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Binary images are the simplest type of images used in computer vision. A binary image can have one of 
two values: 0 or 1. For instance, in the image shown on the right, the value of 1 (white) represents the 
object while the value of 0 (black) denotes the background. These images are very easy to process, store, 
and analyze. Despite their simplicity, they are very useful — there are many vision tasks, especially in 
structured environments such as assembly lines in factories, that can be performed efficiently and 
robustly using binary images.  

 

In order to create a binary image, we start with a 
gray-level image, with values that range from  0 to 
N. We then threshold it with a value T that is either 
automatically computed from the image or chosen 
by the user. The result is a characteristic or 
indicator function, b(x,y), for which the output 
value is 0 if the corresponding value in the gray-
level image is less than the threshold and 1 
otherwise (it can also be the other way around).  
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In order to select the threshold T, we can compute 
a histogram of the original gray-level image. In this 
example, the gray-level image has an 8-bit 
brightness value at each pixel. Hence, the 
horizontal axis of the histogram has gray levels that 
go from 0 to 255. For each gray level, the 
histogram shows the number of pixels in the image 
that have that level. The histogram seen here has 
two modes (or peaks), one corresponding to the 
background and the other to the objects in the 
foreground. The best choice for the threshold T 
would be a value that lies in the valley between the 
two modes.  

 

Here are a few of the many applications of binary 
images. They are widely used for detecting defects 
in printed circuit boards, such as breaks in copper 
strips. In the case of fingerprint analysis, a special 
type of lighting is used to enhance the curves and 
ridges in the image of the finger, which is then 
converted to a binary image. Another popular 
application is the detection and decoding of visual 
codes like QR codes. Binary images are also used in 
other domains such as medical image analysis.  

 

 

Binary images are also useful in imaging three-
dimensional (3D) objects. Irrespective of how 
complex a 3D object is, if we drop it on a horizontal 
plane, it will land in one of a finite number of stable 
configurations. Thus, if we have 3D objects sitting 
on a plane, as shown here, and the plane is imaged 
from the top, then the camera will see each of the 
objects in one of its stable configurations. In any 
given stable configuration, the 3D object produces 
a 2D shape that may be translated or rotated in the 
image. If we can develop an algorithm to recognize 
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a 2D shape even when it is translated or rotated in the image, we can recognize the corresponding 3D 
object.  

In the example shown here, however, it is difficult to threshold the image on the left because the objects 
are made of different materials. This results in object regions that can be bright or dark and can include 
shading, texture and highlights. In applications where lighting can be controlled, backlighting can be 
utilized where the objects sit on a translucent surface that is lit from beneath. When this is done, the 
image captured (right) by the camera is virtually a binary one, even without any processing.  
 
 

In this lecture, we will discuss the processing of 
binary images. First, we will discuss the geometric 
properties of a binary image of a single object. We 
will show that some of these properties are 
invariant to translation and rotation of the object 
on the plane it sits, hence they can be used to 
recognize the object. 

When the binary image includes multiple objects, 
the objects need to be assigned different labels 
before the geometric properties of each one can 
be computed. This labeling problem is referred to 
as segmentation. We will present algorithms for 
efficiently segmenting a binary image into different objects.  

Finally, we will talk about iterative modification. This is a class of algorithms that change a pixel value (0 
to 1 or 1 to 0) based solely on the values of its immediate neighbors. In doing so, care must be taken to 
ensure that the structure of the object is preserved and that new bodies or holes are not introduced into 
the image. Such modification algorithms are inherently parallelizable — the pixel modifications can be 
applied to large numbers of pixels, simultaneously. These algorithms can also be iterative — the 
modification can be applied to an image repeatedly. This approach can be used to, for instance, quickly 
thin an object down to its skeleton.  
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Let us examine how the geometric properties of a binary image can be computed. Assume that the binary 
image shown here is continuous with spatial coordinates x and y; we will discuss discrete binary images 
later. Let us also assume, for now, that there is only one object in the binary image. Our characteristic 
function b(x,y)  is 1 for points on the object and 0 for points in the background.  

