some forces to this initial contour to 
draw it closer to the coin. Since the boundary of 
any object is likely to have high gradients, it would 
make sense to use the gradient of the image to 
generate the forces that act on the contour. The 
image in the center shows the square of the 
magnitude of the gradient of the image. Now the 
question is, how do we attract the contour closer 
to the object when the gradients are sitting so far away? The trick is to blur the gradients so that they 
can influence contour points that are distant. The image on the right shows the square of the magnitude 
of the gradient after the gradient has been smoothed using a Gaussian function with standard deviation 
𝜎. This image can be viewed as a force field, or a potential field, that acts on the contour. Ultimately, our 
goal is to arrive at a contour shape and location for which the sum of the square of the gradient 
magnitudes computed over all the control points of the contour is maximum. Maximizing this is 
equivalent to minimizing the negative of the summation in 1 . This is referred to as the image term 
Eimage. The reason we pose this as a minimization and not a maximization problem is that later we plan 
to incorporate additional terms that we want to minimize.  
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Attracting Contours to Edges

Image with 
Initial Contour

Maximize Sum of Gradient Magnitude Square

!#6:;< = −∑#=>
48! 3/. ∗ 5 6'

%

≡ Minimize –ve (Sum of Gradient Magnitude Square)

≡ Minimize

Gradient Magnitude
Squared
?@ " ?A# ∗ @ "

Blurred Gradient
Magnitude Squared
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Representing a Contour

Contour 4: An ordered list of 2D vertices (control 
points) connected by straight lines of fixed length

= = ># = '#, $# @ = 0, 1, 2,… , C − 1}

#, , $,

#- , $-

1  
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Our first algorithm for minimizing Eimage is based on the greedy approach. We are going to move each 
contour point, vi, within a small window around it to the position for which Eimage is a minimum. Since it 
is a greedy approach, we do this in a sequential manner, one control point at a time. We apply the 
algorithm iteratively until the change in Eimage with respect to the previous iteration is less than a 
threshold. This simple algorithm works reasonably well, but since it is greedy, it is not guaranteed to 
yield the optimal solution. This is especially a problem when the image is noisy, in which case, the 
gradient image and the force field it produces is also noisy. The slide on the right shows the final result 
of applying the algorithm; the contour does latch on to the boundary of the coin but includes some knots. 
 
 
We would like to add more constraints to make the 
contour behave like a physical object with certain 
properties. 
One of those properties is elasticity, where the 
contour behaves like a rubber band that contracts. 
We also want it to be smooth, like a metal strip, so 
it is not prone to sudden twists and turns. If we 
think about the contour as a physical object made 
of some material, imposing the above constraints 
— elasticity and smoothness — is equivalent to 
minimizing the internal bending energy of the 
object. We will refer to the internal bending 
energy as Econtour, which is a weighted sum of the elastic term Eelastic and the smoothness term Esmooth. 
Next, we will derive these two terms so they can be added to our original image term Eimage. The weights 
𝛼	and 𝛽 can be adjusted based on the application to trade off elasticity for smoothness and vice versa. 
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Contour Deformation: Greedy Algorithm

1. For each contour point 5! (6 = 0,… , 7 − 1), move 5! to a 
position within a window : where the energy function 
!#6:;< for the contour is minimum. 

Greedy solution might be suboptimal and slow.

2. If the sum of motions of all the 
contour points is less than a 
threshold, stop. Else go to Step 1.

19

Making Contours Elastic and Smooth

Minimize Internal Bending Energy of the Contour:

!CD4EDFG = E !<H:IE#C + F !I6DDEJ

Elastic and contracts
like a rubber band

Smooth
like a metal strip

K, L : Control the influence of elasticity and smoothness
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Now let us see how we can formulate elasticity and 
smoothness. Imagine that we have a contour like 
the one shown on the right. We will eventually 
discretize it, but for now we will consider it to be 
continuous. The contour is denoted as v(s) with 
two coordinates x(s) and y(s), where s is the 
parameter that represents the length along the 
contour and it goes from zero to one. Note that to 
minimize elasticity we want to minimize the rate of 
change of the contour and to maximize 
smoothness we want to minimize the curvature of 
the contour. Therefore, for the elastic term we use 
is the square of the first derivative of v and for the smoothness terms we use the square of the second 
derivative of v. For a discrete contour with control points vi, the above derivatives can be computed 
using the finite difference equations shown at the bottom.  
 

