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This lecture is about recognizing a three-dimensional object from its appearance in a two-dimensional 
image. This paradigm is known as appearance matching. We first discuss two different approaches to 
representing a 3D object. The first approach is the explicit representation of the 3D geometry (shape) of 
the object. We will discuss the pros and cons of this approach, and argue that a more effective approach 
to object recognition is to represent the visual appearance of an object, rather than its shape. 
 
The appearance of an object in an image depends on several intrinsic parameters (the object’s 3D shape 
and surface reflectance) and extrinsic parameters (the pose of the object and its illumination). Our 
approach to appearance representation is to take a large number of images of the object by varying its 
extrinsic parameters. The goal then is to efficiently present this large set of images for use during 
recognition.   
 
Since each image in the object’s image set is has a large number of pixels, and we have a large number 
of images of the object, a key challenge with appearance matching is to compactly represent this high-
dimensional data in a low-dimensional space. This reduction in dimensionality is achieved using principal 
component analysis (PCA), which is a technique that is widely used in many different disciplines of 
science and engineering. We describe PCA and its use for appearance representation. The end result is 
an appearance model of the object that is parameterized by the extrinsic parameters (pose and 
illumination) of the object.  
 
Based on this parametric appearance representation, we develop an efficient algorithm for recognizing 
an object from its appearance in an image, and determining its extrinsic parameters. Finally, we will 
discuss a few applications of appearance matching, including, face recognition, general 3D object 
recognition, visual tracking and servoing in robotics, and visual inspection. 
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Let us discuss the two approaches to representing a 3D object—shape and appearance. Shape 
representation has a long history. The explicit representation of the 3D geometry of an object is used in 
many domains such as computer graphics, manufacturing, and factory automation. Shown on the left in 
slide 4 is the voxel representation of an object, where a voxel is a generalization of a pixel. A voxel is a 
volumetric element, i.e., a cell in 3D. The object is represented by simply identifying which cells are 
occupied. Voxel representations have been useful in computer graphics and computer-aided design. 
 
Another way to represent the 3D geometry of an object, in particular an opaque object, is by 
representing its surface. The surface can be represented using simple primitives like planes, spheres, and 
low-order polynomials or more complex primitives such as splines. Shown on the right is a 
representation called the superquadric. The equation of the superquadric is |𝑥|!+ |𝑦|" + |𝑧|#= 1. The 
parameters 𝑟, 𝑠, and 𝑡 are real numbers (not just integers) and by simply varying them we can generate 
all of the shapes shown on the right.  
 
 
In the field of constructive solid geometry (CSG), an 
object is represented as the result of applying 
Boolean operations to simple primitive shapes 
such as spheres, cubes, and cones. Shown here is 
the union, difference, and intersection of a sphere 
and a cube. The field of CSG is the workhorse of 
application domains such as product design and 
manufacturing. 
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Shape Representations

Constructive Solid Geometry (CSG)
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The use of shape representations for object 
recognition poses a few challenges. Firstly, it 
requires the explicit representation of the 3D 
shape of each object, which entails either 
designing a 3D model by hand or measuring an 
object using a 3D sensor (such as one based on 
active illumination). This is a tedious process when 
dealing with large numbers of objects. In addition, 
the recognition procedure may require the use of 
a 3D sensor to recover the structure of the scene 
that includes the objects of interest.  
 
 
An attractive approach to object recognition 
would be to directly recognize objects from their 
appearance in an image. We can describe the 
visual appearance of an object as a function of its 
intrinsic and extrinsic parameters. The intrinsic 
parameters include the object’s 3D shape and 
reflectance properties (BRDF). In the case of a rigid 
object, its intrinsic parameters do not change with 
time. The extrinsic parameters of an object include 
its 3D pose and its illumination. For recognition, 
we aim to compactly represent an object using the 
above definition of visual appearance. 
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Issues with 3D Shape Matching

Requires measuring of 3D shapes for:

• Creating the database of object shapes (Offline)

• Recognition (Online)

Can be computationally expensive for large databases.
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Appearance Learning by Humans

We learn the appearance of an object by looking 
at it from a different directions.



First Principles of Computer Vision                                                                                                              Appearance Matching 
 

FPCV-5-3 
 

4 

 
Consider a situation wherein you are given the doll on the right and asked to memorize it. You will most 
likely look at the doll from different perspectives. These perspectives are used to create a mental model 
of the doll, albeit one that we don’t fully understand. When the doll is shown to you in the future, you 
are able to recognize it. We will take a similar approach in the context of appearance matching for 
computer vision.  
 