 

The simplest geometry property we can compute 
is the area of the object, which is the zeroth 
moment. The area is computed by integrating the 
characteristic function b(x,y) over the entire 
image. The area is a useful property because it is 
sometimes sufficient for distinguishing between a 
small number of objects.  

Another useful property of an object is its location. 
If, for instance, we have an application in which a 
robot needs to pick up an object, the robot would 
need to know the object’s location. A 
straightforward way to determine its location is by 
finding the first moments of its binary image. These can be found by computing the integral of x times 
b(x,y) over the entire image divided by the area to get x ̄and the integral of y times b(x,y) over the entire 
image divided by the area to get ȳ. These are the x and y coordinates of the center of the area. This 
center is analogous to the “centroid” of an object in mechanics. Given an object with uniform thickness 
and material composition, the location of its centroid, or center of mass, corresponds to the center of 
its area.  

8
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Returning to the robot example, our robot would 
also need to know the orientation of the object 
before it can grasp it. Orientation is a more 
nuanced concept, as one can think of many ways 
to define it. For our purposes here, we need to find 
an axis that is well-defined for any given shape, 
irrespective of its position and rotation in the 
image. That axis is the axis of least second 
moment. Here is one way to gain physical intuition 
for what this axis means. Imagine the object to be 
a thin sheet of uniform material and thickness. If 
we were to spin the object about the axis of least 
second moment, it would require less effort than spinning it about any other axis.  

 

How do we find the axis of least second moment? 
The second moment (E) for any chosen axis is the 
sum of the square of the shortest distance (r) of 
each point on the object from that axis. In order to 
define the chosen axis, we could use the straight-
line equation y = mx + b. This representation of the 
line, however, is problematic for our purposes 
since m goes from minus infinity to infinity.  
Instead, we will use a different parametrization of 
the straight line: x sin θ - y cos θ + ρ = 0. θ is the 
angle between the line and the horizontal axis, 
which can only range from 0 to 2π. ρ is the 
perpendicular distance from the line to the origin. Note that ρ also has to be finite because the object 
(and hence its axis of least second moment) must lie within the image.  Our goal is to find the ρ and θ 
that minimize E for any given binary image. For now, we are once again assuming that there is only one 
object in the binary image.  
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Here is a math primer that will allow us to review 
some properties of a straight line. If we are given a 
line ax + by + c = 0, the distance r of a point (x,y) 
from that line is the absolute value of ax + by + c 
divided by the square root of a2 + b2. From our line 
expression x sin θ - y cos θ + ρ = 0, we can 
determine a, b, and c and plug them into the 
equation for r. In the denominator we have sin2 θ 
+ cos2θ which equals 1. Therefore, r is equal to this 
expression 1   which actually turns out to be the 
left-hand side of our straight-line equation. 

 

We plug this expression for r back into the 
equation for the second moment E. In order to 
minimize E, we find the derivative of E with respect 
to ρ and set it equal to zero. By doing so, we obtain 
a very simple expression, which is the area 
multiplied by x ̄sin θ  - ȳ cos θ  + ρ is equal to zero, 
where (x ̄, ȳ) is again the center of the object. This 
tells us the axis that corresponds to the least 
second moment must pass through the center of 
the object. 

 

 

To remove the parameter ρ from our expression 
for E, we will shift the coordinate frame of the 
image so that it lies at the center, (x,̄ ȳ), of the 
object. We will define x' as x - x,̄ and y' as y - ȳ. 
Substituting in our previous expression for E, we 
obtain this expression 1  in which a, b, and c are 
constants. These constants correspond to double 
integrals. In the expression for a, the (x')2 implies 
that it is the second moment about the y-axis. In 
the expression for b, the (x'y') is a cross term and b 
is referred to as the product moment. The values 
a, b, and c are easy to compute from the image. By 
shifting the coordinate frame to the center, we have essentially removed ρ from the expression for E. 
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With ρ out of the picture, we can minimize E with 
respect to θ to obtain this simple expression 1 ,   
which states that tan 2θ is equal to b divided by a 
- c. There are actually two solutions to θ that result 
from this expression, because tan 2θ is equal to tan 
2θ + π. If we multiply the numerator and 
denominator of this expression by -1, we will still 
have the same value.  