Here are the elastic and smoothness terms computed over the entire contour. These are combined using 
the weights alpha and beta to get the internal bending energy, which we refer to as the contour term, 
Econtour. The contour term is added to the image term Eimage to get the total energy Etotal. It is this total 
energy that we wish to minimize.  
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Elasticity and Smoothness

For point 0 ≤ < ≤ 1 on continuous contour 4 < = ! < , #(<) :

7/0123'( =
89

8:

%

Discrete approximations at control point =#:

7/0123'( 9' =
89

8:

%
≈ 9'45 − 9' % = #'45 − #' % + $'45 − $' %

72#6637 9' =
8%9
8:%

%
≈ 9'45 − 9' − 9' − 9'$5 %

= #'45 − 2#' + #'$5 % + $'45 − 2$' + $'$5 %

M = 0

M = 1

P(M)

72#6637 =
8%9
8:%

%
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Combining the Forces

Total Energy of Active Contour:

Internal Energy, !CD4EDFG: Measure of elasticity and 
smoothness

!EDE:H = !#6:;< + !CD4EDFG

Image Energy, !#6:;<: Measure of how well the contour 
latches on to edges

Minimize the Total Energy

21

Elasticity and Smoothness

Internal bending energy along the entire contour:

.()*+,!- ==
!.$

&/%
!!0% − !! # + #!0% − #! #

.+'11,2 ==
!.$

&/%
!!0% − 2!! + !!/% # + #!0% − 2#! + #!/% #

!CD4EDFG = E !<H:IE#C + F !I6DDEJ

where:
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To minimize the total energy Etotal, we will once 
again use a greedy approach. We first uniformly 
sample the contour to get n contour points. In 
order to ensure that the algorithm works well, we 
need to uniformly sample the contour after each 
iteration of the algorithm. In each iteration, for 
each control point, we find the point within a small 
window for which the total energy is a minimum, 
and move the control point to that point. We 
repeat this for all the control points to obtain the 
new contour. If we find that the sum of the 
displacements of all the control points with respect 
to the previous iteration is small, we terminate the algorithm. Else, we return to step 1 and run another 
iteration of the algorithm.   
 
 
Shown here is the performance of the above 
algorithm. In this case, the image includes two coins 
and noise in the background. In the bottom row are 
shown two results, one with a large value for alpha 
and the other for a small value. When alpha is large, 
as expected, the elastic term has a stronger 
influence and the contour behaves like a stiffer 
rubber band. When alpha is low, the image term 
dominates and draws the contour closer to the 
edges of the coins in the region between the two 
coins.  
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Contour Deformation: Greedy Algorithm

2. For each contour point 5! 6 = 0,… , 7 − 1 , move 5! to a
position within a window W where the energy function
!EDE:H for the entire contour is minimum.

3. If the sum of motions of all the 
contour points is less than a 
threshold, stop. Else go to Step 1.

!EDE:H = !#6:;< + !CD4EDFG

1. Uniformly sample the contour to get 7 contour points.
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Now let us discuss a few issues related to active 
contours. Firstly, we can modify the above 
formulation in many different ways. For example, 
we could add an extra term that penalizes the 
deviation of the contour from a prior model of the 
shape of the object. In this case, the final result we 
end up with will not only seek to satisfy all the 
previous constraints—the image, elastic and 
smoothness constraints — but also try to make 
the final contour similar in shape to the prior 
shape model.  
 
One issue with contours is that they require good initialization. If our starting contour is really far away 
from the real object, it is going to be difficult to create a force field that is able to draw it to the object. 
In this case, it is likely that it will instead latch on to other objects in the image. Finally, in our current 
formulation, the contour energy term, in effect, applies forces on the contour that make it contract like 
a rubber band. Instead, we could formulate the contour energy so that it is subjected to ballooning forces 
that make it expand. In this case, we can define an initial contour inside the object of interest and have 
it expand until it latches on to the boundary of the object. 
 

Let us take a look at a couple of examples. On the left is a scan of a skull. Despite the complex boundary 
of the skull the contour (shown in red) is able to find it quite well. Contours have also been used to 
develop interactive image segmentation, such as the magnetic lasso tool in Photoshop. On the right a 
user is able to use this tool to find the boundary of the flower by roughly tracing it on the screen.   
 