When you drop an object on the ground, it lands 
in one of a few configurations, each one called a 
stable configuration. The rubber duck seen here is 
sitting on a turntable in one of its stable 
configurations.  Let the angle	𝜔$		represent the 
pose (rotation) of the object in this stable 
configuration. The pose of the duck can be varied 
by spinning the turntable. Assume that in our 
recognition scenario, the illumination could vary. 
To account for this, we can vary the angle 𝜔% of 
the light source by using the robot it is mounted 
on. Therefore, a large number of images of the 
duck, corresponding to different poses and illuminations, can be captured using the turntable and the 
robot. This is the learning image set corresponding to the object. Note that while we are using a single 
parameter (𝜔$)	to represent pose and a single parameter for illumination (𝜔%), in general, pose and 
illumination could each involve multiple parameters.  
 
From each image in an object’s learning image set, 
the object is segmented and the segmented region 
is scaled such that the larger of its two dimensions 
equals a canonical size. Shown here are 
segmented and scaled images of four different 
objects. 
 
We will assume that in each image used for 
learning and recognition, the object has a uniform 
background (black in the examples shown here). 
This is because we will be using the entire image 
for both learning and recognition and hence 
require the image not to include variations due to the background. In addition, we will assume that the 
object can be segmented in full and is not occluded by other objects.  

11

Appearance Learning by Machines
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Given our object image sets, what would be the 
simplest way to recognize a novel input image, 
such as the duck image on the left? The most naïve 
way is to perform template matching. Given a 
segmented and scaled input image, we could use 
it as a template and match it with each and every 
image in our learning set. As discussed in previous 
lectures, the matching can be done using the sum 
of absolute differences (SAD), the sum of squared 
differences (SSD), or normalized cross-correlation 
(NCC) which can handle differences in brightness 
and camera gain. In a typical recognition system, 
template matching may have to be done with thousands of templates for thousands of objects. Clearly, 
this is computationally prohibitive for virtually any real-world application.  
 
Our goal is to perform the above matching, but in 
a very efficient manner. Shown here is the learning 
image set of the duck. Note that there is great 
similarity between any two consecutive images in 
the set. That is, the image set is highly redundant. 
We seek to exploit this redundancy to achieve a 
compact representation of the object’s 
appearance.   
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Naïve Recognition: Template Matching

Input Image

…

Template Matching with thousands of “templates” for potentially millions 
of objects is very expensive and time consuming.

Object Image Sets (Templates)

Perform Template Matching using SAD/SSD/NCC as similarity measure. 
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…

Object Image Set

Exploit redundancy to achieve a compact appearance 
representation that makes matching efficient.
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Representing Appearance

We want to transform the images into a different “space” or 
“domain”, where matching one image with another is more 
efficient.

Input Image …

Object Image Set (Templates)
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The learning image set of an object can be viewed as features in a high-dimensional space, where the 
dimensionality of the space equals the number of pixels in the image. Our goal is to exploit the 
redundancy in the image set discussed previously to represent the image set in a lower-dimensional 
space. This reduction in dimensionality is achieved using principal component analysis (PCA). The end 
result is a representation that allows us to efficiently perform template matching between images.  
 
 
Here is an image with 𝑃 rows and 𝑄 columns, i.e., 
a total of 𝑁 pixels. The image can be represented 
as an 𝑁 × 1 vector 𝒇& by stacking the columns of 
the image, as shown on the right. This mapping of 
an image to a vector can be done in many ways. 
We could have stacked the rows of the images 
instead of the columns, or even randomly mapped 
image pixels to vector elements. The only 
requirement with mapping the image to a vector 
is that the same mapping needs to be used for all 
images during learning as well as recognition.  
 
 
 
Shown on the left is the 𝑁 × 1 feature vector 𝒇&. 
We can construct a 𝑁-dimensional space, shown 
on the right, where each of the dimensions 
corresponds to the brightness of the image at the 
corresponding pixel. For instance, the unit vector 
𝐢$ corresponding to the first dimension is used to 
represents the brightness of the first pixel, 𝐢% 
corresponds to the second pixel, and so on. Thus, 
in this 𝑁-dimensional space, our image feature 
vector 𝒇& is a point. This 𝑁-dimensional space is 
referred to as an orthonormal basis because the 
unit vectors 𝐢' are orthogonal to each other. For 
instance, 𝐢% is a unit vector with a 1 in its second element because it corresponds to the second pixel, 
and 0 elsewhere. 
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The representation of an image as a point in 𝑁-
dimensional space gives us a different perspective 
on template matching. From our lectures on 
image processing, template matching between 
two images, 𝐼$ and 𝐼%, is done by finding their 
correlation, which is the sum of squared 
difference (𝑆𝑆𝐷) between the images 1 . When 
the two images are represented as points 𝒇$&  and 
𝒇%& 	in 𝑁-dimensional space, correlation between 
the images is equal to the L% distance between the 
two points 2 .  
 