The illustration on the right provides a geometrical 
interpretation of the two solutions. Take a look at 
the triangle on the right with a - c as the base and 
b as the height. In this case, tan 2θ is equal to b 
divided by a - c. We can form a second triangle with an angle of 2θ + π, which is a reflection of the first 
triangle. From this triangle we get tan 2θ + π is equal to -b divided by c – a, which is the same value we 
got for tan 2θ using the first triangle. 

 

What do the two solutions to θ represent? One 
solution maximizes E while the other minimizes E. 
The two solutions θ1 and θ2 are perpendicular to 
each other. Thus, the axis of minimum inertia will 
be perpendicular to the axis of maximum inertia. To 
find the axis of minimum inertia, we can take the 
second derivative of E with respect to θ. Among the 
two solutions θ1 and θ2, the one for which the 
second derivative of E is greater than zero 
corresponds to the axis of minimum second 
moment.  

If we substitute the two solutions into the second 
derivative of E, we will find that for θ1, the second derivative is greater than zero; that is the solution we 
are looking for. That is, θ1 is the orientation of the axis of least second moment. As for its position, we 
already know it passes through the center (x'y') of the object. Equally important is the fact that the 
values of E corresponding to θ1 and θ2 are useful geometric properties of the object that are invariant 
to its position and orientation.  
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We can also get a measure of how “rounded” an 
object is. We can use the ratio of the minimum 
second moment to the maximum second 
moment as a measure of the roundedness of the 
object. If we have a somewhat elongated object 
such as this one, it will have a value for 
roundedness that is less that one because Emin is 
smaller than Emax. 

 

 

 

 

Here are three example objects and their 
geometric properties computed using the 
moments discussed above. In each case, we 
applied a threshold to the gray-level image (first 
column) to obtain the binary image (second 
column). In the third column, the center (black 
dot) and the axis of minimum second moment 
(line) are overlaid on the binary image. Note that 
the disk does not have an axis because any axis 
through the center will yield the same second 
moment. In terms of roundedness, the first object 
is least rounded, the second slightly more 
rounded, and the third perfectly rounded.  

Thus far, we have shown how to take a binary image of an object, compute its area, location, and its 
maximum and minimum moments. The area and the two moments are useful features because they 
are not affected by translation and rotation of the object. We can use these properties to distinguish 
between a set of objects. After an object is recognized, the position and the orientation are used to 
enable a robot to pick up the object.  
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Now let us look at discrete binary images. Each cell 
is a pixel in the grid seen here, with a value of 
either 1 or 0. bij is the value of the binary image at 
the pixel in row i and column j. Let us assume that 
the area of each pixel is one. Then, the area of the 
object A is just the sum of all pixel values in the 
image. The expressions for computing the area 
(the zeroth moment) and the coordinates of the 
center (the first moments) in the case of a discrete 
image are shown here. 

 

 

 

We can also compute the second moments easily, 
without changing the coordinate system to the 
center of the object. We will explain shortly why 
this is relevant. Let us assume that the origin of the 
coordinate system is one of the corners of the 
image. We can then find the second moments a', 
b' and c' using these expressions here, where all 
locations are measured with respect to the origin 
of the image, and not the center of the object. 
Using the moments a', b' and c', the center of the 
object, and its area, we can compute the moments 
a, b, and c with respect to the center of the object. 
A hint for how this can be done is given at the bottom of the slide.  

