

Binary Images

Shree K. Nayar

Monograph: FPCV-1-3

Module: Imaging

Series: First Principles of Computer Vision

Computer Science, Columbia University

March 01, 2022

FPCV Channel

FPCV Website

https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw
https://fpcv.cs.columbia.edu/

First Principles of Computer Vision Binary Images

FPCV-1-3 1

Binary images are the simplest type of images used in computer vision. A binary image can have one of
two values: 0 or 1. For instance, in the image shown on the right, the value of 1 (white) represents the
object while the value of 0 (black) denotes the background. These images are very easy to process, store,
and analyze. Despite their simplicity, they are very useful — there are many vision tasks, especially in
structured environments such as assembly lines in factories, that can be performed efficiently and
robustly using binary images.

In order to create a binary image, we start with a
gray-level image, with values that range from 0 to
N. We then threshold it with a value T that is either
automatically computed from the image or chosen
by the user. The result is a characteristic or
indicator function, b(x,y), for which the output
value is 0 if the corresponding value in the gray-
level image is less than the threshold and 1
otherwise (it can also be the other way around).

1

Binary Images

Topic: Binary Images, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

2

Binary Images

Binary Image: Can have only two values (0 or 1).
Simple to process and analyze.

3

Making Binary Images

Characteristic Function:

!(#, %) = (0, *(#, %) < ,
1, *(#, %) ≥ ,

Binary Image !(#, %): Usually obtained from Gray-

level image * #, % by Thresholding.

First Principles of Computer Vision Binary Images

FPCV-1-3 2

In order to select the threshold T, we can compute
a histogram of the original gray-level image. In this
example, the gray-level image has an 8-bit
brightness value at each pixel. Hence, the
horizontal axis of the histogram has gray levels that
go from 0 to 255. For each gray level, the
histogram shows the number of pixels in the image
that have that level. The histogram seen here has
two modes (or peaks), one corresponding to the
background and the other to the objects in the
foreground. The best choice for the threshold T
would be a value that lies in the valley between the
two modes.

Here are a few of the many applications of binary
images. They are widely used for detecting defects
in printed circuit boards, such as breaks in copper
strips. In the case of fingerprint analysis, a special
type of lighting is used to enhance the curves and
ridges in the image of the finger, which is then
converted to a binary image. Another popular
application is the detection and decoding of visual
codes like QR codes. Binary images are also used in
other domains such as medical image analysis.

Binary images are also useful in imaging three-
dimensional (3D) objects. Irrespective of how
complex a 3D object is, if we drop it on a horizontal
plane, it will land in one of a finite number of stable
configurations. Thus, if we have 3D objects sitting
on a plane, as shown here, and the plane is imaged
from the top, then the camera will see each of the
objects in one of its stable configurations. In any
given stable configuration, the 3D object produces
a 2D shape that may be translated or rotated in the
image. If we can develop an algorithm to recognize

4

Selecting a Threshold (!)

Gray Image !(#, %)

Binary Image '(#, %)

Gray Level

I.4

Threshold (!)

Histogram

N
um

be
r

of
Pi

xe
ls

Examples of Binary Images

I.2 I.3I.1

5

Capturing a Binary Images

Backlighting 6

First Principles of Computer Vision Binary Images

FPCV-1-3 3

a 2D shape even when it is translated or rotated in the image, we can recognize the corresponding 3D
object.

In the example shown here, however, it is difficult to threshold the image on the left because the objects
are made of different materials. This results in object regions that can be bright or dark and can include
shading, texture and highlights. In applications where lighting can be controlled, backlighting can be
utilized where the objects sit on a translucent surface that is lit from beneath. When this is done, the
image captured (right) by the camera is virtually a binary one, even without any processing.

In this lecture, we will discuss the processing of
binary images. First, we will discuss the geometric
properties of a binary image of a single object. We
will show that some of these properties are
invariant to translation and rotation of the object
on the plane it sits, hence they can be used to
recognize the object.

When the binary image includes multiple objects,
the objects need to be assigned different labels
before the geometric properties of each one can
be computed. This labeling problem is referred to
as segmentation. We will present algorithms for
efficiently segmenting a binary image into different objects.

Finally, we will talk about iterative modification. This is a class of algorithms that change a pixel value (0
to 1 or 1 to 0) based solely on the values of its immediate neighbors. In doing so, care must be taken to
ensure that the structure of the object is preserved and that new bodies or holes are not introduced into
the image. Such modification algorithms are inherently parallelizable — the pixel modifications can be
applied to large numbers of pixels, simultaneously. These algorithms can also be iterative — the
modification can be applied to an image repeatedly. This approach can be used to, for instance, quickly
thin an object down to its skeleton.