 

26

Active Contours: Comments

• Additional energy constraints can be added
- Penalize deviation from prior model of shape

• Requires good initialization 
- Edges cannot attract contours that are far away

• Elasticity makes contour contract
- Replace contracting force with ballooning force to expand
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One of the key problems with boundary detection is knowing which edges in an image actually 
correspond to the boundary that we are looking for. If we knew that, then the problem would already 
be half-solved, and we can use one of the methods we have discussed above to find the boundary. Shown 
on the right is an image and its edge map. Imagine that we want to find the two wheels of the bicycle, 
which can be described as circles. Indeed, we can see the circles in the edge map, but we also see lots of 
other stuff. So, one challenge here is to be able to find the circles while being unaffected by all the other 
edges in the image. Another challenge is that of incomplete data. In the case of the bicycle, not all edges 
on the two wheels have been detected, creating some large gaps between the detected edges. In fact, 
the incomplete data problem could be even worse if the wheels are partially occluded by other objects 
in the scene. Finally, we have noise — some of the edges on the wheel may be detected away from the 
wheel, and there may be other edges close to the wheel that do not correspond to the wheel. The Hough 
transform, which was invented in the early 1960s, gives us a powerful way to deal with these three 
problems in one shot. It works very well for simple shapes that can be described using a small number 
of parameters.  
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Hough Transform

Topic: Boundary Detection, Module: Features
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Difficulties for the Fitting Approach

• Extraneous Data: Which points to fit to?

• Incomplete Data: Only part of the model is visible.

• Noise

Solution: Hough Transform

I.4
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Let us take a look at how the Hough transform 
works for the simplest of all shapes: the straight 
line. Shown here are a set of edges in an image and 
embedded in the set are points (dark dots) that lie 
on a straight line (dotted line). Our goal is to find 
the straight line from the complete set of points. 
The equation of the straight line is y = mx + c, 
where m is the slope and c is the y-intercept. If we 
consider one point on the straight line, for example 
(xi, yi), we can write yi = mxi + c. Since xi and yi are 
known, we can rewrite this as a straight line 
equation in m-c space, that is, c = - mxi + yi. This 
allows us to look at the problem in two spaces. One is the image space, which is the x-y space, and the 
other is the parameter space, which is the m-c space.  
 
 
Now let us consider a line (shown as dotted) in 
image space and one point (xi, yi) that lies exactly 
on the line. We know this point corresponds to the 
straight line c = - mxi + yi in parameter space. This 
line in parameter space corresponds to all the lines 
that pass through the point (xi, yi) in image space.  
If we take another point in image space, it will give 
us another line in parameter space. Note that the 
two lines in parameter space intersect at a single 
point (m, c) which corresponds to the slope and 
intercept of the dotted line that passes through 
the two points in image space. In fact, if we take 
more points in image space that lie on the same straight line, we are going to get more lines in parameter 
space, but they are all going to intersect at the same point (m, c) since that is the only straight line that 
passes through all of them in image space.  
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Hough Transform: Line Detection

Consider point !!, #!

[Hough 1962]

(

%
% = '( + *

(! , %!

Given: Edge Points !!, #!
Task: Detect line 

# = $! + %

$# = &'# + ( ( = −&'# + $#
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Parameter SpaceImage Space

Hough Transform: Concept

$# = &'# + ( ( = −&'# + $#

(

%

'

*

#' , $' &, '
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If we take a point that does not lie on the dotted 
line in image space, it too will create a line in 
parameter space. However, that line is not going 
to pass through (m, c) because the image point 
does not lie on the straight line with parameters 
(m, c). This relationship between image space and 
parameter space is interesting. A point in image 
space maps to a line in parameter space, while a 
line in image space ends up as a point in parameter 
space. Based on this observation, we can create an 
algorithm to detect straight lines. 
 