Now, why did we not first find the center of the object and then compute the moments with respect to 
the center? Imagine that an image has been recorded by the image sensor. As the image is being read 
out from the sensor, pixel by pixel, the area A, center (x ̄, ȳ), and second moments  a', b' and c' can all 
be updated. Once the image is fully read out, the second moments a, b, and c with respect to the center 
of the object are easily computed. In short, all the relevant properties of the object are obtained during 
the read-out of the image.   
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Next, we will discuss segmenting binary images into regions that correspond to different objects. When 
we discussed geometric properties, we made the assumption that there was only one object in the 
image. Since an image can have multiple objects, we need to label each object with a unique label before 
we compute its geometric properties. This is known as segmentation. While this appears like a trivial 
task, it turns out to be somewhat nuanced. We will assume that in our setting the objects do not overlap 
or even touch each other — that is, each object is surrounded by the background. 

 

First, let us define what we mean by an object in a 
binary image. Two points, A and B, are considered 
to be “connected” if there exists a path from A to 
B along which the characteristic function of the 
binary image is constant. A connected component 
in a binary image is a maximal set of such 
connected points.  
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Keeping this notion of a connected component in 
mind, let us develop a simple algorithm for 
segmenting a binary image, called region growing. 
By region, in this context, we mean an object. The 
algorithm starts by scanning the image in a raster 
scan fashion (each row is scanned from left to right 
and the rows are scanned from top to bottom) 
until it locates an unlabeled point with b=1. If such 
a point is not found, the algorithm terminates. If it 
is found, the point is assigned a new label 
(essentially a number) and becomes the seed point 
for a new region. This label is then assigned to all 
the neighbors of the seed point that have b=1, to the neighbors of those neighbors, and so on. This 
iterative process grows a region with the same label until there are no more unlabeled neighbors with 
b=1. When it reaches that point, the algorithm returns to the first step, which is to continue scanning for 
the next unlabeled seed point with b=1.  
 
 

Before we proceed, let us take a closer look at 
what we mean by the term “neighbor.” Here are 
two definitions for a neighbor. The first is based on 
4-Connectedness (left), in which a pixel’s 
neighbors are the four pixels to the left, right, top, 
and bottom of it. The other is 8-Connectedness 
(right), which includes the diagonal pixels. It turns 
out that neither of these definitions is perfect.  
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In order to understand the problems with these 
neighborhood definitions, let us consider Jordan's 
Curve Theorem. This theorem states that a closed 
curve must divide a region up into two connected 
regions. In the image in the top right corner, A and 
B are separate, fully connected regions that are 
not connected to each other. Both 4-
Connectedness and 8-Connectedness violate 
Jordan's Curve Theorem.  

Consider the small binary image on the bottom 
left. We assume that the 0s in the outer ring of the 
image are connected to each other as the image 
shown here sits within a larger image with only 0s. In the case of 4-Connectedness (middle), none of the 
1s are connected to each other because this definition neglects the diagonals. As a result, we obtain 
four separate objects (O1-O4). However, we do end up with two backgrounds, B1 and B2. So, we end 
up with four disconnected objects and two disconnected backgrounds, which violates Jordan’s theorem. 
With 8-Connectedness (right), the four 1s are grouped into one object with the shape of a ring. However, 
in this case, the background inside the ring is connected to the background outside it, which again 
violates Jordan's theorem.  

 

In order to address this problem, we introduce 
asymmetry into the definition of a neighbor. This 
is called 6-Connectedness. Shown on the top are 
two such asymmetric definitions of 
neighborhoods. Note that in each of these 
definitions, two diagonal pixels are dropped from 
the neighborhood. Returning to our example 
image patch, we now obtain two line segments 
and a single connected background. This outcome 
is consistent with Jordan's Curve Theorem.  
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By introducing the asymmetry above, we are, in 
effect, causing a square grid of pixels to behave 
like a hexagonal grid. On a hexagonal grid, each 
pixel has 6 well-defined neighbors. Unfortunately, 
today’s commercially available image sensors can 
only capture images on square grids. So, our 
asymmetric definition for connectedness helps us 
segment binary images without violating Jordan’s 
theorem. 