7

Binary Images

Topics:

(1) Geometric Properties

(2) Segmenting Binary Images

(3) Iterative Modification

Binary Image: Can have only two values (0 or 1).
Simple to process and analyze.

First Principles of Computer Vision Binary Images

FPCV-1-3 4

Let us examine how the geometric properties of a binary image can be computed. Assume that the binary
image shown here is continuous with spatial coordinates x and y; we will discuss discrete binary images
later. Let us also assume, for now, that there is only one object in the binary image. Our characteristic
function b(x,y) is 1 for points on the object and 0 for points in the background.

The simplest geometry property we can compute
is the area of the object, which is the zeroth
moment. The area is computed by integrating the
characteristic function b(x,y) over the entire
image. The area is a useful property because it is
sometimes sufficient for distinguishing between a
small number of objects.

Another useful property of an object is its location.
If, for instance, we have an application in which a
robot needs to pick up an object, the robot would
need to know the object’s location. A
straightforward way to determine its location is by
finding the first moments of its binary image. These can be found by computing the integral of x times
b(x,y) over the entire image divided by the area to get x ̄and the integral of y times b(x,y) over the entire
image divided by the area to get ȳ. These are the x and y coordinates of the center of the area. This
center is analogous to the “centroid” of an object in mechanics. Given an object with uniform thickness
and material composition, the location of its centroid, or center of mass, corresponds to the center of
its area.

8

Geometric Properties

Topic: Binary Images, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

9

Geometric Properties of Binary Images

! = #(%, ')

Assume:

• !(#, %) is continuous

• Only one object

#

%

10

Area and Position

! = #(%, ')

Area: (Zeroth Moment)

/ =0
(

!(#, %) 1# 1%

Position: Center of Area (First Moment)

=
1
/0

(

!(#, %) 1# 1% , % =
1
/0

(

% !(#, %) 1# 1%

(%, ')

#

%

First Principles of Computer Vision Binary Images

FPCV-1-3 5

Returning to the robot example, our robot would
also need to know the orientation of the object
before it can grasp it. Orientation is a more
nuanced concept, as one can think of many ways
to define it. For our purposes here, we need to find
an axis that is well-defined for any given shape,
irrespective of its position and rotation in the
image. That axis is the axis of least second
moment. Here is one way to gain physical intuition
for what this axis means. Imagine the object to be
a thin sheet of uniform material and thickness. If
we were to spin the object about the axis of least
second moment, it would require less effort than spinning it about any other axis.

How do we find the axis of least second moment?
The second moment (E) for any chosen axis is the
sum of the square of the shortest distance (r) of
each point on the object from that axis. In order to
define the chosen axis, we could use the straight-
line equation y = mx + b. This representation of the
line, however, is problematic for our purposes
since m goes from minus infinity to infinity.
Instead, we will use a different parametrization of
the straight line: x sin θ - y cos θ + ρ = 0. θ is the
angle between the line and the horizontal axis,
which can only range from 0 to 2π. ρ is the
perpendicular distance from the line to the origin. Note that ρ also has to be finite because the object
(and hence its axis of least second moment) must lie within the image. Our goal is to find the ρ and θ
that minimize E for any given binary image. For now, we are once again assuming that there is only one
object in the binary image.

12

Orientation

#

%Axis of Least Second Moment
minimizes:

(%, ')
) *

axis

+

2 =0
(

3) !(#, %) 1# 1%

Which equation to use for axis?

% = 4# + ! ? −∞ ≤ 4 ≤ ∞

Use: # sin < − % cos < + ? = 0 ', (are finite

Find ' and (that minimize) for given !(#, %)

11

Orientation

#

%

! = #(%, ')

Difficult to define!

Use: Axis of Least Second Moment

First Principles of Computer Vision Binary Images

FPCV-1-3 6

Here is a math primer that will allow us to review
some properties of a straight line. If we are given a
line ax + by + c = 0, the distance r of a point (x,y)
from that line is the absolute value of ax + by + c
divided by the square root of a2 + b2. From our line
expression x sin θ - y cos θ + ρ = 0, we can
determine a, b, and c and plug them into the
equation for r. In the denominator we have sin2 θ
+ cos2θ which equals 1. Therefore, r is equal to this
expression 1 which actually turns out to be the
left-hand side of our straight-line equation.