Now, let us discuss the problem of dimensionality 
reduction. Consider this distribution of points in a 
three-dimensional space. The points lie on a two-
dimensional plane within the three-dimensional 
space. This suggests that it is redundant to 
represent each of these points using the three 
coordinates 𝑥, 𝑦, and 𝑧. Since they lie on a plane, 
we can define a new coordinate system using two 
orthogonal vectors, 𝒆$ and 𝒆%, that lie on the two-
dimensional plane in which all the points lie. Then, 
we only need two coordinates (distances along 𝒆$ 
and 𝒆%)	to represent each point. This is a simple 
example of dimensionality reduction where we have gone from three dimensions to two dimensions. 
 
Now, consider an object image set with 𝑀 images 
consisting of 𝑁 pixels each. In 𝑁-dimensional 
space, we have a distribution of points as shown 
here, which we will refer to as an appearance 
distribution. Due to the similarity between the 
images in the object image set, the distribution of 
points in the 𝑁-dimensional space can be assumed 
to be highly structured. As a result, these points 
reside in a 𝐾-dimensional space, where 𝐾 < 𝑁. 
This is the key observation that we want to exploit. 
 

1  2  
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This 𝐾-dimensional space can be represented by 𝐾 unit vectors {𝒆$, 𝒆%, …	 , 𝒆(}	that are orthogonal to 
each other and form an orthonormal basis. Our hope is that 𝐾 is much smaller than 𝑁. Our goal then is 
to find the orthonormal basis {𝒆$, 𝒆%, …	 , 𝒆(}.	 This is achieved using principal component analysis.  
 
 
The first step in reducing dimensionality is to 
compute the mean 𝐜 of the 𝑀 images 
{𝒇$& , 𝒇%& , … 𝒇)& } in our object image set 1 . Then, we 
shift the origin of the coordinate frame by 
subtracting the mean image 𝐜  from each one of the 
original images 2 . By moving the origin of the 
coordinate frame to the mean, we are in a better 
position to measure the variability of points within 
the distribution.  
 
 
 
 
The first principal component, 𝒆$, represents the 
direction along which the points in the distribution 
have maximum variance. In other words, if we take 
all the points in the distribution and project them 
onto the first principal component 𝒆$, the variance 
of the projections is going to be maximum, i.e., 
there is no other vector in the 𝑁-dimensional space 
for which the variance is greater. 
 
It turns out that if we use the least squares method 
to find a line that best fits our distribution, its 
direction is the same as the direction of 𝒆$. We 
refer to 𝒆$ as the first principal component. If we wanted to represent each point 𝒇 (an image) in a one-
dimensional space, its coordinate 𝑝	in the space can be found as the dot product of 𝒇 with 𝒆$ 1 . 
 
 

21

Subtracting the Mean

5 =
1

7
&

,-$

.

-′,

Subtract the mean from the object image set so as to move 
the origin of the new basis to the centroid of the distribution:

-, = -′, − 5

!!

!"

!%

Given 7 images {(!", (!#, … (!&}
of an object, the Mean Image is:
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Principal Components

1st Principal Component (/$):

The direction of maximum 
variance in the image set.

(+

Image is represented by a single number: (

(Equivalent to Least Squares 
Fitting of a Line) !!

!"

!%

)

*

Image Representation:

Project the image - onto the principal component /$. 

! = #! $ % (Dot product)

1  

2  

1  
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Clearly, representing each image with a single 
number is not going to be adequate for most 
applications. Hence, we will look at the second 
principal component, 𝒆%. Since we are looking for 
an orthonormal basis, 𝒆%	must be orthogonal to 
the first principal component 𝒆$. We know that 
there are an infinite set of vectors that are 
orthogonal to 𝒆$. However, 𝒆% is the vector in this 
infinite set along which the variance of the 
distribution is maximum. Now we have a more 
descriptive representation of each image. An 
image 𝒇 can now be represented by a two-
dimensional point 𝒑 whose coordinates (𝑝$, 𝑝%)  can be found by projecting 𝒇 onto the principal 
components 𝒆$ and 𝒆%, respectively 1 . 
 
The above gives us intuition for what principal 
components mean. We will soon describe how 
these principal components are computed. Let us 
assume for now that we have found 𝐾 principal 
components {𝒆$, 𝒆%, …	 , 𝒆(}. Then, each image 𝒇 
can be represented by a point 𝒑 in 𝐾-dimensional 
space 1 . Our hope is that each image is well 
represented within this 𝐾-dimensional space, and 
because of the structure of our distribution, 𝐾 is 
much smaller than 𝑁. When this is the case, we 
have a significant reduction in dimensionality. 
 
The principal components {𝒆$, 𝒆%, …	 , 𝒆(}	are 
referred to as a linear subspace. Given such a 
subspace, we can use it for two purposes. First, we 
can project an image 𝒇 to the subspace to obtain 
the lower-dimensional representation	𝒑	using the 
forward projection	 equation 1 . Second, we can 
use 𝒑 to reconstruct the original image using the 
backward projection equation 2 . Note that this 
reconstruction is only an approximation of the 
original image 𝒇 because we are bound to lose 
information while going from 𝑁 to 𝐾 dimensions.  
 