 

 

Previously, we had discussed the region-growing 
algorithm for segmentation. Now we present an 
algorithm that is more elegant and efficient. Once 
again, we raster scan the image (left to right and 
top to bottom, as shown). We wish to label the 
pixel A. We will do this by only examining the 
labels of pixels B, C, and D. Since we are raster 
scanning the image, when we arrive at pixel A, we 
already have labeled pixels B, C, and D. We refer 
to this algorithm as sequential labeling. It is worth 
noting that, by using only the top, diagonal, and 
left neighbors to label a pixel, we are implicitly 
introducing the asymmetry needed to satisfy Jordan’s theorem. 

 

Here is how sequential labeling works. If A is 0, we 
will call it part of the background, irrespective of 
what the labels of pixels B, C, and D are. If A is 1 
and the three neighbors are 0, we give it a new 
label. If A is a 1 and D is labeled, we will give A the 
label of D, irrespective of the values of B and C. If 
A is 1, B and D are 0, and C is labeled, then A is 
given the label of C. Similarly, if C and D are 0, but 
B is labeled, then A is given the label of B. Now 
consider the case where A is 1, B and C have been 
labeled, and D is a background. If B and C have the 
same label, then A is given that label.  

29
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à label(A) = new label
% %
% &

à label(A) = label(D)
" '
' &

à label(A) = label(B)
% #
% &

à label(A) = “background”
' '
' %

à label(A) = label(C)
% %
$ &

à If 
label(B) = label(C)

then,
label(A) = label(B)

% #
$ &

X: Value does not matter (Can be 0 or 1)

31

Sequential Labeling Algorithm

We want to label A. 
B, C, D are already labeled.

!
" #
$ Raster

Scanning
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However, what do we do if D belongs to the 
background, B and C are labeled, but they have 
different labels? For the object shown here, this 
exact case arises for the pixel shown as a black box. 
Here, pixel D belongs to the background (it has the 
value 0) pixel B has the label 1 and pixel C has the 
label 2.  

 

 

 

 

 

In this case, we assign pixel A the label of either B 
or C and simply make note of the fact that the label 
of B is “equivalent” to the label of C. This 
information is stored in an equivalence table. This 
table can be made compact by representing each 
set of equivalent labels by a single label. After the 
image has been fully scanned and labeled, we 
simply do a second raster scan of the image where 
the equivalences are resolved. In summary, with 
just two raster scans of the image, it is fully 
segmented into distinct regions, or objects. Now 
the geometric properties (moments) we defined 
previously can be computed for each of the objects in the image in order to recognize it and find its 
position and orientation. 

 

33

Sequential Labeling Algorithm

à What if label(B) not equal to label(C)?
% #
$ &

!

I.5

34

Sequential Labeling Algorithm

Solution: Create Equivalence Table
• Note down that label(B) ≡ label(C)

• Assign label(A) = label(B)

2 ≡ 1
7 ≡ 3, 6,4
8 ≡ 5

⋮

à
% #
$ &

What if label(B) not equal to label(C)?

Resolve Equivalence in Second Pass
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Now let us examine ways in which a binary image 
can be iteratively modified to extract useful 
information from it. For example, given a binary 
image of a full human body, one could extract the 
skeleton of the body by thinning the body in the 
image. The skeleton could be used to determine 
information about the body, such as the lengths of 
its bones or its pose. When performing such an 
operation, it is crucial that the overall structure 
and integrity of the binary image is not 
compromised.  