We plug this expression for r back into the
equation for the second moment E. In order to
minimize E, we find the derivative of E with respect
to ρ and set it equal to zero. By doing so, we obtain
a very simple expression, which is the area
multiplied by x ̄sin θ - ȳ cos θ + ρ is equal to zero,
where (x ̄, ȳ) is again the center of the object. This
tells us the axis that corresponds to the least
second moment must pass through the center of
the object.

To remove the parameter ρ from our expression
for E, we will shift the coordinate frame of the
image so that it lies at the center, (x,̄ ȳ), of the
object. We will define x' as x - x,̄ and y' as y - ȳ.
Substituting in our previous expression for E, we
obtain this expression 1 in which a, b, and c are
constants. These constants correspond to double
integrals. In the expression for a, the (x')2 implies
that it is the second moment about the y-axis. In
the expression for b, the (x'y') is a cross term and b
is referred to as the product moment. The values
a, b, and c are easy to compute from the image. By
shifting the coordinate frame to the center, we have essentially removed ρ from the expression for E.

13

Distance Between Point and Line

#

%

(%, ')
) *

axis
Distance of point (#, %) from line:

3 =
@# + !% + A

@) + !) +

MATH PRIMER

Given a line *# + !% + , = 0

3 =
sin < − % cos < + ?

sin)< + cos)<

3 = # sin < − % cos < + ?

Distance of point (#, %) from axis:

Similarly, given axis # sin < − % cos < + ? = 0

14

Minimizing Second Moment

#

%

(%, ')
) *

axis

2 =0
(

(# sin < − % cos < + ?))!(#, %) 1# 1%

So, minimize:

Using B2
B? = 0 / # sin < − % cos < + ? = 0we get:

Axis passes through center (#, %)!

(#, %)
+

Axis of Least Second Moment
minimizes:

2 =0
(

3) !(#, %) 1# 1%

15

Shift the Coordinate System

Therefore, we can rewrite) as:

* = ,

!!
(#")# '(#, %) -#" -%"

2 = @ sin) < − ! sin < cos < + A cos) <

where: ' = 2,
!!

#"%" '(#, %) -#" -%"

/ = ,
!!
(%")# '(#, %) -#" -%"

Change coordinates:

#0 = # − #, %0 = % − %

sin < − % cos < + ?
= #0 sin < − %0 cos <

#

%

(%, ')
) *

axis

(#, %)
#′

%′

+

(*, ', / are easy to compute)

+

1

1

First Principles of Computer Vision Binary Images

FPCV-1-3 7

With ρ out of the picture, we can minimize E with
respect to θ to obtain this simple expression 1 ,
which states that tan 2θ is equal to b divided by a
- c. There are actually two solutions to θ that result
from this expression, because tan 2θ is equal to tan
2θ + π. If we multiply the numerator and
denominator of this expression by -1, we will still
have the same value.

The illustration on the right provides a geometrical
interpretation of the two solutions. Take a look at
the triangle on the right with a - c as the base and
b as the height. In this case, tan 2θ is equal to b
divided by a - c. We can form a second triangle with an angle of 2θ + π, which is a reflection of the first
triangle. From this triangle we get tan 2θ + π is equal to -b divided by c – a, which is the same value we
got for tan 2θ using the first triangle.

What do the two solutions to θ represent? One
solution maximizes E while the other minimizes E.
The two solutions θ1 and θ2 are perpendicular to
each other. Thus, the axis of minimum inertia will
be perpendicular to the axis of maximum inertia. To
find the axis of minimum inertia, we can take the
second derivative of E with respect to θ. Among the
two solutions θ1 and θ2, the one for which the
second derivative of E is greater than zero
corresponds to the axis of minimum second
moment.

If we substitute the two solutions into the second
derivative of E, we will find that for θ1, the second derivative is greater than zero; that is the solution we
are looking for. That is, θ1 is the orientation of the axis of least second moment. As for its position, we
already know it passes through the center (x'y') of the object. Equally important is the fact that the
values of E corresponding to θ1 and θ2 are useful geometric properties of the object that are invariant
to its position and orientation.

16

Finally, Minimize "

Using ,-
,+ = . − 0 sin 2+ − # cos 2+ = 0

We know that:

we get: tan 2+ = #
. − 0

One gives Minimum of E
and the other Maximum of E

1. (= (!
2. (= (" = (! + #

" 22

"

− %

+ = +!

+ = +"

3 + 22
% − #

−"

tan 2+ = tan(2+ + ;) = −#
0 − .

(has two solutions.

17

Which One To Use?