 
Detailed here is the Hough transform algorithm for 
line detection. Shown on the right is a very simple 
example image with just three points that lie on a 
line. First, we discretize our parameter space (m,c) 
using a resolution that suits our application. Next, 
we define a two-dimensional array of memory, 
called the accumulator array, to represent the 
discrete parameter space. The accumulator array is 
initialized with zeros. Now let us consider one of 
the edges in the image, (xi, yi), and plug it into the 
line equation to get c = - mxi + yi, which we know is 
a line in the parameter space. Next, we increment 
every cell in the accumulator array that falls on this line. In effect, for each point in image space, we 
“vote” for points in parameter space.   So, for our first image point, we get a line of 1’s in the accumulator 
array. We repeat this process of voting for the second image point. Where the two lines in parameter 
space intersect, we will get a 2 in the accumulator array, and all other cells in the array will be either a 0 
or a 1. Finally, we take our third point, and vote along another line in the accumulator array. Note that 
the maximum value of 3 in the accumulator array corresponds to the m and c values of the line in image 
space we are looking for. If we have multiple lines in the image, we will get several local maxima in the 
accumulator array. The last step of line detection then is to simply find all the local maxima in the 
accumulator array. 
 
 

? &, '

&

'
000 0 0

0 0000

000 0 0

0 000 0

0 000 0

Step 1. Quantize parameter space &, '

Step 2. Create accumulator array ? &, '

Step 3. Set ? &, ' = 0 for all &, '

Step 4. For each edge point #' , $' , 

Step 5. Find local maxima in ? &, '

Image 

if &, ' lies on the line: ' = −&#' + $'

? &, ' = ? &, ' + 1 1

1

1

1

1

1

1

1

2

(#' , $')
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1

Line Detection Algorithm

3
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Hough Transform: Concept

(

%

'

*

#' , $'

Point Line

PointLine
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Parameter SpaceImage Space
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In the example shown here, we have four line 
segments, which results in four intersections in 
parameter space. Note that the Hough transform 
allows us to find these four lines without giving 
care to which point in image space belongs to 
which line. We simply repeat our voting process 
for each point in image space and if a strong 
maximum emerges in parameter space, we know 
there are a significant number of edges in the 
image that lie on a line. This demonstrates the 
power of the Hough transform. 
 
 
When we use y = mx + c as the line equation, we 
know that m can range from negative infinity to 
positive infinity. This poses a practical problem; if 
we are interested in lines of all orientations, we 
would need a massive accumulator array. The 
solution is to use a different parametrization of the 
straight line, which we have used before. Here, the 
line parameters are 𝜃 and 𝜌, where  𝜃 must lie 
between 0 and 2𝜋, and 𝜌 cannot be bigger than 
the size of the image itself, as it is the distance of 
the line from the origin of the image.  
 
 
Consider a single point in image space. With our 
new line parameterization, the point is going to 
map to a sinusoid in parameter space. Now, if we 
take another point in image space, it will map to 
another sinusoid in parameter space. The 
intersection of these sinusoids yields the 
parameters of the straight line on which the two 
image points lie. We see that we get two 
intersections here, where one of them 
corresponds to 𝜃 and the other one corresponds 
to 𝜃 + 𝜋, which is essentially the same straight line. 
So, in this case, the Hough transform uses an 
accumulator array with the parameters 𝜌 and 𝜃, and voting is done along sinusoids. 

35

Parameter SpaceImage Space

Multiple Line Detection

(

%

'
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Issue: Slope of the line −∞ ≤ $ ≤ ∞
• Large Accumulator

• More Memory and Computation

Better Parameterization

Solution: Use ' sin . − $ cos . + 2 = 0

• Orientation @ is finite: 0 ≤ @ < B
• Distance C is finite

37

'

$

2
.

Better Parameterization

' sin . − $ cos . + 2 = 0

2

.

Parameter SpaceImage Space

' sin . − $ cos . + 2 = 0

For images: 0 ≤ . < I and 2 ≤ Image Diagonal

!
! + #
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Let us discuss some issues related to the Hough 
transform. The first is determining how big the 
cells of the accumulator array should be. 
Remember that if we make it a very low-resolution 
accumulator array (large cells), we could have a lot 
of votes falling within a cell, because there could 
be many lines with similar parameters that can 
pass through the same cell. Conversely, if the cells 
are too small, then, in the presence of noise, 
quantization, and other effects on the image side, 
we may not have any cell that gets a high enough 
number of votes to be declared a maximum. The 
second issue is related to finding the maxima after the voting process. After voting, we can expect the 
peaks in the array to be somewhat blurred due to image noise and the finite resolution of the array. To 
this end, we need to use some sort of a peak-finding algorithm, such as the non-maximal suppression 
method we used to find corners. Finally, since lines in the image are not expected to be perfectly straight, 
we are better off not voting for just a single cell at a time as we traverse a line in the accumulator array. 
Instead, it would make sense to vote for a small patch of cells, where the strength of the vote is maximum 
at the center and tapers off as we go to the edge of the patch.  
 