 

When considering the structure of a binary object, 
an important concept is the Euler number. The 
Euler number is the number of bodies minus the 
number of holes. For the letter B here, the number 
of bodies is 1 while the number of holes is 2, giving 
it a Euler number of -1. The letter i has 2 bodies 
and no holes, so its Euler number is 2. The letter n 
has a Euler number of 1. The Euler number of the 
full image is the sum of the Euler numbers of all its 
non-overlapping regions. This property is key as it 
implies that if an operation is applied to a region 
of the image and it does not change the Euler 
number of the region, then the Euler number of the complete image will remain the same.  

 

We now define the Euler differential as the change 
in the Euler number of an image due to an 
operation applied to it. For our discussion here, we 
will assume, for convenience, that the image is a 
hexagonal grid. The same arguments can be 
applied to a square grid by assuming that the 
region the operation is applied to is asymmetric for 
the reasons discussed earlier. In the small image 
region (a pixel and its immediate neighbors) shown 
here, if the center pixel is changed from 0 to 1, the 
Euler number also changes from 0 to 1. Thus, the 
Euler differential is 1 minus 0, which is 1.  

35

Iterative Modification

Topic: Binary Images, Module: Imaging

First Principles of Computer Vision

Shree K. Nayar

Columbia University

36

Euler Number (E)

No. of Bodies (;) – No. of Holes (<)

2769CD =G28E8FEGDHI9JJ78C HDC7E8K

Letter B: 2L = −1

Letter i: 27 = 2

Letter n: 28 = 1

2 = 4Image :I.6

37

Euler Differential ("∗)

Change in the Euler number of the image.

'
'

'
'

'
'

'
$

'

'
'

'
'

'

2 = 12 = 0

)∗ = 1Euler Differential:
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On a hexagonal grid, each pixel has 6 neighbors 
and hence 2! = 64 possible neighborhood patterns 
(patterns of 0s and 1s). These patterns can be 
classified based on the Euler differential they 
generate when the center pixel goes from a 0 to a 
1. Whatever the Euler differential is, going from a 
1 to a 0 would yield the negative of that number.  

Let us take a look at an example. In this pattern, if 
the center pixel is changed from 0 to 1, the Euler 
differential is 1. We say that it belongs to the 
neighborhood class N+1.  

 

Here is another example that belongs to the 
neighborhood class N+1. Below it we have a pattern 
that belongs to the neighborhood class N0, which 
is a very important class because it represents 
conservative operators — these are neighborhood 
patterns for which the center pixel value can be 
modified without introducing any new bodies or 
holes in the pattern and hence in the larger image 
it belongs to. 

 

 

 

Here is a case where the Euler differential is -1. 
When the center pixel is changed from a 0 to a 1, 
two bodies are connected, causing the number of 
bodies to decrease by one. On the bottom, a 
pattern is shown that belongs to the neighborhood 
class N-2. Upon examining all 64 neighborhood 
patterns, we find that there are only four possible 
neighborhood types: N+1, N0, N-1, and N-2.  

 

 

 

38

Neighborhood Sets Based on "∗

'
'

'
'

'
'

'
$

'

'
'

'
'

'0 → 1, -∗ = 1

Each pixel has 2' = 64 possible neighborhoods

Neighborhood ∈ C,!

Neighborhood patterns are classified based on the Euler 
Differential they generate, assuming the center pixel goes 

from 0 to 1.

39

'
'

$
$

$
$

'
$

'

$
$

$
$

'

Neighborhood Sets Based on "∗

0 → 1, -∗ = 0
Neighborhood ∈ C-

'
$

$
$

$
$

$
$

$

$
$

$
$

$0 → 1, -∗ = 1
Neighborhood ∈ C,!

40

'
'

$
'

$
'

$
$

'

$
'

$
'

$

'
'

'
'

$
$

$
$

'

'
'

$
$

$

Neighborhood Sets Based on "∗

0 → 1, -∗ = −2
Neighborhood ∈ C."

0 → 1, -∗ = −1
Neighborhood ∈ C.!