Using second derivative test:

Orientation:

2")
2(" = * − , cos 2(+ ! sin2(If

> 0 then Minimum

< 0 then Maximum

< = <5 =
@D@E2 !, @ − A

2

1)2
1<) <5 > 0

1)2
1<) <) < 0and

Therefore,

Substituting cos 2<5, sin 2<5, cos 2<) and sin 2<):

1

First Principles of Computer Vision Binary Images

FPCV-1-3 8

We can also get a measure of how “rounded” an
object is. We can use the ratio of the minimum
second moment to the maximum second
moment as a measure of the roundedness of the
object. If we have a somewhat elongated object
such as this one, it will have a value for
roundedness that is less that one because Emin is
smaller than Emax.

Here are three example objects and their
geometric properties computed using the
moments discussed above. In each case, we
applied a threshold to the gray-level image (first
column) to obtain the binary image (second
column). In the third column, the center (black
dot) and the axis of minimum second moment
(line) are overlaid on the binary image. Note that
the disk does not have an axis because any axis
through the center will yield the same second
moment. In terms of roundedness, the first object
is least rounded, the second slightly more
rounded, and the third perfectly rounded.

Thus far, we have shown how to take a binary image of an object, compute its area, location, and its
maximum and minimum moments. The area and the two moments are useful features because they
are not affected by translation and rotation of the object. We can use these properties to distinguish
between a set of objects. After an object is recognized, the position and the orientation are used to
enable a robot to pick up the object.

18

Roundedness

-#$%

(#, %)

-#&'

&'
&(

where: 2678 = 2 <5 269: = 2 <)and

2678
269:

Roundedness =

19

Examples

Gray Image Binary Image Orientation Roundedness

0.19

0.49

1.0

First Principles of Computer Vision Binary Images

FPCV-1-3 9

Now let us look at discrete binary images. Each cell
is a pixel in the grid seen here, with a value of
either 1 or 0. bij is the value of the binary image at
the pixel in row i and column j. Let us assume that
the area of each pixel is one. Then, the area of the
object A is just the sum of all pixel values in the
image. The expressions for computing the area
(the zeroth moment) and the coordinates of the
center (the first moments) in the case of a discrete
image are shown here.

We can also compute the second moments easily,
without changing the coordinate system to the
center of the object. We will explain shortly why
this is relevant. Let us assume that the origin of the
coordinate system is one of the corners of the
image. We can then find the second moments a',
b' and c' using these expressions here, where all
locations are measured with respect to the origin
of the image, and not the center of the object.
Using the moments a', b' and c', the center of the
object, and its area, we can compute the moments
a, b, and c with respect to the center of the object.
A hint for how this can be done is given at the bottom of the slide.

Now, why did we not first find the center of the object and then compute the moments with respect to
the center? Imagine that an image has been recorded by the image sensor. As the image is being read
out from the sensor, pixel by pixel, the area A, center (x ̄, ȳ), and second moments a', b' and c' can all
be updated. Once the image is fully read out, the second moments a, b, and c with respect to the center
of the object are easily computed. In short, all the relevant properties of the object are obtained during
the read-out of the image.

20

Discrete Binary Images

Area: / =G
7;5

8

G
<;5

6

!7<

Position: Center of Area (First Moment)

=
1
/G
7;5

8

G
<;5

6

H!7< % =
1
/G
7;5

8

G
<;5

6

I!7<

!$%: Value at cell (pixel) in row 9
and column :.
Assume pixel area = 1.

=

>

?

@

21

Discrete Binary Images

Second Moments:

@0 =G
7;5

8

G
<;5

6

H)!7< !0 = 2G
7;5

8

G
<;5

6

HI!7< A0 =G
7;5

8

G
<;5

6

I)!7<

Note: .(, #(, 0(are second moments w.r.t origin.
., #, 0 (w.r.t. center) can be found from .(, #(, 0(, %, ', <

Hint: Expand . = ∑$)!% ∑*)!# (> − %̅)"#$* and represent
in terms of .(, %, <.

First Principles of Computer Vision Binary Images

FPCV-1-3 10

Next, we will discuss segmenting binary images into regions that correspond to different objects. When
we discussed geometric properties, we made the assumption that there was only one object in the
image. Since an image can have multiple objects, we need to label each object with a unique label before
we compute its geometric properties. This is known as segmentation. While this appears like a trivial
task, it turns out to be somewhat nuanced. We will assume that in our setting the objects do not overlap
or even touch each other — that is, each object is surrounded by the background.

First, let us define what we mean by an object in a
binary image. Two points, A and B, are considered
to be “connected” if there exists a path from A to
B along which the characteristic function of the
binary image is constant. A connected component
in a binary image is a maximal set of such
connected points.