23

!!

!"

!%

(,

Principal Components

2nd Principal Component (/%):

The direction of 2nd maximum 
variance in the image set such 
that /$ ⊥ /%.

& =
!!
!" = #! #" #%

Project the Image - onto the principal components {/$ , /%}. 

Image is represented in 2 dimensions.

Image Representation:
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)
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Principal Components

2th Principal Component (/+):

The direction of 2th maximum 
variance in the image set such 
that /$ ⊥ /% ⊥ ⋯ ⊥ /+.

& =

!!
!"
⋮
!$

= #! #" … #$ #%

Image is represented in 2 < 4 dimensions.
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!!
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Project the Image - onto the principal components {/$ , /% , … /+}. 
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Forward and Back Projection

Forward Projection:

Back Projection:

% ≈ !!#! + !"#" +⋯+ !$#$

% ≈ ,
%&!

$
!%#%

(+

!!
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⋮
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/$ , /% , … , /+ is referred
to as Linear Subspace.
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1  
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Let us now look at how we can find the principal components. Given an image set, we will convert it to 
a mean-subtracted image set {𝒇$, 𝒇%, … 𝒇)}. Our aim is to find the orthonormal basis {𝒆$, 𝒆%, … 𝒆(} 
which corresponds to the 𝐾 principal components. This orthonormal basis allows us to approximate an 
original image 𝒇* as a linear combination of the principal components 𝒆+, where the weights of the 

combination are the projections 𝑝+
(*) 1 . The projections 𝑝+

(*) are obtained from the forward projection, 
which corresponds to finding the dot product of image 𝒇* with each of the principal components 2 . 
Since the principal components form an orthonormal basis, they are unit vectors that are orthogonal to 
each other 3 . 
 
 
Let us formulate the problem of finding the 
principal components. We know that the first 
principal component corresponds to the direction 
along which the distribution of our images has 
maximum variance. Let us treat the images in our 
set as a random variable 𝒇, and let vector 𝒆 
represent the first principal component. We want 
to find the 𝒆 that maximizes the variance of the 
dot product of 𝒇 and 𝒆.  We can rewrite this 
variance as the expected value of the square of 𝒇 ∙
𝒆 minus the expected value of 𝒇 ∙ 𝒆 1 . Since 𝒆 is a 
constant and not a random variable, we get 2 . 
The expected value of an image 𝐸[𝒇] is zero because the images are mean-subtracted. This simplifies 
the equation to the expected value of the square of 𝒆 ∙ 𝒇. Since both 𝒆 and 𝒇 are vectors, we can 
represent {𝒆 ∙ 𝒇}% as 𝒆.𝒇𝒇.𝒆. Once again, since 𝒆 is not a random variable, we can pull it out of the 
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Finding the Principal Components
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Finding the Principal Components

Projection of the Random Variable (Image) - along the 1st
Principal Component # is % ⋅ # .

Find # that Maximizes Variance of (% ⋅ #).

Var % ⋅ # = 3 % ⋅ # − 3 % ⋅ # "

Var % ⋅ # = 3 # ⋅ % − 3 % "

= 3 ##% %##= 3 # ⋅ % "

(Mean of %: 3 % = 0)

= ##3 %%# #

By Definition:

where B C is the Expected Value of a random variable C.

Var % ⋅ # = ##7# where D5×5 = B --2 is Covariance Matrix

MATH PRIMER

1  

2  
3  

1  

2  

3  
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expectation. Given that we are dealing with discrete images, 𝐸[𝒇𝒇.]  is an 𝑁 × 𝑁 matrix 𝑅, called the 
covariance matrix. Thus, the variance of 𝒇 ∙ 𝒆 is 𝒆.𝑅𝒆 3 . 
 
 
We want to find the 𝒆 that maximizes 𝒆.𝑅𝒆 such 
that 𝒆 is a unit vector, i.e., 𝒆.𝒆 = 1. To this end, we 
define an objective function 𝐿, which is equal to 
𝒆.𝑅𝒆 minus a multiplier 𝜆 times (𝒆.𝒆) − 1. To find 
the 𝒆 that maximizes 𝐿 , we can find the derivative 
of 𝐿 with respect to 𝒆 and set it to zero. The result 
is 1 , which implies that the first principal 
component 𝒆$	 is the eigenvector of 
𝑅	corresponding to the largest eigenvalue. In fact, 
the entire set of principal components 
{𝒆$, 𝒆%, … 𝒆(} that constitute the orthonormal 
basis we are looking for are the 𝐾 eigenvectors of 
𝑅	corresponding to the largest 𝐾 eigenvalues.  
 