Only 4 possible neighborhood types: ?(!, ?), ?*!, ?*"
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This idea of neighborhood classes allows one to 
decide, based on the neighborhood of a pixel, 
what kinds of operations need to be applied to it 
to achieve a specific goal. In order to be 
completely safe, one would use an operation that 
is only applicable to the N0 class of 
neighborhoods.  
 
Note that the operators we have discussed are 
local — pixels are modified solely based on their 
immediate neighbors. This has an important 
implication — the modifications can be applied to 
any number of pixels in parallel, as long as each modified pixel does not belong to the neighborhood of 
another pixel that is being modified at the same time. This condition is easy to satisfy. On a square grid, 
this can be achieved by dividing the pixels into three “fields” and applying the operation in parallel to all 
pixels in the same field. Since the operations are applied in parallel, they are highly efficient. In fact, the 
same operator can be applied repeatedly to an image until none of the pixels can be modified — hence 
the term iterative modification. 
 
 
Let us develop a notation based on which we can 
define an entire class for iterative modification 
algorithms. A neighborhood set is first specified; 
we will call it the set S, which could be N+1, N0, N-1, 
N-2, or any combination of these. Let a pixel be 
denoted as (i,j) and let aij equal 1 if the 
neighborhood of pixel (i,j) belongs to S. Let us 
denote the current value of the pixel as bij. Based 
on these two values — aij and bij — a new value, cij, 

will be assigned to the pixel. The two values, (aij, 
bij), could be (0,0), (0,1), (1,0), or (1,1). 
Corresponding to each one of these, cij will be 
assigned a binary output. Since there are four possible inputs, we have four outputs, and each one is 
a binary number. Therefore, we have 24 = 16 possible ways in which the four cij, outputs can be filled 
with binary numbers. Each one of these corresponds to an iterative modification algorithm.  

 

 

41

Iterative Neighborhood Operations

Incrementally apply neighborhood operations on images

Conservative Operations do not change 
the Euler number of the image.

Input Output

42

Notation for Iterative Modification

Specify Neighborhood Set, @. Ex: @ can be ?(!, ?), ?*!
or ?*" or a combination of these.

Consider pixel (9, :). Let:
• *$% = 1 if Neighborhood of 9, : ∈ @ else 0
• !$% = current value of pixel 9, :
• ,$% = new value of pixel 9, :

.$% #$%
! !

! "

" !

" "

0$%
#

#

#

#

2+ = 16 algorithms
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Shown here are all of the 16 algorithms for 
iterative modification illustrated as a table. Some 
of these are not particularly interesting because 
they modify the image in a way that is more akin 
to some sort of visual effect. These are not useful 
in the context of computer vision.  

A few of the algorithms, however, are useful and 
widely used. Let us assume that the set S we are 
interested in is N0. This means that we wish to be 
conservative and do not want to introduce any 
new objects or take away any existing objects. 
Now consider algorithm 7. In this case, 0s will be 
changed to 1s whenever possible, which means it will grow (or dilate) the object. In contrast, algorithm 
4 does the opposite, meaning it will thin the object. Since we chose S = N0, both dilation and thinning 
can be applied knowing that the objects in the image will not fuse together or break up into fragments. 

 

Here we see the skeletons obtained by iteratively applying the thinning algorithm to binary images of a 
butterfly and a human body.  

 

 
 
 
 
 

 

43

Iterative Modification Algorithms

.$% #$% ! " # $ % & ' ( ) * "! "" "# "$ "% "&

! ! ! ! ! ! ! ! ! ! " " " " " " " "

! " ! ! ! ! " " " " ! ! ! ! " " " "

" ! ! ! " " ! ! " " ! ! " " ! ! " "

" " ! " ! " ! " ! " ! " ! " ! " ! "

16 algorithms

Growing Objects: Q ∈ SM and /T*U3HDℎ4 7

Thinning Objects: Q ∈ SM and /T*U3HDℎ4 4

Specify Neighborhood Set @ and apply one of the 16 
algorithms to each pixel. 
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