22

Segmenting Binary Images

Topic: Binary Images, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

23

Multiple Objects

Need to Segment image into separate Components

Non-Trivial!

24

Connected Component

A and B are connected if path exists between A and B
along which !(#, %) is constant.

Maximal Set of Connected Points

A

B

First Principles of Computer Vision Binary Images

FPCV-1-3 11

Keeping this notion of a connected component in
mind, let us develop a simple algorithm for
segmenting a binary image, called region growing.
By region, in this context, we mean an object. The
algorithm starts by scanning the image in a raster
scan fashion (each row is scanned from left to right
and the rows are scanned from top to bottom)
until it locates an unlabeled point with b=1. If such
a point is not found, the algorithm terminates. If it
is found, the point is assigned a new label
(essentially a number) and becomes the seed point
for a new region. This label is then assigned to all
the neighbors of the seed point that have b=1, to the neighbors of those neighbors, and so on. This
iterative process grows a region with the same label until there are no more unlabeled neighbors with
b=1. When it reaches that point, the algorithm returns to the first step, which is to continue scanning for
the next unlabeled seed point with b=1.

Before we proceed, let us take a closer look at
what we mean by the term “neighbor.” Here are
two definitions for a neighbor. The first is based on
4-Connectedness (left), in which a pixel’s
neighbors are the four pixels to the left, right, top,
and bottom of it. The other is 8-Connectedness
(right), which includes the diagonal pixels. It turns
out that neither of these definitions is perfect.

25

Connected Component Labeling

Region Growing Algorithm

(a) Find Unlabeled “Seed” point with ! = 1.
If not found, Terminate.

(b) Assign New Label to seed point

(c) Assign Same Label to its Neighbors with ! = 1

(d) Assign Same Label to Neighbors of Neighbors
with ! = 1. Repeat until no more Unlabeled
Neighbors with b=1.

(e) Go to (a)

26

What do we mean by Neighbors?

Connectedness

4-Connectedness
4-C

8-Connectedness
8-C

Neither is Perfect!

First Principles of Computer Vision Binary Images

FPCV-1-3 12

In order to understand the problems with these
neighborhood definitions, let us consider Jordan's
Curve Theorem. This theorem states that a closed
curve must divide a region up into two connected
regions. In the image in the top right corner, A and
B are separate, fully connected regions that are
not connected to each other. Both 4-
Connectedness and 8-Connectedness violate
Jordan's Curve Theorem.

Consider the small binary image on the bottom
left. We assume that the 0s in the outer ring of the
image are connected to each other as the image
shown here sits within a larger image with only 0s. In the case of 4-Connectedness (middle), none of the
1s are connected to each other because this definition neglects the diagonals. As a result, we obtain
four separate objects (O1-O4). However, we do end up with two backgrounds, B1 and B2. So, we end
up with four disconnected objects and two disconnected backgrounds, which violates Jordan’s theorem.
With 8-Connectedness (right), the four 1s are grouped into one object with the shape of a ring. However,
in this case, the background inside the ring is connected to the background outside it, which again
violates Jordan's theorem.

In order to address this problem, we introduce
asymmetry into the definition of a neighbor. This
is called 6-Connectedness. Shown on the top are
two such asymmetric definitions of
neighborhoods. Note that in each of these
definitions, two diagonal pixels are dropped from
the neighborhood. Returning to our example
image patch, we now obtain two line segments
and a single connected background. This outcome
is consistent with Jordan's Curve Theorem.

27

!"

#$

#%

#"#&

!$!$

!$!$

!

#

#

##

!!

!!

Connectedness

Jordan’s Curve Theorem

Consider

A

B

Closed curve
à 2 Connected Regions

'

$

$

$$

''

''

4-C 8-C
Hole without a
closed loop!

Connected backgrounds
with a closed loop!

28

!

#"

#$

#"#$

!!

!!

Solution to Neighborhood Problem

Introduce Asymmetry

'

$

$

$$

''

''

or(a) (b)

Using (a): Two Separate
Line Segments

6-Connectedness
6-C

6-Connectedness
6-C

First Principles of Computer Vision Binary Images

FPCV-1-3 13

By introducing the asymmetry above, we are, in
effect, causing a square grid of pixels to behave
like a hexagonal grid. On a hexagonal grid, each
pixel has 6 well-defined neighbors. Unfortunately,
today’s commercially available image sensors can
only capture images on square grids. So, our
asymmetric definition for connectedness helps us
segment binary images without violating Jordan’s
theorem.