 
Let us take a look at how the Hough transform 
works on real images. Consider the original image 
on the upper left. To its right are the edge strength 
and a thresholded edge map. Here, we have used 
the 𝜌 − 𝜃 parametrization; note the sinusoidal  
streaks in the accumulator array. The array has two 
strong peaks, which correspond to the two strong 
lines (shown in red) overlaid on the original image 
in the bottom right. 
 
 
 
 

39

Line Detection Results

Original Image

Hough Transform Q -, .

Gradient Edge (Threshold)

Detected Lines

38

Hough Transform Mechanics

• How big should the accumulator cells be? 
- Too big, and different lines may be merged
- Too small, and noise causes lines to be missed

• How many lines?
– Count the peaks in the accumulator array

• Handling inaccurate edge locations: 
- Increment patch in accumulator rather than single 
point
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Here is a more complex image and its thresholded 
edge map. In this case, we get several strong peaks 
in the accumulator array. The detected lines are 
again overlaid on the original image in the bottom-
right corner.  We see that we detect some lines 
that are close to each other. This is because, in the 
presence of quantization and noise, we are going 
to end up detecting some peaks that are very close 
to each other.  
 
 
 
 
We have seen how we can find lines using the 
Hough transform. Now let’s take it up a notch and 
talk about how we can find circles. Here we have a 
set of points in the image. Below, is the general 
equation of a circle where the point (a,b) 
corresponds to the center of the circle and r is its 
radius. Given a set of edges, the three parameters 
we are interested in finding are a, b, and r.  
 
 
 
 
 
Let us make the problem easier by assuming that 
we know the radius r of the circle we are trying to 
find. In this case, we have a parameter space 
(accumulator array) with only two parameters, a 
and b. By rewriting the equation of the circle, we 
see that, given any image point (xi, yi), we get the 
equation of a circle of radius r in the a-b 
parameter space. What that means is that each 
point in the image will map to a circle in 
parameter space.  
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Line Detection Results

Original Image

Hough Transform Q -, .

Gradient Edge (Threshold)

Detected Lines
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Hough Transform: Circle Detection

Equation of Circle:

(

%

)

A B

'# − 7 $ + $# − 8 $ = J$

42

Hough Transform: Circle Detection

If radius D is known: Accumulator Array: E ), +

'# − 7 $ + $# − 8 $ = J$ 7 − '# $ + 8 − $# $ = J$

Parameter SpaceImage Space

(

%

R

S

(! , %!
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Consider this set of image points that lie on a circle 
of known radius. Each point will produce a circle in 
parameter space. All these circles will intersect at 
a single point which corresponds to the a and b 
values of the circle in the image that passes 
through all the image points. To find circles of a 
given radius therefore, we would vote along circles 
in the accumulator array. After the voting is done, 
peaks in the accumulator array would correspond 
to centers of detected circles of radius r in the 
image. 
 
 
 
Now, let us take a look at a real image to which we 
will apply circle detection. The image includes 
three quarters and a penny. The penny, of course, 
has a different radius than the quarter. We apply 
edge detection to the image and the thresholded 
edges are seen in the second image. The last two 
images show the accumulator arrays after voting 
for circles with the radius of the penny and the 
quarter, respectively. Note that the strong peaks 
(in the red circles) in these two images do indeed 
correspond to the locations of the penny and the 
three quarters.  
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Circle Detection Results

Original Image Edge (Threshold)

Penny (T = T1)

Hough Transform 
Q1(R, S)

Quarter (T = T2)

Hough Transform 
Q2(R, S)

I.5
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Hough Transform: Circle Detection