 
Let us look at how the above principal component 
analysis (PCA) is applied in practice. First, we 
construct a 𝑁 ×𝑀 data matrix 𝐹 which consists of 
images 𝒇$ through 𝒇* stacked together as 
columns		 1 . The 𝑁 × 𝑁 covariance matrix 𝑅 is 
computed as 𝐹𝐹. 	 2 . We then find the eigenvalues 
and eigenvectors of 𝑅. The first 𝐾 eigenvectors 
correspond to the orthonormal basis in which we 
will represent all our images. This basis is also 
referred to as a linear subspace or an eigenspace. 
 
There is an important question we have yet to 
answer. What dimensionality 𝐾 is adequate for representing an image set? We will revisit this question 
shortly.  
 

29

Finding the Principal Components

Find # that Maximizes Variance of % ⋅ # :

Projection of the Random Variable (Image) - along the 1st
Principal Component # is % ⋅ # .

max8 )9-) such that  )9) = 1

Maximize Objective function 8(#, :):

8 #, : = ##7# − :(### − 1)

Eigenvalue Problem

Taking derivatives of / /, E w.r.t ) and equating to 0: 

-) =0)-) − 0) = 2
First Principal Component is eigenvector 
corresponding to maximum eigenvalue.
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Principal Component Analysis (PCA)

< = %! %" … %'Data Matrix:

7 = <<#Covariance Matrix: (4×4)

(4×7)

Eigenvectors: /$ , /% , … , /+

Solve Eigenvalue Problem: 7# = :#

Eigenvalues: E$ , E% , … , E+

Orthonormal Basis
Linear Subspace

“Eigenspace”
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1  
2  
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We have discussed how we can use PCA to achieve dimensionality reduction. It turns out that there is a 
close relationship between PCA and a technique we discussed earlier in the context of structure from 
motion called singular value decomposition (SVD), which is widely used in many different domains. SVD 
states that any 𝑁 ×𝑀 matrix 𝐴 can be factorized into the product of an 𝑁 × 𝑁 matrix 𝑈, an 𝑁 ×𝑀 
matrix Σ, and a 𝑀 ×𝑀 matrix 𝑉.. The matrices 𝑈 and 𝑉 are orthonormal matrices, and matrix Σ is a 
diagonal matrix. The diagonal elements of Σ are called singular values. These diagonal elements are non-
negative making Σ a positive semidefinite matrix. The singular values are ordered in decreasing order of 
magnitude along the diagonal, with 𝜎$ being the largest value. As discussed earlier in the lecture on 
structure from motion, the number of non-zero singular values correspond to the rank of the matrix. 
 
 
Let us apply SVD to our 𝑁 ×𝑀 data matrix 𝐹 to 
factorize it into 𝑈, Σ, and 𝑉.. We can then 
construct the covariance matrix 𝑅 which is equal 
to 𝐹𝐹.  by substituting 𝑈 ∙ 𝛴 ∙ 𝑉.  for 𝐹 1 . 
 
Since 𝑉 is an orthonormal matrix, 𝑉.  is equal to 
the inverse of 𝑉. Thus, 𝑉.𝑉 is the identity matrix 𝐼. 
We can therefore rewrite 1  as the product of 𝑈, 
a new matrix Λ, and 𝑈.. Λ is a diagonal matrix since 
it is the product of two diagonal matrices, 𝛴 and 
𝛴.. 
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Singular Value Decomposition (SVD)
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For any matrix = there exists a factorization:

!!×# = #!×! $ Σ!×# $ &$#×#
where 3 and 49 are orthonormal

:" 0 0 0 … 0
0 :# 0 0 … 0
0 0 :' 0 … 0
0 0 0 :( … 0
0 0 0 0 ⋱ 0
0 0 0 0 … :&
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

Σ!×# = >!, … , >':Singular Values

and Σ is diagonal.

33

SVD and Covariance Matrix !
Factorization of Data Matrix <:

'!×# = #!×! $ Σ!×# $ &$#×#

Covariance Matrix: ! = ##!

( = # $ Σ $ &$ $ & $ Σ$ $ #$

)

( = # $ Λ $ #$

1  
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Λ is an 𝑁 × 𝑁 diagonal matrix, where each 
diagonal element 𝜆/  is equal to the square of the 
corresponding singular value 𝜎/  of 𝐹.  It turns out 
that the diagonal elements 𝜆/  of  Λ are the 𝑁 
eigenvalues of the correlation matrix 𝑅, ordered in 
descending order of magnitude. The columns of 
the matrix 𝑈 are the 𝑁  eigenvectors of 𝑅, i.e., the 
principal components, ordered in descending 
order of importance from left to right. By choosing 
the first 𝐾 of these eigenvectors we have the 𝐾-
dimensional subspace we are looking for.  This is 
the relationship between PCA and SVD. 