Previously, we had discussed the region-growing
algorithm for segmentation. Now we present an
algorithm that is more elegant and efficient. Once
again, we raster scan the image (left to right and
top to bottom, as shown). We wish to label the
pixel A. We will do this by only examining the
labels of pixels B, C, and D. Since we are raster
scanning the image, when we arrive at pixel A, we
already have labeled pixels B, C, and D. We refer
to this algorithm as sequential labeling. It is worth
noting that, by using only the top, diagonal, and
left neighbors to label a pixel, we are implicitly
introducing the asymmetry needed to satisfy Jordan’s theorem.

Here is how sequential labeling works. If A is 0, we
will call it part of the background, irrespective of
what the labels of pixels B, C, and D are. If A is 1
and the three neighbors are 0, we give it a new
label. If A is a 1 and D is labeled, we will give A the
label of D, irrespective of the values of B and C. If
A is 1, B and D are 0, and C is labeled, then A is
given the label of C. Similarly, if C and D are 0, but
B is labeled, then A is given the label of B. Now
consider the case where A is 1, B and C have been
labeled, and D is a background. If B and C have the
same label, then A is given that label.

29

Hexagonal Tessellation

Above asymmetry makes a Square Grid behave

like a Hexagonal Grid

32

Sequential Labeling Algorithm

à label(A) = new label
% %
% &

à label(A) = label(D)
" '
' &

à label(A) = label(B)
% #
% &

à label(A) = “background”
' '
' %

à label(A) = label(C)
% %
$ &

à If
label(B) = label(C)

then,
label(A) = label(B)

% #
$ &

X: Value does not matter (Can be 0 or 1)

31

Sequential Labeling Algorithm

We want to label A.
B, C, D are already labeled.

!
" #
$ Raster

Scanning

First Principles of Computer Vision Binary Images

FPCV-1-3 14

However, what do we do if D belongs to the
background, B and C are labeled, but they have
different labels? For the object shown here, this
exact case arises for the pixel shown as a black box.
Here, pixel D belongs to the background (it has the
value 0) pixel B has the label 1 and pixel C has the
label 2.

In this case, we assign pixel A the label of either B
or C and simply make note of the fact that the label
of B is “equivalent” to the label of C. This
information is stored in an equivalence table. This
table can be made compact by representing each
set of equivalent labels by a single label. After the
image has been fully scanned and labeled, we
simply do a second raster scan of the image where
the equivalences are resolved. In summary, with
just two raster scans of the image, it is fully
segmented into distinct regions, or objects. Now
the geometric properties (moments) we defined
previously can be computed for each of the objects in the image in order to recognize it and find its
position and orientation.

33

Sequential Labeling Algorithm

à What if label(B) not equal to label(C)?
% #
$ &

!

I.5

34

Sequential Labeling Algorithm

Solution: Create Equivalence Table
• Note down that label(B) ≡ label(C)

• Assign label(A) = label(B)

2 ≡ 1
7 ≡ 3, 6,4
8 ≡ 5

⋮

à
% #
$ &

What if label(B) not equal to label(C)?

Resolve Equivalence in Second Pass

First Principles of Computer Vision Binary Images

FPCV-1-3 15

Now let us examine ways in which a binary image
can be iteratively modified to extract useful
information from it. For example, given a binary
image of a full human body, one could extract the
skeleton of the body by thinning the body in the
image. The skeleton could be used to determine
information about the body, such as the lengths of
its bones or its pose. When performing such an
operation, it is crucial that the overall structure
and integrity of the binary image is not
compromised.

When considering the structure of a binary object,
an important concept is the Euler number. The
Euler number is the number of bodies minus the
number of holes. For the letter B here, the number
of bodies is 1 while the number of holes is 2, giving
it a Euler number of -1. The letter i has 2 bodies
and no holes, so its Euler number is 2. The letter n
has a Euler number of 1. The Euler number of the
full image is the sum of the Euler numbers of all its
non-overlapping regions. This property is key as it
implies that if an operation is applied to a region
of the image and it does not change the Euler
number of the region, then the Euler number of the complete image will remain the same.

We now define the Euler differential as the change
in the Euler number of an image due to an
operation applied to it. For our discussion here, we
will assume, for convenience, that the image is a
hexagonal grid. The same arguments can be
applied to a square grid by assuming that the
region the operation is applied to is asymmetric for
the reasons discussed earlier. In the small image
region (a pixel and its immediate neighbors) shown
here, if the center pixel is changed from 0 to 1, the
Euler number also changes from 0 to 1. Thus, the
Euler differential is 1 minus 0, which is 1.