If radius D is known: Accumulator Array: E ), +

'# − 7 $ + $# − 8 $ = J$ 7 − '# $ + 8 − $# $ = J$

Parameter SpaceImage Space

(
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With the Hough transform, if we are willing to do 
more work in image space, we have less work to 
do in parameter space, and vice versa. To illustrate 
this, let’s again consider the problem of finding 
circles of known radius, r. This time, though, we 
are given not only the location of each edge in the 
image, but also its direction, 𝜑%. Now, if we 
consider a single point in the image, we know that, 
if it lies on a circle of radius r, the center (a,b) of 
that circle must lie along the edge direction. We do 
not know on which side of the edge it lies, just that 
it lies along the edge direction at a distance r from 
the point itself. So, in parameter space, we no longer need to vote along an entire circle, we only have 
to vote at two points on either side of the edge. Thus, we only need to increment two points in the 
accumulator array, which is computationally a major saving. In other words, by doing the extra work of 
finding accurate edge directions in image space, we are able to significantly lower the work we need to 
do in parameter space. 
 
Now let us take a look at a more interesting case, 
where the radius of the circle is not known. We are 
also going to assume that we do not know the 
direction of each edge. Now, we have three 
unknowns in our equation for the circle — a, b, and 
r — and so our parameter space, and hence the 
accumulator array, will have to be three-
dimensional. For any given edge location (xi, yi) we 
will need to vote over an entire surface in the 
three-dimensional accumulator array. If we take a 
close look at the equation of the surface shown on 
the right, we see that it is the equation of a cone. 
So, for each point we need to vote along a cone, and when we are done voting for all image edges, we 
look for the maxima in the array. This simple example illustrates that the work that needs to be done in 
parameter space increases exponentially with the number of unknown parameters. In short, as the 
parametric shape we are looking for increases in complexity, the Hough transform becomes less and less 
practical.  

46

Using Gradient Information

'# − 7 $ + $# − 8 $ = J$

Parameter SpaceImage Space
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%
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7 = '# ± J cosL#
8 = $# ± J sinL#

Need to increment only TWO points in E ), +

Given: Edge Location !!, #! , Edge Direction F! and Radius D
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Hough Transform: Circle Detection
If radius D is NOT known: Accumulator Array: E ), +, D

7 − '# $ + 8 − $# $ = J$

Parameter Space

'# − 7 $ + $# − 8 $ = J$

Image Space
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We have seen how we can use the Hough transform to find simple shapes that can be described with a 
small number of parameters. Now let us take a look at how we can generalize the Hough transform to 
find more complex shapes that cannot be described using an equation. This is called the Generalized 
Hough Transform (GHT). Given a shape such as the one shown above, the first thing we are going to do 
is define a reference point (xc, yc) for the shape. It turns out that when we apply the GHT to find an 
object, we are going to be voting for the location of its reference point. In other words, our accumulator 
array is two-dimensional and has the parameters xc and yc. If we get a strong peak in the array, then we 
have found the object and its location in the image is determined by the location of its reference point.  
 
The first step is to create a model of the object that can be used by the Hough transform. This step is 
done off-line. For each point on the object’s boundary, we are going to assume that we have both the 
edge location and the edge direction, 𝜙. Then, for each point boundary point, we represent it using the 
vector 𝑟, which includes the distance 𝑟 of the point from the reference point and the angle 𝛼 the edge 
makes with respect to the horizontal axis.   
 
We use the above approach to create a model of 
the object in the form of a table, called the 𝜙-
table. The index to the table is the edge direction 

𝜙% 	and the entry is a list of the vectors 𝑟&555⃑
%  

corresponding to all the points on the object’s 
boundary that have that edge direction 𝜙% .  This 
table is the model that we will use to perform 
Hough transform and find the object in an image. 
Note that the assumption here is that the object 
should appear in the image with the same 
orientation and scale. It can, however, appear 

48

Generalized Hough Transform

Topic: Boundary Detection, Module: Features and Boundaries

First Principles of Computer Vision

Shree K. Nayar

Columbia University

49

Generalized Hough Transform
Find shapes that cannot be described by Equations

Reference point:

Edge direction:

Edge location:

[Ballard 1981]

#( , $(

'C, $C

J!#
J$#

M# 0 ≤ M# < 2I

J⃑V
# = JV#, EV#
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E!#
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Hough Model

C-Table:

#( , $(
J!#

J$# M#

E!#

M#

E$#

!"#$%&'($)*'+, r⃗ = r, α
C5 B⃗55 , B⃗%5 , B⃗85

C% B⃗5% , B⃗%%

⋮ ⋮
C* B⃗5* , B⃗%* , B⃗8* , B⃗9*
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anywhere in the image, have missing boundary data, or even be partially occluded.   
 