Now that we know how to perform dimensionality reduction using PCA, we are ready to represent the 
visual appearance of an object. This representation is referred to as the parametric appearance 
representation. Given an object’s image set, such as the one shown here, we first find the mean image. 
We subtract the mean image from each image in the set, convert the mean-subtracted images into 
vectors, 𝒇$ through 𝒇*, and create the data matrix 𝐹. Next, we compute the covariance matrix 𝑅 and 
find its eigenvectors 2 	and eigenvalues 1 .  
 
In 2 ,	the eigenvalues are plotted in descending order of magnitude. We see that they drop quickly in 
magnitude because of the redundancies in the original image set. The 13th and higher eigenvalues are 
close to zero, indicating that the corresponding eigenvectors do not contribute significantly to the 
variance in the distribution of the original image set. It is interesting to note that the higher-order 
eigenvectors have higher frequency variations within them. The question of interest to us is how many 
eigenvectors (principal components) do we need to well-represent the original image set. 
 

34

Eigenvalues and Eigenvectors of !
Factorization of Data Matrix <:

(!×! = #!×! $ Λ!×! $ #$!×!

=" 0 0 0 … 0
0 =# 0 0 … 0
0 0 =' 0 … 0
0 0 0 =( … 0
0 0 0 0 ⋱ 0
0 0 0 0 … =)
0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ … ⋮

Λ!×! =

0
!
!
!
!
!
+-.+

0
!
!
!
!
!
!… …

0> = 6>!

Eigenvalues:
0
!
!
!
!
!
!
=$

Eigenvectors:

#!×! = )" )! … )4 9…)?
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Let us say we want our subspace to capture 95% 
of the energy in the original image set. What is the 
dimensionality (𝐾) of the subspace, i.e., the 
number of eigenvectors, we would need to 
achieve this? For this, we find the smallest 𝐾 such 
that the sum of the 𝐾 largest eigenvalues divided 
by the sum of all the eigenvalues is greater or 
equal to 0.95. In the example shown here, 𝐾 = 15, 
which means we need a 15-dimensional subspace. 
If each image in the original set has 200 x 200 
pixels, we have gone from a 40,000-dimensional 
space down to a 15-dimensional space. This is a 
significant reduction in dimensionality. 
 
As we discussed earlier, the visual appearance of 
an object is a function of its intrinsic and extrinsic 
parameters. The intrinsic parameters of the object 
include its shape and its surface reflectance. We 
assume that these intrinsic parameters remain 
constant across images, meaning that the object is 
rigid (non-deformable) and its surface properties 
do not vary. However, we assume that the 
extrinsic parameters of the object, such as its pose 
and illumination, could change. We can express 
these extrinsic parameters as a vector 𝝎. Then, 
each image in our set is parameterized by 𝝎. 
 
We will project each image in the learning set of 
the object to the subspace (eigenspace) computed 
using PCA. Let us consider a 3D eigenspace, 
represented by the first three eigenvectors 𝒆$, 𝒆%, 
and 𝒆0,	of the duck’s image set. Shown here are 
two images from the set, 𝒇$& (𝝎$) and 𝒇%& (𝝎%), 
projected after mean subtraction to the 
eigenspace, to get the points 𝑝(𝝎$) and 𝑝(𝝎%).  
When all the images in the learning set are 
projected in this manner, we get the collection of 
points seen here. The set of 𝑁-dimensional images 
are now points in a 𝐾-dimensional space, where 𝐾 
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is much smaller than 𝑁. Note that two images in the learning set with slightly different pose and 
illumination, can be expected to be close to each other in eigenspace. By the same argument, the 
projection of an image of the duck taken with a pose and illumination that lies in between the ones used 
to capture two consecutive images in the learning set can be expected lie in between the projections of 
the two images.  
 
Since a novel image of the duck given to us for 
recognition may have parameters that lie in 
between the ones used to capture the learning 
images, we interpolate the projections of the 
learning image set to obtain a continuous surface 
in the 𝐾-dimensional eigenspace. This surface is 
referred to as a manifold and it is parameterized 
by the extrinsic parameters 𝝎. The above 
interpolation can be done using a low-order 
surface representation, such as splines. Thus, the 
complete appearance representation of the 
object is the mean image (which needs to be 
subtracted from novel images during recognition), the 𝐾 eigenvectors that make up the subspace, and 
the manifold. This is referred to as the parametric appearance representation of the object and is 
significantly more compact than the original set of learning images of the object.  
 