35

Iterative Modification

Topic: Binary Images, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

36

Euler Number (E)

No. of Bodies (;) – No. of Holes (<)

2769CD =G28E8FEGDHI9JJ78C HDC7E8K

Letter B: 2L = −1

Letter i: 27 = 2

Letter n: 28 = 1

2 = 4Image :I.6

37

Euler Differential ("∗)

Change in the Euler number of the image.

'
'

'
'

'
'

'
$

'

'
'

'
'

'

2 = 12 = 0

)∗ = 1Euler Differential:

First Principles of Computer Vision Binary Images

FPCV-1-3 16

On a hexagonal grid, each pixel has 6 neighbors
and hence 2! = 64 possible neighborhood patterns
(patterns of 0s and 1s). These patterns can be
classified based on the Euler differential they
generate when the center pixel goes from a 0 to a
1. Whatever the Euler differential is, going from a
1 to a 0 would yield the negative of that number.

Let us take a look at an example. In this pattern, if
the center pixel is changed from 0 to 1, the Euler
differential is 1. We say that it belongs to the
neighborhood class N+1.

Here is another example that belongs to the
neighborhood class N+1. Below it we have a pattern
that belongs to the neighborhood class N0, which
is a very important class because it represents
conservative operators — these are neighborhood
patterns for which the center pixel value can be
modified without introducing any new bodies or
holes in the pattern and hence in the larger image
it belongs to.

Here is a case where the Euler differential is -1.
When the center pixel is changed from a 0 to a 1,
two bodies are connected, causing the number of
bodies to decrease by one. On the bottom, a
pattern is shown that belongs to the neighborhood
class N-2. Upon examining all 64 neighborhood
patterns, we find that there are only four possible
neighborhood types: N+1, N0, N-1, and N-2.

38

Neighborhood Sets Based on "∗

'
'

'
'

'
'

'
$

'

'
'

'
'

'0 → 1, -∗ = 1

Each pixel has 2' = 64 possible neighborhoods

Neighborhood ∈ C,!

Neighborhood patterns are classified based on the Euler
Differential they generate, assuming the center pixel goes

from 0 to 1.

39

'
'

$
$

$
$

'
$

'

$
$

$
$

'

Neighborhood Sets Based on "∗

0 → 1, -∗ = 0
Neighborhood ∈ C-

'
$

$
$

$
$

$
$

$

$
$

$
$

$0 → 1, -∗ = 1
Neighborhood ∈ C,!

40

'
'

$
'

$
'

$
$

'

$
'

$
'

$

'
'

'
'

$
$

$
$

'

'
'

$
$

$

Neighborhood Sets Based on "∗

0 → 1, -∗ = −2
Neighborhood ∈ C."

0 → 1, -∗ = −1
Neighborhood ∈ C.!

Only 4 possible neighborhood types: ?(!, ?), ?*!, ?*"

First Principles of Computer Vision Binary Images

FPCV-1-3 17

This idea of neighborhood classes allows one to
decide, based on the neighborhood of a pixel,
what kinds of operations need to be applied to it
to achieve a specific goal. In order to be
completely safe, one would use an operation that
is only applicable to the N0 class of
neighborhoods.

Note that the operators we have discussed are
local — pixels are modified solely based on their
immediate neighbors. This has an important
implication — the modifications can be applied to
any number of pixels in parallel, as long as each modified pixel does not belong to the neighborhood of
another pixel that is being modified at the same time. This condition is easy to satisfy. On a square grid,
this can be achieved by dividing the pixels into three “fields” and applying the operation in parallel to all
pixels in the same field. Since the operations are applied in parallel, they are highly efficient. In fact, the
same operator can be applied repeatedly to an image until none of the pixels can be modified — hence
the term iterative modification.

Let us develop a notation based on which we can
define an entire class for iterative modification
algorithms. A neighborhood set is first specified;
we will call it the set S, which could be N+1, N0, N-1,
N-2, or any combination of these. Let a pixel be
denoted as (i,j) and let aij equal 1 if the
neighborhood of pixel (i,j) belongs to S. Let us
denote the current value of the pixel as bij. Based
on these two values — aij and bij — a new value, cij,

will be assigned to the pixel. The two values, (aij,
bij), could be (0,0), (0,1), (1,0), or (1,1).
Corresponding to each one of these, cij will be
assigned a binary output. Since there are four possible inputs, we have four outputs, and each one is
a binary number. Therefore, we have 24 = 16 possible ways in which the four cij, outputs can be filled
with binary numbers. Each one of these corresponds to an iterative modification algorithm.