 
Here is an outline of how the generalized Hough 
transform uses the above object model to find it 
in an image. In the image shown here, we can see 
that points belonging to the above object are 
present, along with other points.  Our goal is to 
find the location of the reference point (xc, yc) if, 
indeed, the object lies in the image. We begin by 
creating an accumulator array, A(xc,yc), and 
initialize it to zero. Remember that for each point, 
we have both the location and the direction of the 
edge at that point. So, we use the edge direction 
𝜙% 	of the point as an index into our  𝜙-table to find 

all the vectors 𝑟&555⃑
% 	associated with it. We use the vectors to vote for the reference point in the 

accumulator array. Once we have voted using all the edges in the image, if a strong peak emerges in 
accumulator array, we have found an instance of the object such that the location of the reference point 
corresponds to the peak.   
 
 
Let us see the result of applying the GHT to some 
simple images. Shown on the left are images of the 
objects — a leaf and a cat — we are interested in 
detecting. We use these images to create 𝜙-tables 
for each of the two objects. Then, we apply the 
GHT to the cluttered images shown in the middle 
column. On the right we see the strong peaks 
(highlighted by the red circles) in the accumulator 
array. For each strong peak, the outline of the 
object is overlaid to show that the objects and their 
locations are correctly detected. Note that in the 
case of the leaf, GHT is able to find it even when it 
is partially occluded.  
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Results

Model Model Detected Hough Transform $(&' , (')
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Generalized Hough Algorithm

? #( , $(

$(

#(

• Create accumulator array ? #( , $(

• Set ? #( , $( = 0 for all #( , $(

• For each edge point #' , $' , C' , 

• Find local maxima in ? #( , $(

Image 

O 'C, $C = O 'C, $C + 1
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For each entry C' → B⃑:
' in C − table, 

'C = '# ± JV# cos EV#

$C = $# ± JV# sin EV#
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Could we modify the above algorithm so that it can 
detect the objects in arbitrary scale and rotation? 
In principle, this is possible. As shown here, we can 
simply incorporate the unknown scale and rotation 
by adding them as parameters to our accumulator 
array. In doing so, we go from a two-dimensional 
accumulator array to a four-dimensional array. 
Given an edge in the image we can use the 
modified equations here to vote in the 
accumulator array. Each strong peak in the array 
corresponds not only to the existence of the object 
in the image, but also reveals its scale and rotation. 
However, the memory required for the four-dimensional array and the computational cost of voting 
within it makes such an approach impractical in most real-world applications.  
 
 

We will conclude with a few remarks related to the 
Hough transform. First, the Hough transform is 
very attractive as it works on disconnected edges; 
as long as we have enough edges that actually lie 
on the boundary of the object, we are not going to 
be affected by noise in the image, extraneous 
edges, or even partial occlusion of the object. It 
works extremely well for simple shapes with a 
small number of parameters, such as lines and 
circles. It can also work on complex shapes using 
the generalized Hough transform, but it requires 
the edges of the object to be detected with high 
accuracy in terms of both location and direction. Finally, there is a trade-off between the work that we 
are doing in our image space and the work that we need to do in our parameter space. As we showed 
earlier, if edge orientation can be computed with high accuracy, we can significantly reduce the number 
of votes needed in parameter space.  

 

In summary, the Hough transform is an elegant and useful technique for detection problems that involve 
shapes that can be well-described with a small number of parameters.   
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Handling Scale And Rotation

Huge Memory and Computationally Expensive!

Use Accumulation Array: O 'C, $C, P, .

Scale: :

Rotation: J

J

'C = '# ± JV#. P cos EV# + .

$C = $# ± JV#. P sin EV# + .

O 'C, $C, P, . = O 'C, $C, P, . + 1
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Hough Transform: Comments

• Works on disconnected edges

• Relatively insensitive to occlusion and noise

• Effective for simple shapes (lines, circles, etc.)

• Complex Shapes: Generalized Hough Transform

• Trade-off between work in image space and  

parameter space
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