Let us revisit the naïve method of performing 
appearance matching by applying template 
matching. Given two images, 𝐼$ and 𝐼%, template 
matching finds the correlation between the two 
images, which is equivalent to computing their 
sum of squared differences (𝑆𝑆𝐷). 𝑆𝑆𝐷 is the L% 
distance between points 𝒇$&  and 𝒇%& 	in 𝑁-
dimensional space, where 𝑁	is the number of 
pixels in an image 1 . Now, let us look at the 
projections 𝒑$ and 𝒑% of these two images in the 
𝐾-dimensional eigenspace. Their L% distance 𝑑 in 
the eigenspace can be expressed in terms of the 
backward projections of 𝒑$ and 𝒑% discussed in slide 25. Note that these backward projections are 
approximations of the original images 𝒇$&  and 𝒇%&  in 𝑁-dimensional space. Thus, the L% distance 𝑑 gives 
us an approximation to the 𝑆𝑆𝐷	 2 . In fact, there is no 𝐾-dimensional space that gives a better 
approximation to the correlation between the original images 𝒇$&  and 𝒇%&  than the eigenspace.  

1  
2  
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We now have all the tools necessary to perform appearance matching. We start with appearance 
learning, which is an offline procedure. Assume that we want to create a system to recognize 𝑄 different 
objects {1, 2, … , 𝑄}. For each one of these 𝑄 objects, we will capture 𝑀 learning images 

{𝐼$
(1), 𝐼%

(1), … , 𝐼)
(1)} under different extrinsic parameters. Next, for each object 𝑞, we will perform the 

following steps. We first segment each image and resize it so that the object fits in a square bounding 
box of fixed dimensions. Next, we normalize each image by its magnitude to remove the effects of the 
brightness of the illumination, the camera gain, and the camera exposure. Each image is then converted 

to a vector, 𝒇′*
(1). The mean 𝒄(1) is computed from all the vectors corresponding to the object, and is 

subtracted from the vectors 𝒇′*
(1) to get the mean-subtracted vectors 𝒇*

(1). 
 
 
Next, for each object, we construct the data matrix 
𝐹(1) by stacking up all the mean-subtracted vectors 

𝒇*
(1). Then, the covariance matrix 𝑅(1) is computed 

as 𝐹(1)𝐹(1)! , and PCA is applied to 𝑅(1) to find the 

𝐾 eigenvectors {𝒆$
(1), 𝒆%

(1), … 𝒆(
(1)} that represent 

the object’s eigenspace. As discussed earlier, we 
know how to determine the dimensionality of the 
eigenspace, 𝐾, by looking at the eigenvalues. We 

now project all the vectors 𝒇*
(1) to points in the 

eigenspace. We then fit a parametric manifold to 
these points to get a continuous appearance 
representation that is parameterized by the extrinsic variables 𝝎, which could include pose and 
illumination parameters. 
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Appearance Learning (Offline)

Given: D learning images "$
(#)
, "%
(#)
, … , ".

(#) for each of the
E training objects. F = 1,2,… , E

Step 2: Convert image H)
*(,) to feature vector %)

*(,).

Step 4: Subtract from each feature vector the mean vector: 

Step 1: Normalize all images to remove brightness variations.

H)
*(,) = IH)

(,) H)
(,)

Step 3: Compute the mean feature vector J(,).

%)
(,) = %)

*(,) − J(,)

For each object *, perform steps 1-8:

44

Appearance Learning (Offline)

Step 7: Project the learning images to the eigenspace.

Step 5: Compute the data matrix and covariance matrix.

Step 8: Fit a parametric manifold to the projected image points 
as a function of extrinsic variables X = [\$ , \% , … , \2]. 

`(#) = -$
(#)

-%
(#)

… -.
(#)

Step 6: Compute the 2 eigenvectors /$
#
, /%

#
, … /+

# of D(#)

that represent the new orthonormal basis (“eigenspace”). 

^,
(#)

= /$
(#)

/%
(#)

… /+
(#) 2

×-,
(#)

D(#) = `(#)`(#)
2



First Principles of Computer Vision                                                                                                              Appearance Matching 
 

FPCV-5-3 
 

17 

Shown here are parametric appearance models of 
four simple objects, parameterized by two extrinsic 
parameters – a single parameter 𝜃$ for pose which 
corresponds to the rotation of the object on a 
turntable, and a single parameter 𝜃%	for the 
direction of a point source (see slide 10). These 
manifolds are shown in 3D space for visualization 
purposes, but actually reside in higher-dimensional 
spaces. Since each object is rotated a full 360 
degrees while the learning images are captured, 
the manifolds are closed.   
 
For recognition, we assume that the object is not 
occluded in the input image and can be well-
segmented and scaled to fit the bounding box we 
chose for the learning images. We brightness 
normalize this image 𝐼 by dividing it by its 
magnitude ||𝐼|| to get 𝐼′, which is then converted 
to a feature vector 𝒇′. For each object 𝑞 in our 
database, we perform the following steps. We 
subtract the mean image 𝒄(1) of the object 𝑞 from 
the input 𝒇′ and project it to the object’s 
eigenspace to get a point 𝒑(1). 
 