41

Iterative Neighborhood Operations

Incrementally apply neighborhood operations on images

Conservative Operations do not change
the Euler number of the image.

Input Output

42

Notation for Iterative Modification

Specify Neighborhood Set, @. Ex: @ can be ?(!, ?), ?*!
or ?*" or a combination of these.

Consider pixel (9, :). Let:
• *$% = 1 if Neighborhood of 9, : ∈ @ else 0
• !$% = current value of pixel 9, :
• ,$% = new value of pixel 9, :

.$% #$%
! !

! "

" !

" "

0$%
#

#

#

#

2+ = 16 algorithms

First Principles of Computer Vision Binary Images

FPCV-1-3 18

Shown here are all of the 16 algorithms for
iterative modification illustrated as a table. Some
of these are not particularly interesting because
they modify the image in a way that is more akin
to some sort of visual effect. These are not useful
in the context of computer vision.

A few of the algorithms, however, are useful and
widely used. Let us assume that the set S we are
interested in is N0. This means that we wish to be
conservative and do not want to introduce any
new objects or take away any existing objects.
Now consider algorithm 7. In this case, 0s will be
changed to 1s whenever possible, which means it will grow (or dilate) the object. In contrast, algorithm
4 does the opposite, meaning it will thin the object. Since we chose S = N0, both dilation and thinning
can be applied knowing that the objects in the image will not fuse together or break up into fragments.

Here we see the skeletons obtained by iteratively applying the thinning algorithm to binary images of a
butterfly and a human body.

43

Iterative Modification Algorithms

.$% #$% ! " # $ % & ' () * "! "" "# "$ "% "&

! ! ! ! ! ! ! ! ! ! " " " " " " " "

! " ! ! ! ! " " " " ! ! ! ! " " " "

" ! ! ! " " ! ! " " ! ! " " ! ! " "

" " ! " ! " ! " ! " ! " ! " ! " ! "

16 algorithms

Growing Objects: Q ∈ SM and /T*U3HDℎ4 7

Thinning Objects: Q ∈ SM and /T*U3HDℎ4 4

Specify Neighborhood Set @ and apply one of the 16
algorithms to each pixel.

First Principles of Computer Vision Binary Images

FPCV-1-3 19

Acknowledgements: Thanks to Nisha Aggarwal and Jenna Everard for their help with transcription,
editing and proofreading.

46

References and Credits

Topic: Binary Images, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

47

References: Textbooks

Robot Vision
Horn, B. K. P., MIT Press

48

Image Credits

I.1 https://pixabay.com/en/board-computer-chip-data-processing-564813. Public Domain.

I.2 Licensed under CC BY_SA 3.0.

I.3 http://www.clker.com/clipart-hand-x-ray.html. Public Domain.

I.4 https://pixabay.com/en/board-computer-chip-data-processing-564813. Public Domain.

I.5 Robot Vision. B.K.P. Horn. MIT Press. McGraw-Hill, LLC. Used with permission.

I.6 Robot Vision. B.K.P. Horn. MIT Press. McGraw-Hill, LLC. Used with permission.

First Principles of Computer Vision Binary Images

FPCV-1-3

References

[Horn 1986] Robot Vision, Horn, B. K. P., MIT Press, 1986.

[Nayar 2022B] Image Formation, Nayar, S. K., Monograph FPCV-1-1, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022C] Image Sensing, Nayar, S. K., Monograph FPCV-1-2, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

[Nayar 2025M] Image Segmentation, Nayar, S. K., Monograph FPCV-5-2, First Principles of Computer
Vision, Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

First Principles of Computer Vision Binary Images

FPCV-1-3

References

[Horn 1986] Robot Vision, Horn, B. K. P., MIT Press, 1986.

[Nayar 2022B] Image Formation, Nayar, S. K., Monograph FPCV-1-1, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022C] Image Sensing, Nayar, S. K., Monograph FPCV-1-2, First Principles of Computer Vision,

Columbia University, New York, February 2022.

[Nayar 2022E] Image Processing I, Nayar, S. K., Monograph FPCV-1-4, First Principles of Computer Vision,

Columbia University, New York, March 2022.

[Nayar 2022H] Boundary Detection, Nayar, S. K., Monograph FPCV-2-2, First Principles of Computer

Vision, Columbia University, New York, June 2022.

[Nayar 2025M] Image Segmentation, Nayar, S. K., Monograph FPCV-5-2, First Principles of Computer
Vision, Columbia University, New York, May 2025.

https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs
https://fpcv.cs.columbia.edu/Monographs

	cover
	Binary Images FPCV-1-3
	References Binary Images

	References Binary Images