We then find the distance 𝑑(1) between the closest 
point of the manifold of object 𝑞 to the projected 
input point 𝒑(1), using a nearest neighbor 
algorithm. This distance 𝑑(1)	tells us how close the 
input point is to the appearance model of the 
object. We repeat the above process for all the 
objects in our database, and find the object 𝑟 for 
which the	distance is minimum. If this minimum 
distance is less than a threshold, we declare the 
input image as one of object 𝑟. Note that the 
closest point on the manifold of object 𝑟 to the 
input projection also reveals the extrinsic 
parameters 𝝎, i.e., the pose and illumination of the object in the input image.  
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Example Object Manifolds in Eigenspace

[Murase 1995]
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Recognition (Online)

Given: Input image (8) for object recognition.

Step 2: Convert image H′ to feature vector %′.

Step 1: Normalize the image to remove brightness variations:

H′ = ⁄H H

For each object * in the database, perform steps 3-6:

Step 3: Subtract the mean feature vector for object *: 

%(,) = %* − J(,)

Step 4: Project feature vector to eigenspace for object *:

^(#) = /$
(#)

/%
(#)

… /+
(#) 2

×-(#)

47

Recognition (Online)

Step 5: In the eigenspace for object *, find closest point on 
the manifold to projected point.

?(,) = argmin. &(,) −&(,)(?)

Step 7: Find the object 9 for which .(#) is minimum.

Step 6: Find the distance .(#) between the projected image 
point and the closest point on the manifold.

Use a Nearest Neighbor Algorithm for finding closest point.
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Let us look at a few example applications of 
appearance matching. Shown here is a recognition 
system developed about three decades ago with a 
database of 100 objects. A single parameter was 
used for the pose, which is rotation about a single 
axis. The system recognizes the identity and pose 
of the object presented to it. The online video 
lecture shows the system working in real time.  
 
 
 
 
 
Here is the use of appearance matching for 
temporal inspection. The goal is to quickly scan a 
manufactured product with a camera mounted on 
a robot, and detect discrepancies with respect to a 
stored appearance model. Shown here is the 
inspection of a printed circuit board, where the 
task is to detect if all the components of the circuit 
board are located where they should be. During 
learning, the robot (top right) traverses a fixed 
trajectory while the camera captures a video of a 
model (good) circuit board. The frames of the video 
are used to compute an appearance model that is 
parametrized by time during the scanning process. When a new circuit board is presented to the system, 
the robot traverses the same trajectory and the appearance at each instant of time is compared with the 
expected appearance. If the appearance deviates from the expected one because, say, a component is 
missing, the board is deemed to be defective, and is passed along to a human for closer inspection.  
 
 

48

Real-time Object Recognition System

[Nayar 1996]

Recognition

100 Objects Database

49

Temporal Inspection

Training (Offline)

Inspection (Online)

I.9

I.10I.7

Visual Workspace
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Shown here is the use of appearance matching for 
visual servoing. A robot has a gripper and a camera 
mounted on its end-effector. We want to perform 
a particular task, for example a peg-in-hole 
insertion. However, we do not know the precise 
location of the hole. During learning, the robot 
gripper is first positioned exactly here it needs to 
be with respect to the object with the hole. Then, 
several displacements with respect to this position 
are applied to the end-effector and an image is 
taken for each one. These images are used to 
compute an appearance model that is 
parameterized by the displacement parameters. During the insertion task, an image is taken by the 
camera and this image is compared with the appearance model to determine the displacement of the 
end-effector from its desired position. This displacement is used to correct the position of the end-
effector and then the peg is inserted into the hole. In the bottom right, the object with the hole is being 
moved. The above method is used by the end-effector to follow the object. When the object stops 
moving, the peg is inserted in the hole (see the online lecture video). 
 

The use of eigenspaces for face recognition was first demonstrated Turk and Pentland. Shown here on 
the left of slide 51 are some of the captured images of different people in the database. This entire image 
set is used to compute the principal components shown on the right, which are often referred to as 
eigenfaces. As before, each image in the database is projected to a point in the eigenspace. Given a novel 
face image, it is projected to the eigenspace and the closest point (face in the learning set) determines 
the identity of the person. As seen in slide 52, the system correctly determines the identity of the person 
in the novel image on the right as that of the highlighted person (bottom left) in the database. The use 
of eigenspaces for face recognition was one of the first successful applications of appearance matching. 
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Visual Servoing

Robot Positioning

Robot Tracking

I.11

I.12

I.8

Appearance = ℱ{Robot Coordinates}

51

Face Recognition

[Turk 1991]

Learning Images Eigenvectors aka Eigenfaces

Every Face is expressed as a Weighted Sum of Eigenfaces.

I.12
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Face Recognition

Learning Images

Test Image

I.12

[Turk 1991]
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